Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение кобальта комплексоном I в виде СоХ

    Соли никеля, кобальта и меди также дают ионные ассоциаты с 1,10-фенантролином при наличии иодид-иона, которые экстрагируются хлороформом, но экстракты слабо окрашены для никеля s = 25 (К 528 нм), для кобальта s = 28 (X 428 нм) для меди е = 63 ( t 770 нм). Определение 1—5 мкг железа (II) в виде ферроин-иодида возможно при указанных элементах в соотношении Fe Me == I 10, если проводить определение, вводя комплексон III. [c.156]


    Определение в виде двойного комплексного соединения кобальта с комплексонатом хрома [147]. Определение основано на образовании двойного комплексного соединения кобальта (II) и бихромата калия в присутствии комплексона III в уксуснокислой среде. Рубиново-красная окраска образующегося комплексного соединения неустойчива. Максимальное поглощение лучей окрашенным соединением находится около 550 ммк. Метод применяется для определения кобальта при концентрации 10—80 мкг мл. [c.131]

    Оксалат аммония применяют в качестве реактива при количественном определении тория, редкоземельных металлов и главным образом кальция. Кальций количественно осаждается в виде оксалата кальция в аммиачных или слабокислых растворах. К выделению кальция в виде оксалата приступают обычно после соответствующего отделения остальных аналитических групп, так как практически все катионы мешают определению кальция вследствие образования нерастворимых гидроокисей или оксалатов. Применение комплексона здесь особенно выгодно, так как в слабо кислом растворе, содержащем уксусную кислоту, все катионы связываются в прочные комплексы, не гидролизуются и не осаждаются оксалатом, тогда как кальций выделяется в виде оксалата в пригодном для фильтрования виде [82]. Простым осаждением можно надежно определить кальций в присутствии ртути, свинца, висмута, меди, кадмия, мышьяка, сурьмы, железа, хрома, алюминия, титана, урана, бериллия, молибдена, вольфрама, церия, тория, никеля, кобальта, марганца, цинка, магния и фосфатов. [c.102]

    В растворе гидроокиси тетрабутиламмония в присутствии комплексона полярографически не восстанавливаются никель, кобальт, цинк, хром, кадмий, кальций, магний и алюминий [17], Комплексон не оказывает влияния на восстановление натрия и калия. Его можно использовать при определении щелочных металлов, присутствующих в солях кальция, магния и бария в виде примесей, которые определить другим путем невозможно. В цитируемой работе подробности не приведены. [c.232]

    Определение в виде комплексного соединения с комплексонатом кобальта [147 ]. Определение основано на образовании двойного комплексного соединения бихромата калия с сульфатом кобальта (II) в присутствии комплексона в уксусно-кислой среде. Образующееся соединение рубиново-красного цвета максимально поглощает лучи около 380 и 550 ммк. Окраска раствора неустойчива и при стоянии исчезает. [c.142]


    Определение кобальта в виде комплекса с этилендиаминтетрауксусной кислотой. Метод описан в ряде работ (564, 763, 776, 871, 1041]. Гото и Кобаяси [776] предложили спектрофотометрический метод определения кобальта в виде соединения кобальта с комплексоном П1 и бихр-омат-ионом красно-фиолетового цвета. Компоненты взаимодействуют в молярном отношении Со ЭДТА  [c.146]

    Кобальт в чистых металлах обычно определяют фотометрически. Описано определение кобальта в виде роданидного [775], антипиринроданидного [1518] комплексов, комплексов кобальта с 1-нитрозо-2-нафтолом [1188, 1321, 1401], ннтрозо-Н-солью [88, 204, 205, 233, 316, 343, 1081, 1082, 1387, 1445, 1499], комплексоном П1 [1200] и монометиловым эфиром о-нитрорезорцина[1417]. Полярографический метод используется реже. Обычно кобальт полярографируют на фоне буферных аммиачных [957] или пиридиновых [1071] растворов. При определении кобальта в меди также полярографируют в растворе фторида натрия [686]. Полярографическое определение примесей других металлов в металлическом кобальте см. [263, 826]. [c.199]

    Титрование этилендиаминтетрауксусной кислотой с применением специфических индикаторов. Точку эквивалентности при титровании устанавливают по появлению или исчезновению синей или голубой окраски роданидного комплекса кобальта [1300, 1301, 1394]. Для отделения кобальта от других элементов осаждают его в виде акридинроданидного тройного соединений [1460]. Осадок растворяют в ацетоне и титруют кобальт раствором комплексона III до исчезновения синего окрашивания. Предложено [1395] осаждать кобальт в виде гексанитрокобальтиата калия и натрия, растворять осадок в концентрированной соляной кислоте и титровать ионы кобальта в ацетатном растворе комплексона III в присутствии роданида и ацетона. Вместо ацетона можно пользоваться амиловым спиртом [1299], причем синий роданидный экстракт кобальта в амиловом спирте может служить индикатором при определении ряда других катионов, образующих с комплексоном III более прочные комплексы, чем кобальт (кальций, свинец, торий и др.). Индикатором может служить также хлороформный раствор синего соединения кобальта с роданидом и трифенилметиларсонием [536]. К анализируемому раствору, содержащему от 2 до 2 мг Со, прибавляют 25 мл 0,01 N раствора комплексона III, 1 М раствор гидроокиси аммония до щелочной реакции по лакмусу, вводят 10 мл хлороформа, 2 мл аммиачного буферного раствора с рн 9,3, 5 мл 50%-ного раствора роданида калия, 3 мл 1%-ного раствора хлористого трифенилметиларсония и оттитровывают избыток раствора комплексона III стандартным раствором сульфата кобальта до появления синего окрашивания хлороформного слоя. Метод рекомендуется применять для опре- [c.124]

    Фотометрическое определение кобальта в сплавах, содержащих никель, в виде этилендиаминтетраацетатного комплекса [1322]. К анализируемому сплаву прибавляют 1 мл раствора РеСЬ и растворяют в смеси соляной и азотной кислот. Из солянокислого раствора осаждают железо и хром пиридином. К аликвотной части фильтрата прибавляют 5 мл 10%-ного раствора комплексона И1 а 3 мл перекиси водорода, нагревают до кипения, охлаждают, разбавляют водой до 50 мл и измеряют оптическую плотность раствора при 535 ммк. Раствором сравнения служит тот же фильтрат, проведенный через все стадии анализа, но не содержащий перекиси водорода. Этот способ пригоден для определения 10—20% Со. [c.191]

    Малинек [72] подверг метод определения молибдена оксином дальнейшему изучению, применил его для анализа руд, шлаков и сплавов и считает его очень точным, надежным и быстрым. Определение проводится в 5 раз скорее, чем определение молибдена в виде РЬМо04 или потенциометрическим методом. Только у образцов со слишком большим содержанием железа или у образцов, которые необходимо сплавлять в железном тигле с перекисью натрия, наблюдалось незначительное соосаждение железа в виде оксихинолята железа. В этих случаях рекомендуется сначала осаждать молибден в виде сульфида и после растворения осадка определять молибден приведенным оксиновым методом. При осаждении молибдена в виде сульфида следует учитывать то, что в щелочной среде в присутствии комплексона сульфидом аммония не осаждаются железо, никель, кобальт, марганец и цинк, и поэтому автор рекомендует следующий ход определения к кислому раствору, содержащему молибден, железо и другие катионы, кроме катионов сероводородной аналитической группы, прибавляют в избытке комплексон и пропускают сероводород до обесцвечивания раствора. Подщелачивают аммиаком и опять пропускают сероводород до приобретения раствором темной окраски сульфосоли молибдена. После насыщения сероводородом раствор подкисляют серной кислотой (1 5) и нагревают на песчаной бане для свертывания осадка сульфида молибдена. Осадок отфильтровывают, промывают сероводородной водой и сульфид молибдена обрабатывают азотной кислотой. После растворения доводят раствор до требуемого pH и определяют молибден оксином в присутствии комплексона, как было указано. Единственный недостаток метода заключается в том, что при высоких концентрациях железа обработка сероводородом вызывает выпадение осадка серы, затрудняющего фильтрование. Этим методом было определено 10 мг молибдена в присутствии 1 г железа с точностью 0,2—0,3%. [c.113]


    Аналогично меди купралем осаждается и кобальт в виде объемистого зеленовато-бурого осадка, растворимого в этилацетате и других органических растворителях с образованием зеленого раствора с резко выраженным максимумом светопоглощення при 410 шр и одним небольшим максимумом при 650 mji. Небольшие количества кобальта можно определять способом, аналогичным способу определения меди. Светопоглощение измеряют при длине волны 410 тр. (синий светофильтр). Зависимость интенсивности окраски раствора от концентрации кобальта в пределах 20—200 мкг на 25 мл растворителя подчиняется закону Ламберта—Беера. При более высоком его содержании, до 320 мкг, можно еще надежно его определять по соответствующей калибровочной кривой. При этом определении наиболее сложной является проблема маскирования мешающих элементов. Комплексон сам маскирует в аммиачной среде не только кобальт, но и железо, никель и т. д. На его маскирующем действии было основано селективное определение меди, как об этом было указано в предыдущем параграфе. Для колориметрического определения кобальта в зависимости от характера исследуемого образца были выбраны два различных, приводимых ниже практических способа. [c.122]

    Малинек [7] подверг метод определения молибдена оксином дальнейшему изучению, применил его для анализа руд, шлаков и сплавов и считает его очень точным, надежным и быстрым. Определение проводится в 5 раз скорее, чем определение молибдена в виде PbMoU4 или потенциометрическим методом. Только у образцов со слишком большим содержанием железа и у образцов, которые необходимо сплавлять в железном тигле с перекисью натрия, наблюдалось незначительное соосаждение железа в виде оксихинолята железа. В таких случаях рекомендуется сначала осаждать молибден в виде сульфида и после растворения осадка определять молибден приведенным оксиновым методом. При осаждении молибдена в виде сульфида следует учитывать то, что в щелочной среде в присутствии комплексона сероводородом не осаждаются железо, никель, кобальт, марганец и цинк. [c.157]

    Теоретически 1 мл 0,05 М раствора комплексона соответствует 13,49 мг А1. Однако лучше устанавливать титр раствора комплексона по раствору соли алюминия известной концентрации. Определению не мешают следы кальция, бария и магния. При титровании в присутствии марганца н кобальта переход окраски нечеткий. Остальные тяжелые металлы мешают определению (железо, висмут и никель в условиях определения реагируют количественно с комплексоном медь, свинец, цинк, кадмий реагируют только частично). Из анионов определению мешают фториды, фосфаты и оксалаты. хМешают также сульфаты вследствие образования ими комплексных соединений с торием, и поэтому их следует перед определением отделить в виде сульфата бария. [c.364]

    И. П. Алимарин п Ю. А. Золотов [6] показали, что уран ( 1) количественно экстра гируется в виде а-нитрозо-р-нафтолата из водных растворов не смешивающимися с водой органическими растворителями. Наибатее эффективными экстрагентами для извлечения i-иитрозо-р-нафтолата уранила являются изоамнловый и н.бутиловый спирты и этилацетат. Так как в органическую фазу вместе с ураном переходит много других элементов, в том числе кобальт, медь и железо, то для повышения селективности экстракционного отделения урана в виде а-нитрозо- -нафтолата указанные авторы применили комплексон III. В разработанных ими условиях уран может быть полностью отделен от ванадия и железа. Для отделения урана от ванадия (V) последний восстанавливают до ванадия (IV) с помощью двуокиси серы или самим комплексоном III при pH 1—2 [184]. Затем добавляют не менее чем четырехкратное по отношению к ванадию количество комплексона III, нейтрализуют аммиаком до pH в пределах 6,5—9,0 и экстрагируют несколько меньшим или равным объемом изоамилового спирта, к которому предварительно прибавляют не менее чем 100-кратный избыток а-нитрозо- -нафтола. (в молярном отношении в расчете на UgOg) в виде 2%-ного раствора в этаноле. Для выделения урана из полученного экстракта его упаривают досуха и прокаливают при 900°. Определение урана может быть закончено непосредственным взвешиванием прокаленного остатка. Отделение урана от ванадия становится неполным, если содержание ванадия более чем в 3 раза превышает содержание урана. [c.310]

    Косвенный комплексонометрический метод определения бериллия. Бериллий осаждают в виде ком--плекса основного карбоната с гексаминкобальтом (стр. 52) После растворения осадка кобальт определяют титрованием комплексоном 1П с мурексидом в присутствии яблочной кислоты, чтобы предотвратить осаждение гидроокиси бериллия. А1, Ре и маскируются комплексоном П1. [c.63]

    Описан ускоренный метод [374] определения катионов кобальта в смеси с катионами меди и марганца после удаления ионов меди раствором тиосульфата натрия титруют раствором комплексона 111 сумму кобальта и марганца. Затем отделяют кобальт (и медь) в виде нитропруссидов и титруют марганец. Содержание кобальта вычисляют по разности. [c.127]

    Для отделения меди, никеля, кобальта, свинца и теллура от селена использованы различные условия экстракции элементов — примесей и селена. Медь, никель, кобальт п свпнец отделяли экс-тракциех в виде карбаминатов пз аммиачного раствора, содержащего цитрат натрия и цианид (при определении свинца) или комплексон III (при определении меди) при pH 9—10. Теллур экстрагировали при pH 8,5—8,7. Селен, как известно, образует карбамипаты при pH 4,0—6,2. [c.307]

    Определение платины на фоне этилендиаминроданида в виде PtEn( NS)2 [330]. Метод рекомендуется для концентраций платины от 4-10 до 3-10 Ai. Определению платины не мешают СГ, N07, SOi , комплексон III, тирон мешают S0 , РО , медь, таллий, кобальт, свинец, палладий. Мешающее действие кобальта и свинца устраняется при добавлении комплексона III. Железо (II) выпадает в осадок, который не адсорбирует PtEn( NS)2i [c.190]

    Уран количественно осаждается оксином при pH 6—9,5. В присутствии комплексона его определению не мешают катионы сероводородной группы, за исключением меди, а также цинк, никель, кобальт, марганец и др. Отделение молибдена от урана проводят в среде ацетата аммония и уксусной кислоты как уже было указано. После умеренного подщелачивания раствора уран выделяется в виде красно-бурого и02(С9Н5Ы0)2. Определение заканчивают либо взвешиванием этого осадка, либо бромометрическим методом. Описанный оксиновый метод очень быстрый и дает удовлетворительные результаты при анализах различных образцов руд, минералов и сплавов. Приводим два примера. [c.112]

    Проведение определения. После выделения вольфрама в виде оксихинолята из раствора с известным содержанием комплексона к фильтрату прибавляют еш,е некоторое количество оксина, 2—3 г ацетата аммония, подщелачивают раствор аммиаком до pH 8—9 (по универсальной индикаторной бумаге), нагревают и при постоянном перемешивании прибавляют по каплям раствор нитрата кальция в количестве, необходимом для связывания всего комплексона. Кобальт выделяется количественно в виде оксихинолята кобальта и его-определяют далее бромометрическим методом по Бергу (см. выше). [c.115]

    Уран количественно осаждается оксином при pH б—9,5. В присутствии комплексона его определению не мешают катионы IV аналитической группы (кроме меди), а также цинк, никель, кобальт, марганец и др. мешает присутствие железа и меди. Отделение молибдена от урана проводят в среде ацетата аммония и уксусной кислоты, как было указано выше. После умеренного подщелачивания фильтрата уран выделяется в виде красно-бурого соединения и02(С9НбМ0)2. Определение заканчивают либо весовым, либо бромометрическим методом. [c.155]

    В теоретической части (стр. 69) было подробно объяснено влияние комплексона на окислительные потенциалы различных окислительно-восстановительных систем. Здесь достаточно будет только сказать, что при образовании комплексного соединения окислительный потенциал соответственно уменьшается. Это явление может быть использовано в аналитической химии в различных видах анализа. Так, например, нормальный окислительно-восстановительный потенциал системы РеЗ+/Ее + равен -Ь0,78 в, в присутствии же комплексона образуется новая система Ре /Ре с нормальным потенциалом, равным только +0,117 в и зависящим также от pH раствора. Вследствие этого ионы трехвалентного железа в кислом растворе не реагируют, например, с йодидами, другими словами, трехвалентное железо и аналогично ему двухвалентная медь полностью замаскированы по отношению к йодиду. Это свойство было использовано (о чем будет упомянуто далее), например, для йодометрического определения хроматов или церия в присутствии железа и меди. Под влиянием комплексона в некоторых случаях настолько уменьшается окислительно-восстановительный потенциал системы, что данный катион можно легко окислить соответствующим реактивом. Примером может служить двухвалентный кобальт, который в присутствии комплексона в слабокислом растворе можно количественно окислить раствором сульфата церия или, наоборот, выделившийся комплек-сонат трехвалентного кобальта при кипячении можно восстановить раствором сульфата двухвалентного хрома. Оба указанных [c.170]

    Бесцветный комплексонат висмута имеет максимум свето-поглощения в ультрафиолетовой области при длине волны 263,5 устойчивый в пределах pH 2—9. Состав его отвечает простому комплексному соединению с соотношением висмута с комплексоном, равным 1 1. Уэст и Кол [20] разработали простой метод спектрофотометрического определения висмута, основанный на измерении светопоглощеиия комплексоната висмута в кислых или забуференных ацетатом натрия растворах. Лучше производить определение в кислых растворах с pH 1, так как в этих условиях мешает наименьшее число элементов. Из анионов мешают главным образом нитраты. Сульфаты, перхлораты, хлориды и ацетаты практически не влияют. Могут мешать только хлориды, если они находятся в большой концентрации вследствие образования хлорокомплексов. Не мешает большинство бесцветных катионов. При pH 1 висмут можно определять в присутствии равного количества трехвалентной сурьмы и двухвалентного олова. Медь и железо не должны содержаться в растворе. В кислом растворе не мешают определению небольшие количества марганца, никеля и кобальта. В присутствии свинца, бария или стронция измерения следует проводить в растворе хлорной кислоты. Большие количества свинца (В1 РЬ = 1 50) следует предварительно выделять в виде сульфата свинца центрифугированием. При значительных концентрациях свинца висмут адсорбируется осадком сульфата свинца. [c.194]

    Ход определения. К слабокислому исследуемому раствору, содержащему цинк (кадмий), медь, никель и кобальт, прибавляют несколько миллилитров буферного раствора и малыми порциями вводят столько твердого цианида калия, чтобы связать все присутствующие катионы. Требуемое для маскирования количество цианида легко определяют по изменению окраски раствора в присутствии меди раствор обесцвечивается, в присутствии никеля и кобальта — желтеет и при дальнейшем прибавлении цианида цвет раствора не меняется в присутствии ртути образуется сначала ссадок, который затем легко растворяется. Избыток цианида не мешает. После прибавления эриохрома черного Т раствор окрашивается в синий цвет (в присутствии никеля и кобальта — в зеленый). Затем к раствору прибавляют несколько милли . литров 10%-ного раствора формальдегида и тотчас же титруют выделившийся цинк (кадмий) раствором комплексона до перехода окраски из винно-красной в интенсивно-синюю. Согласно опытам автора монографии, вместо формальдегида можно применять также твердый хлоралгидрат. Выделение цинка из цианидного комплекса при этом протекает медленнее титрование тогда проводят через несколько минут после прибавления хлоралгидрата. Преимуществом последнего является возможность его получения в химически чистом виде, а также в отсутствие полимеризации, которая протекает в старых растворах формальдегида. [c.417]

    Определение компонентов системы ведут кз одной навески в отдельных аликвотах. Никель определяют комплексоно- метрически после отделения его в виде диметилглиоксимата. Относительная ошибка определения не более 0,8%. После отделения Ге экстракцией смесью эфира с трибутилфосфатом РЬ отделяйт в виде сульфата из рафината и заканчивают опре- целение комплексонометрич№ким методом. Относительная ошибка не более 8% (при содержании РЬО 2,8%). Железо определяют бихроматным методом с индикатором дк ениламинсуль-фонатом натрия. Относительная ошибка не превышает 0,5%. Кобальт определяют фотоколориметрическим методом с нитро-з Р-солью на фоне других компонентов системы. Относителы ная ошибка 3%. Продолжительность анализа 4 часа. Табл. 1, библ. 3 мазв. [c.324]

    В последние годы для определения бериллия предложен ряд новых методов, основанных на осаждении и взвешивании бериллия в виде соединений с высоким молекулярным весом с различными органическими осади-телями 8-оксихинальдином [16], р-окси-а-нафтойным альдегидом [17, 18], диметилгександионом [19, 20], а также осаждение бериллия в виде двойной соли с кобальтом [21, 22] Фактор пересчета на бериллий во всех случаях значительно более выгоден, чем при работе с фосфатом, так при нспользовании диметилгександиона он равен 0,03096, а в случае р-окси-а-нафтойного альдегида — 0,02565. Благодаря кристаллической структуре осадков, а также использованию маскирующего действия комплексона при отделении бериллия от сопутствующих элементов в ходе анализа минера-.IOB и сплавов достаточно однократного осаждения. Недостатками метода является необходимость строгой дозировки осадителя или проведения работы в водно-спиртовой среде. [c.80]


Смотреть страницы где упоминается термин Определение кобальта комплексоном I в виде СоХ: [c.188]    [c.166]    [c.89]    [c.77]   
Смотреть главы в:

Комплексоны в химическом анализе -> Определение кобальта комплексоном I в виде СоХ




ПОИСК





Смотрите так же термины и статьи:

Кобальт определение

Комплексоны

Определение комплексоном III в виде



© 2025 chem21.info Реклама на сайте