Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферментны крови

    Эти соединения у различных ферментов оказались одинаковыми по составу. Это же соединение входит в состав гемоглобина крови, переносящего кислород в организмах человека и животных. Гем можно отделить от белка. Однако ни белок, ни гем в отдельности не проявляют ферментных свойств. [c.302]

    Имеющее регуляторное значение изменение активности фермента часто усиливается при помощи каскадного механизма первый фермент воздействует на второй, второй — на третий и т. д. Этот механизм обеспечивает быстрое появление больших количеств активной формы последнего фермента цепи. Примером каскадного механизма может служить механизм свертывания крови [89], представленный схематически на рис. 6-16. Мы видим последовательность, состоящую из пяти ферментов и начинающуюся с фактора XII, в которой каждый фермент активирует следующий путем отщепления небольшой части пептидной цепи (ограниченный протеолиз). На конечном этапе тромбин воздействует на фибриноген и, отщепляя небольшой пептид, превращает его в фибрин — специализированный белок, который спонтанно свертывается. Какие факторы препятствуют выходу каскадного механизма из-под контроля Почему при небольшом кровоподтеке весь протромбин в нашем организме не превращается в тромбин и не происходит свертывания всей крови Здесь, несомненно, имеет место та же ситуация, что и в случае сАМР, который быстро удаляется из системы с помощью специфического фермента существуют механизмы удаления активированного фермента из каскадной последовательности, представленной на рис. 6-16. Помимо этого имеется специальная ферментная система, растворяющая сгусток крови при заживлении раны [89]. [c.72]


    Весь сложный процесс переваривания пищевых белков в пищеварительном тракте настроен таким образом, чтобы путем последовательного действия протеолитических ферментов лишить белки пищи видовой и тканевой специфичности и придать продуктам распада способность всасываться в кровь через стенку кишечника. Примерно 95—97% белков пищи всасывается в виде свободных аминокислот. Следовательно, ферментный аппарат пищеварительного тракта осуществляет поэтапное, строго избирательное расщепление пептидных связей белковой молекулы вплоть до конечных продуктов гидролиза белков —свободных аминокислот. Гидролиз заключается в разрыве пептидных связей —СО—МН— белковой молекулы. [c.418]

    При остром панкреатите, когда трипсин и другие ферменты из пораженной поджелудочной железы вымываются в кровь, уровень их в крови соответствует размерам некротического участка. В этом случае определение активности трипсина в сыворотке крови является надежным ферментным тестом при диагностике острого панкреатита. Следует отметить, что субстратная специфичность трипсина ограничена разрывом только тех пептидных связей, в образовании которых участвуют карбоксильные группы лизина и аргинина. [c.421]

    Синтез незаменимых аминокислот из продуктов обмена углеводов и жиров в организме животных отсутствует. Клетки животных не содержат ферментных систем, катализирующих синтез углеродных скелетов этих аминокислот. В то же время организм может нормально развиваться исключительно при белковом питании, что также свидетельствует о возможности синтеза углеводов из белков. Процесс синтеза углеводов из аминокислот получил название глюконеогенеза. Он доказан прямым путем в опытах на животных с экспериментальным диабетом более 50% введенного белка превращается в глюкозу. Как известно, при диабете организм теряет способность утилизировать глюкозу, и энергетические потребности покрываются за счет окисления аминокислот и жирных кислот. Доказано также, что исходными субстратами для глюконеогенеза являются те аминокислоты, распад которых сопровождается образованием прямо или опосредованно пировиноградной кислоты (например, аланин, серин, треонин и цистеин). Более того, имеются доказательства существования в организме своеобразного циклического процесса—глюкозо-аланинового цикла, участвующего в тонкой регуляции концентрации глюкозы в крови в тех условиях, когда в период между приемами пищи организм испытывает дефицит глюкозы. Источниками пирувата при этом являются указанные аминокислоты, образующиеся в мышцах при распаде белков и поступающие в печень, в которой они подвергаются дезаминированию. Образовавшийся аммиак в печени обезвреживается, участвуя в синтезе мочевины, которая выделяется из организма. Дефицит мышечных белков затем восполняется за счет поступления аминокислот пищи. [c.548]


    Пантотеновая кислота, входя в ферментные системы, является важнейшим биокатализатором реакций ацилирования, протекающих в организме. Она участвует в жировом и углеводном обмене. Характерно, что пантотеновая кислота внутри клеток находится в связанном состоянии в виде кофермента А в свободном виде она содержится в плазме крови. [c.69]

    В настоящее время методами межфазной полимеризации, поликонденсации и двойного эмульгирования в микрокапсулированном виде получен ряд ферментов (уреаза, аспарагиназа, липаза, трипсин, некоторые ферментные элементы крови и др.), вакцин и т.д. [c.404]

    Высушивание. Высушивание губительно действует на микробов, однако разные виды отличаются по чувствительности. Так, холерный вибрион погибает через 48 ч, а возбудитель туберкулеза — через 70 дней. Длительно сохраняются микробы в высохших пленках из гноя, крови или мокроты (месяцами). Высушивание практически не действует на споры. В процессе высушивания клетка лишается воды, происходит инактивация ферментных систем, что [c.430]

    А. А. Покровским (1960, 1964) описаны ферментные спектры крови в норме у различных лабораторных животных и человека. Было установлено, что соотношение активности различных ферментных систем является величиной достаточно постоянной. [c.242]

    Органы и ткани человека характеризуются специфическим набором ферментов. При изменении проницаемости клеточных мембран вследствие различного рода нарушений специфические для органа ферменты могут выйти в кровь. Обнаружение этих ферментов в сыворотке служит диагностическим тестом. В настоящее время ферментные тесты широко применяются, так как от других химических тестов, используемых в клинике, выгодно отличаются высокой чувствительностью и специфичностью. [c.85]

    Т. оказьшает на организм действие, во многом сходное с эффектами мышьяка, селена является преимущественно тиоловым ядом, обладает также раздражающим эффектом вызьшает острые и хронические отравления (главным образом, в производственных условиях) с поражением нервной системы, крови, желудочно-кишечного тракта, почек и органов дыхания, нарушениями обмена. Проникает через гематоэнцефалический и плацентарный барьеры, обладает эмбриотоксическим эффектом. Высокие дозы Т., принятые внутрь, приводят к интенсивному образованию липофусцина в мозге. В основе токсического действия кислородных соединений Т. лежит восстановление их до элементного Т., который ингибирует ряд ферментных систем (дегидразу и оксидазу мышц, каталазу) и вызывает снижение уровня групп — 8Н в крови, тормозит рост, нарушает деятельность нервной системы, а также вызывает нарушение функции почек и ухудшает рост волосяного покрова. [c.500]

    Необходимо установление для Ф. а. п. таких специфич. свойств, как токсичность, совместимость с кровью (если полимер используется инъекционно), характер воздействия на иммунные и ферментные системы организма, а также др. химико-биологич. характеристик. [c.369]

    Химический состав опорных тканей позвоночных отличается от состава скелетных тканей беспозвоночных — спонгина, хитина и др. В покровах позвоночных присутствует особый белок - кератин. Позвоночные отличаются от беспозвоночных и действием пищерастительных ферментов, более высоким отношением (Ма + К)/ Са + Мд) в жидкой фазе внутренней среды. Среди беспозвоночных только у оболочников есть целлюлозная оболочка, имеется ванадий в крови в особых окрашенных клетках, а у круглоротых - соединительно-тканный скелет и хрящ, а также особый дыхательный пигмент — аритрокруорин с наименьшей для позвоночных молекулярной массой (17 600). Отличительная черта сипункулид — древних групп морских беспозвоночных - наличие специального переносчика кислорода - гемэритрина и наличие в эритроцитах значительного количества аллантоиновой кислоты. Для насекомых характерно высокое содержание в крови аминокислот, мочевой кислоты и редуцирующих и несбраживаемых веществ, в хитиновом покрове отсутствуют смолы, для членистоногих — наличие специфической (только для их групп) фенолазы в крови. Таким образом, можно констатировать, что систематические группы животных имеют свои биохимические особенности. Такие же особенности наблюдаются и у растений для различных систематических групп - наличие специфических белков, жиров, углеводов, алкалоидов, глюкозидов, ферментных систем. [c.189]

    Данные об изменении активности холинэстеразы, а также о динамике накопления фосфамида в крови указывают на фазность в развитии интоксикации, которая была нами отмечена и в опытах с метилмеркаптофосом. Наблюдалось два периода резкого снижения активности холинэстеразы. Первое снижение, по-видимому, следует рассматривать как проявление первичной реакции организма на воздействие токсического агента. Вслед за этим включаются приспособительные механизмы. Сумму сдвигов в организме, возникающих в этом периоде, Н. В. Лазарев (1958, 1961) определяет как состояние неспецифически повышенной сопротивляемости. В наших исследованиях оно проявлялось некоторым восстановлением холинэстеразной активности, в опытах с фосфамидом — резким уменьшением содержания его в крови, что, возможно, связано с активацией ферментных систем, метаболизирующих его. Однако приспособительные компенсаторные возможности организма ограничены, вскоре они истощаются холинэстеразная активность вновь начинает снижаться, количество препарата в крови резко нарастает. [c.126]


    В задачу работы входит знакомство с особенностями ферментных препаратов, являющихся интегральными компонентами мембран, а также изучение гидролазной и трансферазной активности глюкозо-6-фосфатазы микросомальных мембран печени крысы с целью оценить реальность их участия в механизме регуляции уровня сахара крови. [c.370]

    У взрослого человека выделение мочевины составляет приблизительно 20 г в день. При снижении этих количеств в крови может накапливаться аммиак, достигая токсического уровня. В норме плазма содержит 0,5 мг-л аммиака, и токсические симптомы проявляются уже При превышении этого уровня в 2—3 раза. И неудивительно, что обнаружен ряд наследственных нарушений в ферментной системе, принимающей участие в цикле мочевины. Одно из наиболее распространенных нарушений (аргининосукцинацидурия) связано с отсутствием способности к расщеплению аргининоянтарной кислоты. Известны как летальные, так и нелетальные варианты этой болезни. Описано свыше 20 нелегальных случаев. Для всех наследственных нарушений цикла мочевины характерны непереносимость богатой белками пищи, а также-и психические расстройства. Токсическое накопление аммиака в крови часто наблюдается при алкогольном циррозе печени, что объясняется пониженной способностью печени к синтезу мочевины. [c.98]

    N-Замещенные, попадая в кровь, превращ. гемоглобин в метгемоглобин, вызывая кислородное голодание. О-Заме-щенные-ферментные яды, дезактивирующие каталазу. Нек-рые Г. п. о. проявляют мутагенную и канцерогенную активность. [c.560]

    Среди них наибольший интерес вызывают датчики на основе кислородного электрода. В качестве ферментных меток обычно применяют глюкозоксидазу или каталазу. На этом принципе, например, работает иммуноферментный амперометрический датчик для определения инсулина. Антитела инсулина иммобилизуют на капроновой сетке и закрепляют ее на поверхности кислородного электрода. При внесении электрода в анализируемый раствор антитела взаимодействуют с инсулином, к которому пришита глюкозоксидаза, с образованием комплексов АТ-инсулин-Е, где Е - фермент. Когда в растворе, наряду с меченым инсулином, присутствуют молекулы инсулина без фермента, то количество фермента на электроде будет тем меньше, чем выше концентрация инсулина. При внесении электрода в раствор глюкозы изменение величины тока будет соответствовать концентрации инсулина в анализируемом растворе. Кислородный электрод используется также для определения альбумина в сыворотке крови человека. Основные характеристики некоторых иммуноферментных электродов приведены в табл. 14.3. [c.506]

    Так называемые металлопорфириновые комплексы, имеющие природное происхождение хлорофилл-магний-порфириновый комплекс гемоглобин (в его составе гем крови - железо-порфнновый комплекс) ферментные системы -цитохромы, каталаза, пероксидаза выполняют главные функции в биологических системах в растительном и животном мире, в том числе и человеческом организме. [c.81]

    Ангиотензин II - октапептидный тканевый гормон, входит в качестве центрального действующего элемента в ферментную ренин-ангиотензино-вую систему, в которой осуществляется его биогенез и распад. Ангиотензин II - самый мощный из известных прессорных агентов в системе крово-Ьбращения. Он стимулирует сужение периферических артериол по всему организму и тем самым повышение артериального давления. Помимо этого ангиотензин II активизирует секрецию ряда гормонов (главным образом альдостерона), влияет на работу сердца, печени, центрального и периферического отделов нервной системы, а также вызывает ряд других откликов в организме млекопитающих. Его биохимический предшественник - ангиотензин I, образуется, согласно приведенной ниже схеме, из глобулярного белка крови ангиотензиногена при действии протеолитиче-ского фермента ренина. [c.269]

    Биологическая роль. Витамин К принимает участие в синтезе протромбина в печени, вероятнее всего, через ферментную систему. Получены доказательства, что витамин К необходим как стимулятор биосинтеза в печени минимум 4 белков-ферментов, участвующих в сложном процессе свертывания крови факторов И, УП, IX, X. В частности, имеются данные, что в молекуле указанных факторов обязательно присутствуют остатки карбоксиглутаминовой кислоты в молекуле активного протромбина таких остатков оказалось 10. Протромбин, являясь протеолитическим ферментом, расщепляет специфические пептидные связи растворимого белка крови фибриногена с образованием нерастворимого фибрина (см. главу 17). Показано, что у-карбоксилирование остатков глутаминовой кислоты в молекуле белков, в частности протромбина, протекает посттрансляционно [c.217]

    В практической медицине в лечебных целях ферментные препараты и их ингибиторы широко используются при нарушении свертывающей и противосвертывающей систем крови. Так, при тромбоэмболической болезни применяют ферменты, способствующие либо лизису образовавшегося тромба, либо снижению повышенной свертываемости крови. При состояниях, сопровождающихся развитием фибринолиза, используются ингибиторы ферментов. [c.607]

    При приеме здоровыми людьми дезметилдиазепама (10 мг) в течение двух недель его концентрация в плазме крови порыша-лась [1231. Представленные данные свидетельствуют о том, что толерантные явления к бенздиазепинам при их длительном введении связаны не только с общим увеличением активности ферментных систем, приводящих к ускорению метаболизма, но и с изменением соотношения образующихся метаболитов, а также результатом насыщения тканей. [c.181]

    Типичным примером искусственного создания совершенно новой области для исследования может служить химия фторорганических соединений. Эта область возникла из чисто академического вопроса, сродни детскому любопытству а как будут выглядеть органические соединения, если в них все большее число атомов водорода замещать на атомы фтора В свое время (в 1920—30-х годах) это была довольно трудоемкая область исследования, и сложность синтеза перфторированных органических соединений, казалось бы, навсегда предопределяла их судьбу — остаться в сфере интересов чистой науки , без перспектив практического использоваьшя. Однако именно в этой области исследователей ожидали не только открытия в области теории, но и появление новых классов веществ с уникальными физико-химическими свойствами. Среди этих веществ следует упомянуть фторопласты [34], полимеры с исключительным набором полезных свойств, не заменимые в этом отношении никакими из известных природных или искусственных материалов фреоны, на протяжении десятилетий служившие основой холодильной и аэрозольной техники перфторированные производные типа перфтортетра-гидрофурана, неожиданно оказавшиеся великолепными растворителями — переносчиками кислорода (на основе последних и были разработаны искусственные кровезаменители, знаменитая голубая кровь ). Несколько позднее была открыта еще одна область возможного практического применения фторпроизводных, на этот раз в медицине. Было обнаружено, что фторсодержащие аналоги природных метаболитов, которые почти неотличимы от неф-торированных соединений по своим базовым структурным характеристикам, являются хорошими антиметаболитами — ингибиторами соответствующих ферментных систем, так что результатом их воздействия на клетку является блокирование определенных биохимических функций. Многие сотни такого [c.56]

    Приводим результаты изучения наиболее важных параметров, характеризующих специфическую активность указанных препаратов. Наиболее частным признаком поражения печени является цитолиз [2]. Цитолитический синдром проявляется биохимически - измепе-пиями активпости ферментных систем, концентраций ряда веществ в сыворотке крови и тканях органов. Другим важным синдромом, который также часто наблюдается при повреждениях генатобилиарной системы, является холестаз, обусловленный нарушением продукции и оттока желчи [4]. [c.309]

    Среди каталитических методов высокую чувствительность и селективность имеют ферментативные методы, основанные на использовании реакций, катализируемых ферментами. Ферментативными методами определяют субстраты, сами ферменты и эффекторы ферментов (соединения, мешающие активности ферментов). Методы определения субстратов — веществ, на которые действуют ферменты — высокоселективны и даже специфичны, что позволяет определять субстраты непосредственно в матрице сложных объектов (кровь, биомассы и биожидкости, многокомпонентные технологические растворы). Чувствительность определения при этом обусловлена методом, выбранным для контроля за скоростью процессов. Часто в этих случаях используют ферментные электроды. Методы определения эффекторов ферментов высокочувствительны, но не всегда селективны. [c.272]

    Ароматизация катализируется при помощи ферментного комплекса — ароматазы — локализованного в микросомальной фракции клеток яичников. Синтез прогестерона из холестерола протекает по схеме, представленной выше. Секреция стероидов из яичников определяется менструальным циклом и концентрацией новосинтезированных гормонов в клетках. В крови эстрадиол и прогестерон связываются со специфичными глобулинами, обеспечивающими необходимый резерв гормонов в кровяном русле. [c.162]

    Скорость наступления максимально выраженного эффекта действия химического вещества на активность ферментной системы in vivo определяется рядом факторов. С одной стороны, это концентрация или доза токсического вещества, скорость его всасывания, распространения и взаимодействия с ферментной системой, а с другой — процессы, направленные на восстановление ферментной активности. Существенное значение имеет путь введения яда в организм. При внутривенном, ингаляционном и внутрибрюшинном введении химические вещества быстро проникают в кровь и достигают органов и тканей. При внутримышечном, внутреннем, подкожном введении или накожной аппликации скорость всасывания замедляется. В месте введения яда создается его депо , откуда он постепенно в течение определенного времени поступает в кровь, что накладывает свой отпечаток на характер ингибирования ферментных систем в том или ином органе. [c.237]

    И сам теллур и его соединения могут приносить беды разных калибров . Они, например, вызывают облысение, влияют на состав крови, могут блокировать различные ферментные системы. Симптомы хронического отравления элементным теллуром — тошнота, сонливость, исхудание выдыхаемый воздух приобретает скверный чесночный запах алкилтеллуридов. [c.67]

    Общий характер действия на человека. А. относится к группе сравнительно малотоксичных металлов, способных, однако, вызывать серьезные сдвиги в организме при длительном воздействии. Токсичность А. проявляется во влиянии на обмен веществ, в особенности минеральный, на функцию нервной системы, в способности действовать непосредственно на клетки — их размножение и рост длительное вдыхание пыли А. и некоторых его соединений ведет к фиброзированию легочной ткани. В основе механизма многих проявлений интоксикации лежит действие А. непосредственно на ядерный хроматин, а также косвенно — путем замещения других элементов или изменения активности ряда ферментных систем. Избыток солей А. снижает задержку кальция в организме, уменьшает адсорбцию фосфора, что ведет к снижению уровня АТФ в крови и нарушению процессов фосфорилирования одновременно в 10-20 раз увеличивается содержание А. в костях, печени, семенниках, мозге и, особенно, паращитовидной железе. Для этой формы энцефалопатии специфичны симптомы слабоумия. Концентрация А. при этом в головном мозге, особенно в сером веществе, достигает очень больших значений. Существует гипотеза о возможной связи содержания А. в питьевой воде и вообще в окружающей человека среде с возникновением болезни Альцгеймера — формы старче- [c.422]

    Токсическое действие. М. является необходимым микроэлементом для живого организма. Обнаруживается он в составе многих белков, ДНК, гепарина и более чем в ста жизненно важных ферментных системах организма. Он либо входит в состав комплекса ферментов (например, пируватдекарбоксилазы, супероксиддисмутазы), либо является активатором многих ферментов, либо может замещать другие металлы, в частности магний, в клеточных ферментных реакциях. Этим обусловлено его участие в различных видах обмена он необходим для формирования соединительной ткани и костей, роста организма, эмбрионального развития внутреннего уха, репродуктивной функции, функции центральной нервной системы и эндокринных желез. Дефицит М. у человека маловероятен. На крысах показано, что недостаточность М. не сопровождается снижением его содержания в цельной крови, но в лимфоцитах л ряде тканей уровень М. падает. Считается, что микроэлементу присущи степени окисления +3 и +2. Избыточное поступление М. может служить причиной развития как острой, так и хронической интоксикации. М. является политропным ядом, поражая многие органы и системы. Однако специфическим для М. является нейротоксическое действие. Он поражает центральную нервную систему, где вызывает органические изменения экстрапирамидного характера, в тяжелых случаях — паркинсонизм. Угнетение биосинтеза катехоламинов связывают с влиянием М. на окислительные ферменты, локализованные на митохондриях, где имеет место накопление М. Избирательное накопление М. в головном мозге считают основным детерминрфующим фактором психоневрологической симптоматики хронического отравления М. Нарушение в биосинтезе катехоламинов оказывает влияние на поведение и изменения со стороны психики, которые имеют место при хроническом марганцевом отравлении. Но М. является и политропным ядом, поражающим, помимо нервной системы, легкие, сердечно-сосудистую и гепатобилиарную системы, оказывает влияние на эритропоэз, эмбрио- и сперматогенез, вызывает аллергический и мутагенный эффекты. В токсическом действии соединений М. основное значение принадлежит металлу, анион изменяет этот эффект несущественно. [c.464]

    Токсическое действие. Наиболее характерным проявлением токсического действия ароматических аминов является избирательное поражение красной крови. Ключевым механизмом этого процесса является окисление гемоглобина (НЬ) с переходом железа в трехвалентное состояние и образованием метгемоглобина (М1НЬ), в результате чего уменьшается способность гемоглобина переносить кислород к тканям и органам организма, развивается гипоксия. Нри содержании МШЬ в крови на уровне 50 % и выше возникает реальная угроза жизни. Наряду с МШЬ при интоксикации ароматическими аминами в крови появляется сульфгемоглобин (8ШЬ), который, в отличие от М1НЬ, легко восстанавливающегося в организме за счет редуктазных ферментных систем в гемоглобине, представляет собой необратимое производное НЬ. Наличие в крови 8ШЬ резко усиливает цианоз, поскольку он в 3 раза темнее, чем М1НЬ. При отравлении также происходит разрушение эритроцитов, следствием чего является развитие гемолитической анемии. [c.685]

    Жиры — это сложные эфиры глицерина. При пищеварении они эмульгируются в китиечнике солями желчных кислот (стр. 570) и вводятся в контакт с ферментными системами, с помощью которых и гидролизуются. Освобожденные ири этом жирные кислоты всасываются слизистой оболочкой кишок, где и совершается новый синтез жиров. Затем жир проходит через портальную систему организма в виде мельчайших частиц, связанных с белками сыворотки крови. Метаболизм в основном происходит в печени. [c.557]


Смотреть страницы где упоминается термин Ферментны крови: [c.252]    [c.297]    [c.56]    [c.224]    [c.214]    [c.450]    [c.535]    [c.166]    [c.453]    [c.179]    [c.192]    [c.86]    [c.124]    [c.233]    [c.673]    [c.424]    [c.532]    [c.210]   
Смотреть главы в:

Руководство к практическим занятиям по биологической химии Издание 2 -> Ферментны крови




ПОИСК





Смотрите так же термины и статьи:

Ферментные яды



© 2025 chem21.info Реклама на сайте