Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение висмута (свинца) в меди

    Мешающие вещества. Висмут, кадмий, медь, свинец, ртуть, никель, кобальт, серебро, золото, олово(И), если присутствуют в не слишком больших количествах (меньше 5 мг/л), при этом значении pH связываются в тиосульфатные комплексы и не мешают определению цинка. Если содержание этих элементов превышает указанное, то пробу рекомендуется разбавить так, чтобы концентрация мешающего элемента стала ниже 5 мг/л. Лишь тогда, когда отношение концентраций мешающий элемент цинк превышает 5 0,05, приходится вводить в анализируемый раствор еще небольшое количество цианида калия. [c.161]


    Примечание. Висмут ложно также прямо титровать в присутствии свинца (Bi Pb = 1 5000) по пирокатехиновому фиолетовому. Определению мешает присутствие трехвалентного железа, которое следует предварительно восстановить гидроксиламином. При высоком содержании свинца поступают следующим образом из анализируемого раствора извлекают висмут осаждением прибавляемым по каплям раствором купраля (в аммиачном растворе комплексона) и экстракцией хлороформом. При добавлении купраля сначала -образуется желтый осадок дитиокарбамата висмута, а только затем осаждается свинец, не мешающий в таком количестве определению висмута. Медь следует во всех случаях маскировать цианидом калия. [c.475]

    Припои оловянно-свинцовые. Спектральный метод определения примесей сурьмы, меди, висмута, мышьяка, железа и никеля Баббиты кальциевые. Метод спектрального анализа по литым стандартным металлическим образцам Свинец высокой чистоты. Спектральный метод определения ртути Порошок цинковый. Метод спектрального анализа Сплавы цинковые. Метод спектрального анализа Индий. Спектральный метод определения галлия, железа, меди, никеля, олова, свинца, таллия и цинка Индий. Спектральный метод определения ртути и кадмия Индий. Спектральный метод определения кадмия [c.822]

    Одновременное определение свинца, кадмия и суммы висмута и меди в соляной, винной и лимонной кислотах описано в разделе Свинец . [c.56]

    Металлы и амальгамы металлов. Наиболее универсальным методом восстановления вещества до определенной степени окисления является, по-видимому, обработка раствора пробы металлом. В качестве восстановителей используют цинк, алюминий, кадмий, серебро, ртуть, медь, никель, висмут, свинец, олово и железо. [c.317]

    Кадмий (а также одновременно железо, медь и свинец) не влияют на точность определения висмута в солянокислом растворе, как видно из табл. 84. [c.267]

    В условиях, при которых проводится экстракция, могут экстрагироваться также висмут, свинец и таллий, но эти элементы не мешают определению меди полярографическим методом. [c.125]

    Нами в качестве фона для определения висмута был выбран раствор НС1, который легко получается в чистом состоянии двукратной перегонкой в кварцевой посуде, и КС1, который получали очисткой с дитизоном или пропусканием через колонку, заполненную битым коричневым стеклом [7], в случае определе- [ ния свинца и таллия. При определении висмута на фоне Ш НС1 мешающими элементами будут железо, медь и, вероятно, свинец (сурьмы в концентрации вплоть до 2 -10 М обнаружено не было). Было проверено влияние этих примесей. Введение [c.176]


    Метод потенциометрического титрования применяют для определения в различных объектах (в том числе и в объектах окружающей среды) хлорид-, йодид-, бромид-, роданид-, арсенат-, цианид-, ферроцианид-, оксалат-, нитрит-, арсенит-, йодат-, хлорид-ионов и др., а также катионов многих металлов (медь, кадмий, ртуть, цинк, висмут, свинец, железо и др.). Правда, в последние годы такого рода определения чаще выполняют методом ионной хроматографии (см. главу П), однако и потенциометрия не утратила практической значимости в экологической аналитической химии [6, 10,12]. [c.352]

    Определение с иодидом калия. Малые количества висмута, от 0,05 до 0,5 мг, лучше всего определять- колориметрическим методом, сравнивая желтую или коричневую окраску, полученную в результате обработки разбавленного азотнокислого раствора соли висмута иодидом калия, с окраской стандартного раствора. Определению мешают медь и железо (III), которые реагируют с иодидом калия, выделяя иод, некоторые члены мышьяковой группы, также даюш ие окрашенные растворы с иодидом калия, и, наконец, соли, которые сами сильно окрашены (как, например, нитрат никеля), если они присутствуют в достаточном количестве. Эти веш ества должны быть удалены обш ими, или специальными способами отделения соответственно каждому отдельному случаю Свинец не создает затруднений, если не присутствует в очень больших количествах, потому что желтый иодид свинца можно отфильтровать перед определением висмута. Большие же количества иодида свинца могут увлечь в осадок висмут. [c.277]

    Лингейн [35, 40] описал кулонометрическое определение ряда металлов с применением ртутного катода. Из тартратного раствора были последовательно выделены медь, висмут, свинец и кадмий значение катодного потенциала автор выбирал таким образом, чтобы оно соответствовало участку с диффузионным контролем на кривой сила тока — напряжение, регистрируемой с [c.303]

    Так, например, медь может полностью вытеснять тал-лий(1), никель, висмут, свинец(П), кадмий, цинк, сурь-му(1П), теллур(1У) и марганец из их диэтилдитиокарбаматов, в результате чего оказывается возможным косвенное фотометрическое определение зтих металлов [905—907, 12101. [c.232]

    Если смочить фильтр жидкостью, подлежащей анализу, и сжечь его в высокочастотной искре, можно с полной уверенностью расчитывать на чувствительность определения от 10 до 10 в металлах медь, серебро, ртуть, марганец, висмут, свинец и золото. Наоборот, предел доказуемости мышьяка и теллура этим методом лежит лишь несколько ниже 10 г, т. е. количеств того же порядка, что и при непосредственном анализе раствора с конденсированной искрой. [c.59]

    В слабокислой среде в присутствии комплексона только серебро и одновалентный таллий осаждаются иодидом калия, так как остальные катионы, как, например, свинец, висмут и медь, прочно связаны в комплекс и с иодидом не реагируют. В нейтральной среде серебро образует комплексное соединение Ag2Y , как было установлено амперометрическим титрованием его комплексоном Н14], и не осаждается иодидом. 1одробным исследованием этой реакции показано, что только в нейтральной среде можно потенциометрически определить серебро -при помощи серебряного индикаторного электрода. В кислых растворах, в которых происходит выделение иодида серебра, результаты всегда получаются пониженными. Авторы рекомендуют следующий ход определения. К раствору, содержащему не менее 1 мг серебра, прибавляют требуемое количество комплексона и 5 капель бромтимолового синего. После нейтрализации 0,2 н. раствором едкого натра (сине-зеленая окраска) раствор разбавляют до 50—100 мл и титруют с применением серебряного электрода 0,1 н. раствором иодида калия из микробюретки с делениями на 0,05 мл. Присутствующий в небольшом избытке комплексон на определение не влияет. Таким путем можно определить серебро в присутствии свинца, меди, висмута, кадмия даже и тогда, когда они присутствуют в 300-кратном избытке. Пятивалентный мышьяк и трехвалентная сурьма (связанные в растворе винной кислотой), не влияют на определение. Определению не мешает также таллий, если присутствует в не слишком большом количестве (Ag Т1=1 10). Присутствие двухвалентной ртути и катионов группы бария делает определение невозможным. Согласно авторам, метод можно с хорошими результатами применять для анализа различных сплавов с серебром. После их растворения в азотной кислоте к раствору прибавляют комплексон и винную кислоту (в присутствии сурьмы), нейтрализуют едким натром и титруют описанным способом. Аналогично поступают при анализе [c.139]

    Мешающие влияния. Свинец, висмут, цинк, медь, никель, кобальт, серебро, ртуть мешают определению кадмия. При экстрагировании дитизоната кадмия из щелочного раствора отделяют кадмий от свинца, висмута и основной массы цинка, остающихся в водном слое. Потом дитизонат кадмия разрушают 0,01 н. раствором соляной кислоты и таким образом переводят кадмий в водный слой, отделяя его от меди, никеля, кобальта, серебра, ртути и других металлов, дитизонаты которых устойчивы к кислотам и потому остаются в слое органического растворителя. Наконец, вторично экстрагируют кад- [c.138]


    Препятствующие анализу вещества. Железо, бериллий, галлий, медь и многие другие элементы образуют с ализарином окрашенные соединения фосфат и фторид образуют комплексы с алюминием кремневая кислота, -сурьма, висмут, свинец, олово, титан и ртуть образуют в условиях колориметрического определения алюминия белые осадки и поэтому мешают определению. [c.296]

    По приведенному ниже ходу анализа определение висмута можно выполнить в присутствии значительных количеств щелочных и щелочноземельных металлов, магния, марганца, цинка, кобальта, никеля, хрома, алюминия и т. п. Свинец и таллий не мешают определению, если они присутствуют в таких количествах, что не образуют осадков. В присутствии сурьмы, Меди, железа, серебра и т. п. вначале выделяют висмут, экстрагируя его дитизоном из аммиачно-цианидного раствора. [c.176]

    Чувствительность определения отдельных элементов Висмут, никель, медь, серебро, титан, алюминий, железо, свинец, марганец—1.10 % [c.39]

    Определение с тиомочевиной Несколько большие количества висмута (от ОД до 4 мг) могут быть определены фотометрически в разбавленном азотнокислом растворе добавлением тиомочевины и измерением свето-ногдощения образовавшегося окрашенного в желтый цвет комплексного соединения при длине волны света 425 ммк. Сурьма, палладий, осмий и рутений также образуют с тиомочевиной в кислом растворе окрашенные комплексные соединения- . Добавление фтористоводородной кислоты предупреждает образование окрашенного соединения сурьмы серебро, ртуть, свинец, медь, кадмий и цинк образуют белые осадки, когда присутствуют в значительных количества если же содержание этих элементов невелико, то ни осадков, ни окрашивания раствора не получается. Железо, при содержании его, превышаюш ем 0,1 мг в 50 мл, должно быть удалено или восстановлено до двухвалентного состояния . Селен и теллур мешают определению [c.278]

    Вести разделение, применяя чистый пиридин, не представляется возможным, так как, хотя висмут и осаждается при этом количественно, но одновременно выпадает также и свинец вследствие слишком высокой величины pH в растворе. Как показали работы с пиридином, наиболее удобным средством понижения величины pH при осаждении пиридином является введение в раствор его соли. Получающаяся при этом буферная смесь позволяет очень точно регулировать величину pH раствора. Применяя реактив, состоящий из смеси пиридина с его азотнокислой солью в определенных отношениях, мы добились условий, в которых висмут осаждался количественно, в то время как свинец, медь и кадмий оставались в растворе. Величина pH, устанавливающаяся при этом в растворе, близка к 4,2. [c.65]

    Специфичность реакции можно повысить путем маскировки сопутствующих ионов. Маскировка заключается в связывании мешающих ионов в достаточно прочные комплексы добавлением в раствор соответствующих веществ. Например, медь и свинец можно маскировать, переведя их в тартраты в таком растворе можно обнаружить те ионы, которые не образуют тартратные комплексы. Маскировка мешающих ионов часто используется и имеет большое практическое значение. Например, если в ходе анализа катионов 4-й группы к раствору, содержащему медь, кадмий, висмут, свинец, прибавить глицерин, с которым все катионы, кроме кадмия, образуют прочные комплексы, не осаждаемые щелочами, а затем подействовать гидроокисью натрия, то кадмий оседает в виде гидроокиси, а остальные катионы останутся в растЕоре и могут быть затем обнаружены. Ион Ре " мешает обнаружению Со + в виде синего роданидного комплекса, так как образует темно-красный комплекс ( 81, 82), что мешает определению кобальта. Если же железо предварительно перевести во фторидный комплекс 1РеРйР или [РеРа]-, добавляя фторид натрия, то оно не помешает определению кобальта, так как комплекс железа с фторид-ионами значительно устойчивее, чем железороданидный комплекс. Кадмий можно осадить в виде желтого сульфида в присутствии меди (И), связывая медь в цианидный комплекс [Си (СЫ) , более прочный, чем цианид-ный комплекс кадмия. /Снест для комплекса кадмия 1,4-10" , а для комплекса меди (I) 5-10 , т. е. значительно меньше. [c.100]

    Более надежно можно выделить небольшие количестпа висмута из меди совместным осаждением с гидроокисью железа. Если техническая медь содержит мало железа, то к раствору меди прибавляют соль железа в заведомом избытке но отношению к предполагаемому количеству висмута. При определении висмута [1082] к раствору 10—20 г электролитной меди в азотной кислоте прибавляют кристаллик сульфата закиси железа, раствор разбавляют, добавляют аммиак до щелочной реакции, кипятят, добавляют 0,75 г карбоната аммония п немного фосфата натрия. Осадок, содержащий весь висмут, растворяют в соляной кислоте и раствор насыщают сероводородом. Осадок сульфидов дпгерируют теплым сульфидом аммония. Остаток, содержащий висмут, свинец и медь, растлоряют в азотной кислоте и осаждают висмут карбонатом аммония. Осадок растворяют и определяют висмут электролизом. Следы свинца, содержахциеся в этом растворе, ие метают, так как они осаждаются на аноде в виде двуокиси. [c.26]

    Висмут и избыток меди растворяют, обрабатывая осадок 4—5 раз малень- кими порциями горячей разбавленной HNO3 (1 2). Затем висмут осаждают фосфатом аммония, причем медь остается в растворе, и взвешивают BiPOi. Свинец, находящийся в руде, не оказывает влияния на определение висмута. [c.90]

    Пирогаллол количественно осаждает нисмут из слабокислых растворов в виде желтого кристаллического вещества [531]. Полнота осаждения зависит от величины pH раствора. Определению висмута не метают свинец [531] и неболылие количества меди [157]. Сурьма дает белый кристаллический осадок. [c.160]

    Кроссин [809] разработал метод полярографического определения свинца и висмута в меди, цинке и в цинковых сплавах, содержащих медь и алюминий. К раствору сплава прибавляют щелочь и цианистый калий и затем осаждают свинец и висмут сульфидом натрия. Сульфиды отфильтровывают, растворяют в разбавленной HNO3 (1 1) и повторяют осаждение сульфидом натрия. Полученный осадок растворяют в разбавленной азотной кислоте (1 1), раствор выпаривают досуха и остаток нагревают с небольшим количествам ра.чбавлепной НС1 (1 1), растио-ряют его в 10%-ной НС1, разбавляют раствор до определенного объема и определяют в нем свинец и висмут полярографически. Мышьяк, сурьма и олово, присутствующие в анали.зируемом материале, не мешают определению. [c.302]

    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    Лингейн 44.47 описал кулонометрическое определение ряда металлов с применением ртутного катода. Из тартратного раствора были с успехом выделены медь, висмут, свинец и кадмий величину катодного потенииала автор выбирал таким образо.м, чтобы она соответствовала участку с диффузионным контролем на кривой сила тока — напряжение, снимаемой с помощью капельного ртутного электрода. Применяя серебряный анод, можно количественно осадить иодид, бромид и хлорид в виде сере- [c.354]

    Анализируемый раствор должен быть свободен от азотистой кислоты,, хлорида серебра и сульфатов. Первая образует окрашенное в красный цвет соединение с роданистоводородной кислотой хлорид серебра до некоторой степени реагирует с роданидом, а в присутствии сульфатов образуется смешанный осадок роданида и сульфата серебра 1. Кроме концентрированных растворов солей, мешающ их определению своей окраской, вредны главным образом соединения ртути (II) и палладия. Медь (I), образующая также нерастворимый роданид (стр. 290), обычно-не присутствует, так как предварительной обработкой вся медь окисляется до двухвалентной. Медь (II) не мешает определению, если отношение меди к серебру не превышает 7 10. Не мешают также мышьяк,, сурьма, свинец, висмут, кадмий, железо, марганец, цинк, никель, и кобальт. - X [c.239]

    Элементарный иод можно легко определить после предварительного восстановления на холоду гидразином. Определению не мешают элементы, не осаждаемые родамином С. Висмут, железо, цинк, никель, индий, свинец, медь и ртуть могут присутствовать в большом избытке. Мешает определению иодид-ионов сурьма (П1), которая концентрируется на электроде одновременно с иодом в виде аналогичного соединения. Влияние сурьмы можно устранить, восстановив ее до элементарного состояния или связав в электронеак-тивный комплекс. Так, в присутствии 10% цитрата калия 100-крат-ные количества сурьмы(П1) не мешают определению иодид-ионов (концентрации Sb + и I-—6-10 и 6-10 г-ион/л). Максимальный ток электрохимического растворения осадка, содержащего иод, в этом случае несколько ниже, чем в отсутствие цитрат-ионов. При использовании калибровочных графиков или метода добавок это не имеет значения. [c.104]

    В основе всех масс-спектральных методик определения активностей лежит одновременное измерение парциальных давлений (ионных токов) компонентов в зависимости от состава расплава. Таким образом были определены активности в системах алюминий — титан [41], медь,— титан [42], ванадий — титан [43], висмут — свинец [51]. Этим же методом Белтон [44, 45, 52] и Вагнер [46—50] нашли активности в ряде других металлических систем. [c.167]

    Установлена также возможность определения висмута(1П) наряду с ионами других элементов (медь, индий, цинк, свинец, галлий, германий, кадмий, скандий) при помощи ЭДТА в безводной уксусной кислоте и в смеси ее с хлороформом или другими органическими растворителями [29—32], а в некоторых случаях при необходимости определения малых количеств висмута рекомендуется экстрагировать его хлороформом в виде иодида. [c.129]


Смотреть страницы где упоминается термин Определение висмута (свинца) в меди: [c.200]    [c.135]    [c.197]    [c.203]    [c.260]    [c.272]    [c.176]    [c.491]    [c.54]    [c.385]    [c.110]    [c.201]    [c.87]    [c.101]    [c.133]    [c.176]   
Смотреть главы в:

Комплексоны в химическом анализе -> Определение висмута (свинца) в меди




ПОИСК





Смотрите так же термины и статьи:

Медь, определение

Молибден, определение примеси висмута, кадмия, меди, никеля, олова, свинца, сурьмы, титана, хрома

Молибден, определение примеси висмута, кадмия, меди, никеля, олова, свинца, сурьмы, титана, хрома цинка

Определение алюминия, железа, меди, цинка, свинца и висмута из одной навески

Определение прим сей меди, свинца, сурьмы, кадмия и висмута в четырехбромистых германии и кремнии Ю И. Вайнштейн, Я Гинзбург

Определение примесей свинца и серебра в металлическом висмуте Определение примесей железа, марганца и меди в золе целлюлозы, применяемой для вискозного шинного корда. Г. А. Певцов

Определение свинца, меди, висмута и серебра

Определение свинца, меди, висмута и сурьмы

Определение тяжелых металлов (железа, алюминия, марганца, никеля, кобальта, олова, титана, висмута, молибдена, меди, ванадия, свинца и серебра)

Определение цинка, кадмия, алюминия, висмута, кобальта, марганца, олова, свинца, меди, магния, кремния, железа, мышьяка и сурьмы спектральным методом

Полярографические методы анализа Определение висмута, меди и свинца в азотнокислом кобальте Давыдовская

Полярографическое определение железа, меди, висмута и свинца

Полярографическое определение меди, свинца, висмута, цинка, индия и галлия в олове амальгамным способом с накоплением

Полярографическое определение свинца и меди в двуокиси кремния, свинца и висмута в трихлорсилане с применением вектор-полярографа ЦЛА

Применение вектор-полярографии на стационарной капле для повышения чувствительности полярографического метода. Определение микропримесей висмута, свинца, меди и золота Вайнштейн, К. Я Гинзбург

Спектральное и химико-спектральное определение алюминия, висмута, железа, индия, кадмия, кобальта, магния, марганца, меди, никеля, свинца и хрома в галлии и хлориде галлия

Спектральное определение алюминия, бора, висмута, галлия, железа, индия, кобальта, кремния, марганца, меди, мышьяка, никеля, олова, свинца, серебра и цинка в сурьме

Спектральное определение меди, серебра, никеля, висмута, сурьмы и мышьяка в сульфиде свинца

Спектральное определение серебра, меди, висмута, олова, свинца, сурьмы, никеля, кобальта и галлия в цинке

Спектральное определение таллия, висмута, олова, цинка, сурьмы, никеля, кобальта, меди, свинца и серебра в кадмии

Спектрографическое определение железа, алюминия, марганца, меди, никеля, кобальта, олова, титана, висмута, молибдена, ванадия, свинца и серебра

Химико-спектральное определение алюминия, висмута, галлия, железа, золота, индия, кальция, магния, марганца, меди, никеля, свинца, сурьмы, олова, серебра, таллия, тантала, титана, хрома и цинка в германии, двуокиси германия и тетрахлориде германия

Химико-спектральное определение алюминия, висмута, железа, магния, марганца, меди, никеля, свинца, сурьмы и хрома в мышьяке

Химико-спектральное определение алюминия, висмута, индия, кадмия, магния, марганца, меди, никеля, свинца и цинка в таллии

Химико-спектральное определение алюминия, висмута, кадмия, кобальта, магния, меди, никеля, свинца, серебра и цинка в металлическом индии

Химико-спектральное определение алюминия, висмута, кадмия, магния, марганца, меди, никеля, свинца и цинка в индии

Химико-спектральное определение алюминия, висмута, магния, марганца, меди, никеля, свинца, серебра и хрома в арсениде галлия

Химико-спектральное определение алюминия, висмута, цинка, магния, марганца, никеля, свинца, серебра, сурьмы, галлия, олова, хрома и меди в двуокиси кремния с применением полого катода

Химико-спектральное определение алюминия, кадмия, магния, марганца, меди, никеля, свинца, цинка и серебра в висмуте

Химико-спектральное определение железа, меди, никеля, кадмия, свинца, цинка, висмута, серебра и кобальта в фосфоре

Химико-спектральное определение меди, свинца, висмута, галлия, серебра, золота, кобальта, никеля и алюминия в олове

Химико-спектральное определение меди, серебра, кадмия, магния, марганца, висмута, алюминия, титана, индия, кальция, свинца, хрома, кобальта, никеля и цинка в сурьме

Химико-спектральное определение серебра, алюминия, магния, индия, молибдена, циркония, железа, титана, меди, марганца, никеля, свинца, хрома, олова, висмута, галлия, кальция, цинка и сурьмы в трихлорсилане без применения гидролиза



© 2024 chem21.info Реклама на сайте