Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильное замещение в активированных ароматических соединениях

    Азосочетание, активированное ароматическое соединение как компонент реакции сочетания Нуклеофильное замещение в ароматическом соединении Число стадий 2 Общий выход 64% [c.625]

    Реакции нуклеофильного ароматического замещения характерны для активированных ароматических соединений. При этом нуклеофильные реагенты, такие, как Вг-, SR- или NR3 замещают ранее содержавшиеся заместители типа С1, NO2 или N.  [c.238]


    Арилгалогениды обсуждаются в отдельной главе потому, что они очень сильно отличаются от алкилгалогенидов по методам синтеза и свойствам. Арилгалогениды в целом относительно не реакционноспособны в реакциях нуклеофильного замещения, которые столь характерны для алкилгалогенидов. Однако присутствие некоторых других групп в ароматическом кольце резко повышает реакционную способность арилгалогенидов в отсутствие подобных групп реакцию все же удается осуществить, но лишь при использовании очень сильно основных реагентов или высоких температур. Мы покажем, что существуют два механизма нуклеофильного замещения в ароматическом ряду механизм бимолекулярного замещения (для активированных арилгалогенидов) и механизм элиминирования — присоединения, который включает образование очень интересного промежуточного соединения, называемого дегидробензолом. [c.781]

    НУКЛЕОФИЛЬНОЕ ЗАМЕЩЕНИЕ В АКТИВИРОВАННЫХ АРОМАТИЧЕСКИХ СОЕДИНЕНИЯХ [c.473]

    Миллер [200—203] предложил полуэмпирический метод вычисления относительной энергии реагирующих соединений, активированного комплекса и промежуточного а-комплекса вдоль координаты реакции для нуклеофильного замещения в ароматическом ряду. [c.500]

    Аминирующими агентами при нуклеофильном замещении водорода в активированных ароматических соединениях служат гидроксиламин в присутствии щелочей и амиды щелочных металлов. Первый применяют главным образом для аминирования ароматических нитропроизводных, вторые — для аминирования азотсодержащих гетероциклов по Чичибабину. В хинонах и некоторых полициклических кетонах замещение водорода может происходить непосредственно при действии аминов. [c.260]

    Традиционно существенным разделом органической химии является создание высокоэффективных процессов получения разнообразных органических соединений. В значительной степени решение этой задачи связано с разработкой инструментария - эффективных методов получения широкого ряда различных по структуре ароматических продуктов, содержащих функциональные группы различной природы. В частности, это относится к азот- и галогенсодержащим ароматическим структурам многоцелевого назначения. Реакции ароматического нуклеофильного замещения являются эффективными инструментами синтеза разнообразных полифункциональных ароматических соединений. Нами исследована реакция замещения активированного и неактивированного атомов галогена в бензольном кольце на феноксигруппу, содержащую различные заместители  [c.155]


    Синтез простых ароматических кардовых полиэфиров осуществляется реакцией нуклеофильного замещения за счет взаимодействия фенолятов бисфенолов с ароматическими активированными дигалоидными соединениями чаще всего в ДМСО при 160-180° С. На схеме 1.А представлены некоторые из структур синтезированных полимеров этого типа. [c.114]

    Реакция обладает некоторым сродством к бимолекулярному нуклеофильному замещению (8н2) у алифатических соединений. Она протекает в целом также бимолекулярно с образованием аниона //в качестве самой медленной стадии. Однако анион II в противоположность 5к2-реакции и по аналогии с ст-комплексом электрофильного замещения оказывается не переходным состоянием, а подлинным промежуточным соединением. Скорость реакции зависит поэтому как от плотности электронов нуклеофильного агента (здесь ОН ), так и от оттягивания электронов от реакционного центра ароматического кольца. Появление положительного заряда у реакционного центра происходит под влиянием активирующих заместителей (в приведенном примере это нитрогруппа в пара-положении) и под действием атакуемой группы (хлор). На основании этого галогены в активированных ароматических структурах могут быть заменены в общем с возрастающей легкостью.в последовательности I < Вг < С1 < Р. Этот ряд коренным образом отличается от ряда I > Вг > С1 > Р, найденного для 5н2-реакций. Там отщепление галогена протекает одновременно с присоединением нуклеофильного реагента, чего не бывает в данном случае. [c.326]

    В сульфит-ионе атом серы является нуклеофильным центром, поэтому, этот реагент находит широкое применение для синтеза сульфокислот с помощью реакций нуклеофильного замещения и присоединения к кратным связям. Алкилгалогениды и эпоксиды легко реагируют с сульфит-ионом (уравнения 15 [2] и 16 [16]). В этих реакциях в качестве нуклеофила выступает сульфит-ион, а не бисульфит-ион, даже в тех условиях, когда бисульфит преобладает [9, 17]. Обычные пространственные ограничения для реакций типа 5м2 действуют и в этих превращениях эти реакции не удается провести при попытке замещения у третичного атома углерода вместо реакции замещения происходит элиминирование. Однако с трифенилметанолом и аналогичными соединениями, из которых образуются карбокатионы, не способные к элиминированию, получаются сульфонаты [9]. Сульфиты выступают также в качестве нуклеофилов и в реакциях замещения с активированными ароматическими субстратами, например при замещении фторид-иона в 2,4-динитрофторбензоле [9]. [c.514]

    Нуклеофильное замещение хлора в хлорбензоле по схеме (5.20) протекает, следовательно, по механизму отщепления — присоединения в отличие от нуклеофильного замещения хлора в активированных галогензамещенных ароматических соединениях (см. гл. 6). [c.264]

    В этом разделе речь будет идти о данных но реакциям нуклеофильного замещения в соединениях, где ароматический водород уи1е замещен, затем будут рассмотрены реакции замещения неактивированпых ароматических производных и в заключенно будет дан краткий обзор нуклеофильного замещения активированных ароматических соединений. [c.471]

    Реакции а) и б)—примеры нуклеофильного замещения в ароматическом ядре образуются соответственно 2,4-динитрофенол и пикрамид в реакцн-и в) активированная СНз-группа вступает в качестве метиленового компонента в кротоновую конденсацию с образованием соединения  [c.182]

    Диметилформамид и диметилсульфоксид являются поэтому очень подходящими растворителями для алкилирования амидов, малоновых эфиров, для си1 теза нитрилов по Кольбе (см. данные, приведенные в табл. 33), алкилциа-натов, простых эфиров или тиоэфиров по Вильямсону, сложных эфиров карбоновых кислот из щелочных солей и алкилгалогенидов, нитросоединений по Корнблюму, для присоединения по Михаэлю и нуклеофильного замещения в активированных ароматических соединениях. [c.174]

    При нуклеофильном замещении у ненасыщениого sp -атома углерода (активированные ароматические соединения, карбонильные группы) имеют место другие соотношения, поскольку в этих случаях реакция идет не через переходное состояние, а через определенное промежуточное соединение (ср. гл. 6)  [c.177]

    Нуклеофильное замещение в активированных ароматических соединениях имеет определенное сходство с бимолисулярным [c.473]

    Эта книга адресована прежде всего студенту-органику. В ней сделана попытка возможно доступнее изложить современную теорию органических реакций. При этом автор не стремился подробно рассмотреть все множество органических реакций этот материал — неотъемлемая часть современных курсов органической химии, знание которых является предпосылкой для работы с данной книгой. Автор считает целесообразным главное внимание уделить влияниям и взаимодействиям, которые обусловливают существование определенных механизмов, всесторонне обсудить роль субстрата, реагента, растворителя. Именно понимание упомянутых влияний и взаимодействий позволяет правильно выбрать условия реакции и разумно планировать эксперимент. Для учащегося важно также, чтобы теория позволяла обобщить материал, представить его в единой удобообозримой форме. По этой причине в данной книге совместно представлены реакции карбонильных соединений (альдегиды, кетоны, карбоновые кислоты и их производные) и таких веществ, как азометины, нитрилы, нитро- и нитро-зосоединения. С опорой на принцип винилогии в это рассмотрение включено также присоединение по Михаэлю и нуклеофильное замещение в активированных ароматических соединениях. С общей точки зрения обсуждены также электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре. [c.6]


    Общий метод получения ароматических нитроаминов основан на реакции активированного нуклеофильного замещения — взаимодействия ароматических аминов с ароматическими динитрохлор- или нитрохлорсульфопроизводными, у которых нитро- и сульфогруппы находятся в орто- и пара-положениях к атому хлора. Реакцию обычно проводят в водной среде при 70—150°С (если требуется, в автоклаве) в присутствии веществ, связывающих образующийся хлористый водород (мел, сода, оксид магния и т. д.). В ряде случаев в качестве катализатора применяют медь и ее соединения. Аппарат должен быть защищен от корродирующего действия хлороводородной кислоты (эмаль или кислотоупорная плитка). [c.153]

    Реакции нуклеофильного замещения атомов фтора в полифтор-ароматическжх соединениях являются наиболее характерными для соединений этого класса. Это обусловлено высокой подвижностью атомов фтора, активированных другими электроноакцепторными атомами фтора. В соответствии с общепринятой и ставшей в настоящее время классической схемой протекания процесса нуклеофильного замещения в ароматическом ряду на первой стадаи происходит присоединение нуклеофильного реагента с образованием [c.9]

    Простейшим примером ароматического нуклеофильного замещения является ЗмАг-реакция между 1-хлор-2,4-динитробен-золом и пиперидином, протекающая, как это теперь достаточно надежно установлено, по двухстадийному механизму [см. уравнение (5,26)] [501—503]. Этот механизм включает образование биполярного активированного комплекса, превращающегося в промежуточное соединение цвиттерионного типа (соединение Майзенхаймера), которое спонтанно или под действием оснований отщепляет НС1, образуя продукт реакции. Независимо от этой последней стадии растворитель может изменять относительные скорости первой и второй стадий, а также порядок реакции. [c.218]

    Наилучщие результаты при получении кумаринов по методу Пехмана достигаются при использовании активированных нуклеофильных ароматических соединений, таких, как резорцин. Вероятно, на первой стадии процесса реализуется электрофильная атака протонированной карбонильной группой кетона по ор/ио-положению фенола, хотя для ариловых эфиров ацетоуксусной кислоты, полученных при взаимодействии фенолов с дикетеном, также характерно замыкание кумаринового цикла [75]. Циклизация проходит с участием более электрофильной карбонильной группы. Не замещенные по гетероциклическому [c.238]

    Зтот механизм является весьма распространенным и хорошо изученным. Такой способ замещения наиболее типичен для соединений, содержащих один, два или три сильных электроноакцепторных заместителя N02, N0, КЗОг, N3 СН, активирующие присоединение нуклеофильного агента, отчего и сам процесс называют реакцией активированного ароматического нуклеофильного замещения (символ -УдАг, Дж. Баннет, 1958). [c.592]

    Для беизофуроксаиов наиболее характерны свойства ароматических соединений. Так, бензофуроксаны легко вступают в реакции электро-фильного замещения, из которых особенно подробно изучена реакция нитрования. Легко также протекают реакции нуклеофильного замещения групп, активированных электроотрицательными заместителями, причем, как и в ароматическом ряду, промежуточно образуются комплексы типа комплексов Мейзенгеймера. Далее, нитробензофуроксаны, проявляя электроноакцепторные свойства, образуют тт-комплексы с ароматическими углеводородами. [c.313]

    Венуто и сотр. [1, 15, 16] изучали алкилирование олефинами замещенных бензолов (например, фенола и анизола), а также гетероциклических соединений (тиофена, пиррола). При алкилировании фенола были получены необычные результаты. Оказалось, что алкилирование фенола этиленом идет в более жестких условиях ( 200° С), чем алкилирование бензола ( 120° С), хотя фенол более чувствителен к нуклеофильной атаке. Кроме того, было установлено, что присутствие фенола подавляет алкилирование бензола. Венуто и Вю [17] считают, что такое обращение реакционной способности бензола и фенола на цеолите ННдУ, активированном в токе кислорода при 550° С, объясняется сильной адсорбцией фенола на катализаторе, которая уменьшает доступность активных центров для слабо-адсорбируемых молекул этилена. Таким образом, адсорбированный этил-катион вступает в реакцию в соответствии с механизмом Ридила, т. е. взаимодействует с молекулой ароматического соединения, находящейся в свободном, а не в адсорбированном состоянии. [c.132]

    Реакции су.тьфонилировапия и бензоилирования дифенильных мостиковых соединений проводили по методикам [10, 11]. Реакции нуклеофильного ароматичесокго замещения галогенов в активированных ароматических системах проводили согласно методике [4, 5]. Все промежуточные и целевые продукты выделены и идентифицированы (табл.). [c.107]

    Наиболее типичной реакцией ароматического нуклеофильного замещения является замещение Hal- в галогенпроизвод-ном, активированном электроноакцепторными группами, например в соединении (80)  [c.189]

    Несколько неожиданные результаты были получены нами при обмене галоида, активированного присутствием в антрахиноновом ядре нитрогруппы. Сведения о сравнительной подвижности атома хлора и нитрогруппы в реакциях нуклеофильного замещения ароматических соединений в литературе довольно разног ечивы. Так, в монографии Гyбeнai указывается, что реакционная способность атома хлора в а-положении антрахинонового ядра выше таковой для нитрогруппы. В патентной литературе защищается способ получения п-нитроал кил аминозамещенных антрахинона обменом атомов хлора в 1,5-дихлор-4,8-динитроантрахиноне. По данным патента, нитрогруппа в указанных условиях не затрагивается. С другой стороны, в литературе имеются сообщения, что в соединениях бензольного ряда нитрогруппа вытесняется при нуклеофильном замещении приблизительно в 10 раз быстрее, чем атом хлора . В случае 1-хлор-4 Нитроантрахинона мы могли ожидать большей подвижности атома хлора в подобных реакциях, поскольку он дополнительно активируется нитрогруппой (сильная активация) нитрогруппа в свою очередь активируется атомом хлора лишь слабо. В действительности картина оказалась сложнее. В отсутствие соединений меди взаимодействие 1-хлор-4-нитроантрахинона с аминами протекает в двух направлениях  [c.102]

    Наиболее изучен реакционный путь, на первом этапе которого нуклеофильный реагент присоединяется к ароматическому субстрату. Этот путь типичен для замещения в соединениях, содержащих сильные электроноакцепторные заместители, активирующие ароматический субстрат, отчего саму реакцию называют реакцией активированного ароматического нуклеофильного замещения (SNAr). Связывание реагента, как и при электрофильном замещении, возможно за счет межмолекулярного переноса заряда (л-комплекс) или образования ковалентной о-связи (а-комплекс), причем ароматический субстрат выступает как акцептор, а реагент — как донор электронов (80). [c.72]

    Однако при всем обилии накопленного материала нельзя считать доказанным, что реакции активированного ароматического замещения всегда протекают по двухстадийному механизму [92, 93]. Далеко не для всех типов ароматических субстратов и нуклеофильных реагентов удается обнаружить образование о-комплек-сов. Они описаны почти исключительно для соединений, имеющих нитрогруппы [74], и лишь в единичных примерах для производных, содержащих другие активирующие заместители. Для нитросоединений а-комплексы зафиксированы только в случаях присоединения нуклеофила к атому углерода, несущему относительно малоподвижный атом или группу (Н, [c.77]


Смотреть страницы где упоминается термин Нуклеофильное замещение в активированных ароматических соединениях: [c.26]    [c.237]    [c.1653]    [c.108]    [c.108]    [c.240]    [c.59]    [c.59]    [c.88]    [c.102]    [c.98]    [c.101]    [c.109]   
Смотреть главы в:

Органикум Часть 1 -> Нуклеофильное замещение в активированных ароматических соединениях




ПОИСК





Смотрите так же термины и статьи:

Ароматические соединения активированные

Ароматические соединения нуклеофильное замещение

Замещение нуклеофильное

Нуклеофильное замещение ароматическое

Нуклеофильные соединения

алогены при нуклеофильном замещении активированных ароматических соединений



© 2024 chem21.info Реклама на сайте