Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакторы, работающие под высоким давлением

    В работе описываются исследования перемешивания в трубчатом реакторе при высоких давлениях, достигающих 2450 яг в поток этилена периодически впрыскивается гелий. Результаты этих исследований, а также данные Левеншпиля (заштрихованная область) приведены на рис. 1-30. [c.45]

    Для работы при высоком давлении часто используют аппараты, в которых катализатор размещают в специальной коробке. Коробку вместе с катализатором собирают вне реактора. Через коль- [c.332]


    Большое влияние на показатели процесса прямой гидратации этилена оказывает качество применяемого катализатора, а также срок службы его. Применяемые в настоящее время промышленные фосфорнокислотные катализаторы при указанных выше параметрах ведения процесса имеют производительность по спирту 180—200 г/л катализатора в час и продолжительность работы 500 ч, после чего их необходимо регенерировать. Для увеличения длительности пробега катализатора и улучшения его качественных показателей на заводах прямой гидратации применяют подпитку катализатора, используя при этом техническую фосфорную кислоту. Добавка кислоты в количестве 250—300 г/ катализатора в час позволяет в несколько раз увеличить пробег катализатора. Введение раствора фосфорной кислоты в реактор гидратации осуществляется распылением его потоком парогазовой смеси либо паром высокого давления [19]. [c.34]

    Реакторы с неподвижным слоем для синтеза аммиака являются предметом постоянного изучения, а конструкция их непрерывно совершенствуется. Существует несколько конструкций таких реакторов. Все они работают при давлениях до 1000 ат и относятся к аппаратуре высокого давления. [c.313]

    При работе с высокими давлениями конструкции трубчатых реакторов сильно усложняются. Пока применяют только реакторы с охлаждением катализатора газами, поступающими на реакцию. [c.267]

    Проточные интегральные лабораторные реакторы для жидкофазных реакций представляют собой простые трубки из стекла или металла. При работе с высокими давлениями конструктивно приходится вносить значительные усложнения, которые подробно изложены в работе [20]. [c.418]

    Основной тенденцией развития химического машиностроения является значительное усовершенствование действующего оборудования, увеличение количества типоразмеров стандартного оборудования 1го-вышение мощности отдельных машин и агрегатов, разработка новых конструкций некоторых видов оборудования. Например, усовершенствование реакторов направлено на интенсификацию их работы, компактное оформление, непрерывное ведение процесса, а также на упрощение конструкции. Разработаны новые типы реакторов, основанных на взаимодействии реагентов под действием излучения электронов, которые находят широкое применение в процессах алкилирования, полимеризации и других, протекающих в газовой фазе и под высоким давлением. В последние годы появились мельницы-мешалки. Этот новый тип машин объединяет в себе шаровую мельницу, диспергатор и валковую мельницу. С помощью такого агрегата можно диспергировать, производить тонкий помол и гомогенизировать жидкотекучие материалы, например исходные смеси для лаков и красок. Помимо непрерывности технологического процесса, большой производительности и высокой степени измельчения эти машины обеспечивают высокое качество получаемой продукции. [c.6]


    Различные хлорорганические отходы (в том числе тяжелые остатки от предыдущего способа переработки и циклические хлор-органические продукты, не поддающиеся газофазному расщеплению, а также кислородсодержащие соединения) можно подвергать хлоролизу в жидкой фазе при 550—600 °С, 20 МПа и времени контакта a20 мин. При однократном проходе через пустотелый реактор, рассчитанный на работу при высоких давлении и температуре, образуются четыреххлористый углерод, гексахлорэтан, гексахлорбензол, а из кислородсодержащих соединений — фосген. После дросселирования смеси отделяют тяжелые продукты и возвращают их на реакцию, а из остальной смеси выделяют четыреххлористый углерод, фосген, хлор (возвращаемый на реакцию) и безводный хлористый водород. [c.152]

    В реакторе со стационарным кипящим слоем (СКС) газ проходит снизу вверх с линейными скоростями 10—60 см/с, вычисленными для пустого реактора в условиях реакции синтеза. Слой катализатора расширен, но из реактора не уносится, а остается в нижней половине реактора, как показано на рис. 4. На установках Сасол в течение многих лет работали пилотные реакторы СКС с внутренним диаметром 5 см. Несмотря на более высокие отношения количества газа к количеству катализатора, конверсия в этих реакторах выше, чем в промышленных реакторах Синтол . Крупный опытный реактор СКС, работавший в США (Браунсвилл, шт. Техас) в начале 50-х гг., был сначала признан непригодным для использования из-за низкой конверсии, что связывали с неудовлетворительным распределением катализатора в кипящем слое [10]. Однако, считая такие реакторы перспективными, специалисты фирмы Сасол исследовали в больших плексигласовых моделях характеристики кипящего слоя своего тяжелого железного катализатора. Совместно с компанией Баджер были разработаны эффективные насадки для распределения газа. Также было найдено [11], что распределение катализатора в потоке газа существенно улучшается при добавлении порошка древесного угля. Впоследствии был разработан опытный образец реактора высокого давления, пуск которого намечался на 1983 г. [c.169]

    Основной реактор представляет собой реторту высокого давления ватержакет-ного типа с испарительным охлаждением, что обеспечивает производство перегретого пара в количестве, необходимом для процесса. Слой угля перемешивается вращающейся колосниковой решеткой, чем достигается удаление твердой золы в расположенный внизу бункер, также находящийся под давлением. Помимо этого пальцы мешалки проникают в верхние слои подушки, помогая перемешиванию. Свежий уголь дозированными порциями загружается через герметизированный топливный бункер высокого давления, расположенный в верхней части газогенератора. Как топливный, так и зольный бункеры оборудованы газоплотными загрузочными и разгрузочными люками, поэтому они могут работать как при рабочем, так и при атмосферном давлении. [c.156]

    Максимальная интенсивность работы катализатора — это один из главных критериев эффективности реактора. Интенсивность I выражается количеством полученного продукта на 1 катализатора в 1 ч. В реакторах, работающих под высоким давлением и имеющих дорогостоящий корпус, интенсивность иногда относят к полному объему реактора [c.108]

    Необходимую для процесса температуру исходной смеси можно получить смешением этилена с перегретым паром высокого давления (около 7 МПа). По режиму работы гидрататор приближается к адиабатическому реактору идеального вытеснения. [c.173]

    Осуществляемые в газовой фазе при малой степени превращения эа проход процессы прямой гидратации олефинов характеризуются большими расходами рециркулирующих потоков. Способ рекуперации тепла обратного потока существенно отражается на экономике производства. Исходную парогазовую смесь можно приготовить по двум схемам с использованием пара высокого давления 10 МПа (рис. 7.5) и с применением трубчатой печи (рис. 7.6). По первой схеме работают установки в СССР, а по второй — многие зарубежные установки. В последние годы на ряде установок Западной Европы применяется несколько видоизмененная схема, предусматривающая использование готового пара высокого давления при гидратации этилена. В этом процессе рециркулирующий газ смешивается со свежим этиленом, проходит теплообменники 2,3 и подогреватель 4, смешивается в заданном соотношении с паром высокого давления и подается в реактор гидратации 5. Подогрев газа в аппаратах 2, 3 производится за счет тепла потока, выходящего из гидрататора, а в аппарате 4 — глухим паром. Реакционная смесь, выходящая из реактора с температурой 300 °С, [c.227]

    Однако это не означает, что конструкция реактора целиком определяется характером реакции и свойствами реагирующих веществ. Одну и ту же реакцию можно проводить в реакторах различных конструкций. Во многих случаях применение нового более совершенного реактора позволяет провести реакцию быстрее, с большим выходом целевого продукта и меньшим выходом побочных продуктов, например созданием лучшего температурного или гидравлического режима в аппарате, более высокого давления. Это, в свою очередь, отражается на работе и конструктивных особенностях обслуживающего реактор тепло- и массообменного оборудования. [c.243]


    В соответствии с технологической схемой сырье и продукты гидродеалкилирования поступают в колонну для разделения на нафталиновую и бензиновую фракции, сырье гидродеалкилирования и остаток. Сырье гидродеалкилирования смешивается с циркулирующим водородом и водой, способствующей повышению селективности процесса и резко снижающей коксообразование, нагревается в печи и направляется в реактор. Катализатор работает без регенерации до 1 года. Продукты реакции после охлаждения поступают в сепаратор высокого давления. С верха сепаратора выходит циркулирующий водород, который затем очищают от примесей в абсорбере. Жидкая фаза входит в сепаратор [c.190]

    Основным конструктивным недостатком реакторов с мешалками является необходимость герметизации узла ввода вала мешалки в аппарат. Этот узел значительно ухудшает эксплуатационную надежность реактора, особенно при работе с высокими давлениями. Для повышения надежности работы узла уплотнения в качестве привода используют герметические электродвигатели с экранирующей гильзой. [c.12]

    При проведении платформинга высокого давления катализатор нередко выгружают из реактора после регенерации и перед повторной загрузкой отсеивают мелкие частицы. Это приводит к уменьшению перепада давления. Очень важно, чтобы большого перепада давления не было в первом реакторе, поскольку это может нарушить режим работы всей системы. [c.95]

    Городской газ обычно производят в трубчатых реакторах, которые могут работать при давлениях, близких к атмосферному, и более высоких. В обоих случаях применяют одинаковые катализаторы, но при работе на повышенных давлениях СНГ, используемые в качестве сырья, должны полностью очищаться от серы, так как при наличии даже 0,00005 % серы и давлении 810— 1013 кПа будут быстро и постоянно отравляться многие катализаторы. При низких давлениях можно использовать регенерируемые катализаторы. В таких случаях вполне пригодны СНГ с содержанием 0,001—0,002 % серы. Отложившаяся на рабочих поверхностях установок во время рабочего цикла сера выжигается во время минимальной потребности в топливном газе. [c.241]

    Наиболее сложной по устройству на установках платформинга является аппаратура реакторного блока реакторы, печи, теплообменники, кипятильники, холодильники. Вся аппаратура реакторного блока работает в условиях высокого давления в среде водорода, большинство аппаратов — при высокой температуре. Производительность установок 200—1000 тыс. т/год. [c.256]

    Для непрерывно работающих аппаратов, в которых реакции протекают под давлением в несколько тысяч атмосфер при температурах до 600—700°, внутренний агрев является единственно возможным. К аппаратам, могущим работать при таких тяжелых условиях, относится прямоточный реактор Института высоких давлений [73]. Реактор (рис. 33) предназначен для проведения газовых синтезов под давлением до 5000 ат и температуре до 900°. Корпус аппарата двухслойный из стали марки 30 ХНЗМ, причем наружный цилиндр насажен на внутренний в горячем состоянии. Аппарат имеет снаружи водяную рубашку, которая позволяет поддерживать рабочую температуру корпуса в пределах 30—40°. Затвор аппарата самоуплотняющийся, так как грибовидная головка 10 под действием внутреннего давления сжимает резиновой обтюратор 9, который прижимается к стенкам тем сильнее, чем выше давление в аппарате, и таким образом, обеспечивает надежную герметичность Сквозь головку пропущен конический электроввод для подачи тока к нагревательной спирали. Особенностью электроввода является то, что он скомбинирован вместе с вводом для концов термопары, которые проходят в фарфоровой соломке по центру электроввода и уплотняются [c.81]

    Продукты реакции выводятся через верх реактора жидкой фазы и поступают в так называемый горячий сепаратор, где из них выделяются оставшиеся твердые вещества. Горячий сепаратор лишь частично заполнен маслом и работает при температуре 360—370°. Несмотря на высокое давление вследствие избыточного количества водорода, эначи-тельная часть всех углеводородов испаряется, а твердые вещества осаждаются в виде шлама, который выводится из системы (дросселирование). Уровень жидкой фазы в горячем сепараторе поддерживается автоматически. Углеводородные пары из горячего сепаратора вместе с водородом отводятся через теплообменник во второй сепаратор и далее через холодильник в так называемый холодный или продуктовый се- [c.36]

    Как было установлено, участо1К гидрогенизации производства первичных, жирных спиртов был остановлен для ремонта насосов высокого давления. Чтобы предотвратить оседание катализатора в реакторах, осуществляли циркуляцию водорода при помощи компрессора в системе поддерживали давление-1,8—30 МПа (175—300 кгс/см ). Комирессоры, предназначенные для подачи свежего водорода, не работали всасывающая система трубопроводов компрессора вместе с каплеотделителем находилась под рабочи.м давлением 3 МПа (30 кгс/см ). В системе была обнаружена утечка циркулирующего водорода через фланцевое соединение каплеотделителя. После сброса давления в капле-отделителе до атмосферного старую прокладку заменили новой. Перед установкой новой прокладки не была проведена зачистка уплотняющей поверхности фланцев (что подтвердилось В1Последс-твии наличием остатков старой проклад- [c.336]

    Кроме указанных случаев (аварийного порядка), выключение реактора может быть вызвано и рядом других причин. Некоторые из этих причин связаны неносредственно с работой самого реактора (например, высоким содержанием кокса на катализаторе, выходящем из реактора, повышенным давлением в нем). Другими причинами выключения могут быть 1ювышенное содержание кокса на регенерированном катализаторе, прекращение подачи воды в змеевики регенератора или их разрыв, прогар трубы в нечи, слишком сальное разрушение катализатора или нарушение его циркуляции и длительная (более 10 мин.) посадка дозеров. Во всех этих случаях реактор выключается обычным порядком (см. 3). [c.151]

    На одной из установок модели IV (в Детрехане) регенератор эксплуатируется под несколько более высоким давлением, чем реактор [191]. Показатели работы этой установки следующие. [c.268]

    Рассмотренные конструкции реакторов с неподвижным слоем предназначены для работы при низких и средних давлениях. Типичным примером реактора высокого давления (до 1000 ат) может служить аппарат конструкции laude, показанный на рис. IV-24, В стальном толстостенном корпусе находится внутреннаяя камера, заполненная катализатором, и система охлаждения слоя с одновременным охлаждением газа. Холодный газ поступает в нижнюю часть реактора и проходит по кольцевому зазору между внутренней и наружной оболочками, предохраняя последнюю от перегрева. [c.333]

    Для высоких давлений весьма удобны реакторы с внутренним контуром циркуляции и магнитным приводом. Один из конструктивных вариантов такого реактора описан в работе [18]. Реактор (рис. Х.9) представляет собою автоклав, внутри которого установлен диффузор для направления потока газа с вмонтированной для зерен катализатора сеткой. Над диффузором расположены крылья-отра-жатели потока. В нижней части реактора расположен ротор, на котором укреплено колесо турбинки, прокачивающей газ через диффузор. Статор, представляюпщй собою катушку с вращающимся магнитным полем, надет на внешнюю сторону выступающей вниз гильзы автоклава, где расположен ротор. Конструкция испытана в работе при 500° С и 300 ат. Эта конструкция отличается компактностью, отнбсительной простотой, надежностью. К недостаткам этой конструкции можно отнести большой горячий объем, отсутствие контроля циркуляции газов, невозможность вывода продуктов реакции из циркуляционного цикла. [c.413]

    Регенерированный и восстановленный катализатор поступает в верхнюю часть первого реактора и проходит последовательно через все реакторы. Закоксованный катализатор освобождают в сепарационных устройствах от газа и паров продуктов и регенерируют в среде циркулирующего кислородсодержащего газа, а затем оксихлорируют, сушат и восстанавливают водородом. Единовременно регенерируются около 5% общей загрузки катализатора. Подобные установки могут сооружаться в два этапа сначала монтируют обычную установку риформинг с реакторами, внутренняя конструкция которых приспособлена для движения катализатора, на втором этапе - систему регенерации катализатора. При работе со стационарным слоем катализатора поддерживают более высокие давление и кратность циркуляции, после монтажа системы регенерации давление снижают. [c.161]

    Отрегенерированный и восстановленный катализатор периодически загружается в реактор / ступени и затем последовательно проходит все реакторы. Транспорт между реакторами осуществляется ВСГ. Из последнего реактора катализатор поступаете бункер-накопитель, где отделяется от пневмоагента. Из бункера-накопителя катализатор периодически ссыпают в регенератор, где в неподвижном слое проводится окислительная регенерация и иные операции по подготовке катализатора к работе в цикле реакции. Единовременно регенерируется 5% общей загрузки катализатора. Система циркуляции катализатора использована Французским институтом нефти в процессе риформинга, а также при осуществлении процесса аро майзинг. Подобные установки могут сооружаться в два этапа [256] сначала монтируют обычную установку риформинга с реакторами, внутренняя конструкщгя которых приспособлена для движения катализатора, на втором этапе монтируют систему регенерации катализатора. При работе со стационарным слоем катализатора поддерживают более высокое давление и более высокую кратность циркуляции, после монтажа- системы регенерации давление снижают. [c.141]

    Реактор, состояхций из гомогенной активной зоны, заключенной в оболочку высокого давления, работает в стационарном состоянии. Этот реактор анализируется на основе следующей модели 1) активная зона представляет собой гомогенную сферу радиусом Я 2) отражающие свойства оболочки высокого давления могут быть описаны соотношением [c.399]

    Высота отдельного реактора высокого давления редко превышает 18—20 м, поэтому реакционный узел в этом случае представлял бы собой 15 последовательно соединенных колонн, подобно схеме на заводе в г. Хёхсте. Целесообразность реализации такой схемы для крупнотоннажного производства глицерина и гликолей весьма сомнительна к тому же в системе из 15 реакторов общей высотой 276 м и холодильника не меньщей длины практически невозможно осуществить эффективную циркуляцию водорода, так как современные циркуляционные компрессоры работают при перепаде давлений всего 2,5—3 МПа [79]. [c.139]

    Для определения рассматриваемых параметров при высоком давлении используются реакторы, конструкции которых описаны в работе [4]. Оценку активности катализаторов для жидкофазных реакций можно проводить в аппаратах (автоклавах) с внутренним контуром циркуляции типа автоклава Вишневского [5] либо в ынкроавтоклавах с возвратно-поступательной мешалкой [2]. При этом для газожидкостных или жидкостных систем следует учитывать влияние фазовых равновесий и межфазовой диффузии [6]. [c.362]

    Автоклавы Вишневского и микроавтоклавы представляют собою жидкостные бессальниксвые реакторы высокого давления с внешним магнитным приводом. В первых из них создается вращающее магнитное поле, приводящее в движение установленный внутри автоклава винтовой циркуляционный насос, во-вторых устанавливается дисковая возвратно-поступательная мешалка, приводимая в движение внешним соленоидом. Расчет активности катализатора при работе с такими аппаратами проводится аналогично расчету для статических циркуляционных установок. [c.363]

    Продукт с первой ступени, объединившись с рецир-кулятом из колонны 10 и водородом (свежим и рециркулирующим), после подогрева поступает также нисходящим потоком в реакторы второй ступени 6. Обычно степень превращения рабочего сырья за проход составляет около 60%. Для поддержания заданной степени превращения температуру процесса в течение рабочего цикла понемногу повышают. После теплообменника и холодильника продукт проходит в газосепаратор высокого давления второй ступени 3. Газовую фазу, выходящую из этого сепаратора, компримируют и возвращают в процесс. Жидкость направляют в сепаратор низкого давления 8, где из нее дополнительно отделяют углеводородный газ. Часть этого газа используют для продувки гидрогенизата первой ступени процесса, находящегося в колонне 5. Жидкую фазу из сепаратора низкого давления охлаждают и направляют в стабилизационную колонну 9. Стабилизированный продукт ректифицируют в бензиновой колонне 10. Легкий бензин уходит с верха колонны, тяжелый бензин выводится в качестве бокового погона. Остаток колонны 10 подвергается рециркуляции до полной переработки, если установка работает по бензиновому варианту. При получении реактивного и дизельного топлива соответствующие фракции выводят как боковые погоны, а остаток из колонны идет на повторный гидрокрекинг или же на каталитический крекинг. Боковые погоны перед выводом с установки проходят отпарные секции. [c.268]

    Проверяют так/Ке исправность приборов контроля и автоматики и электрооборудования. Устанавливают термопары в реакторе и подогревателе газа. Включают подачу воды в холодильник, в мерник заливают по весу сырье, включают сырьевой насос и регулируют заданную скорость подачи через отводной вентиль насоса. По установлении во всех аппаратах рабочего давления включают циркуляционный компрессор и устанавливают заданную кратность циркуляции водорода. Если предусмотрена работа без циркуляции водорода, то водород из баллона после подогревателя подают в реактор и затем — в газосепаратор высокого давления. В этом случае требуемое для поддержания заданного давления колнчество водорода спускают в атмосферу через вентиль после сепаратора и систему сероочистки ] ентиль на нагнетательной литш циркуляционного компрессора должен быть закрыт. [c.169]

    Реакторы типа РМЦ, разрабатываемые ЛенНИИхиммашем в последнее время [12], в отличие от аппарата, изображенного на рис. 5, имеют нижний привод (рис. 65). Такое расположение привода позволяет уменьшить консоль вала винтовой мешалки, упростить монтаж и обслуживание, а также вести процесс при сравнительно низком коэффициенте заполнения реактора жидкостью, что особенно важно при большом газосодержании системы (фрЯй 20%). Герметическое исполнение привода с экранированным электродвигателем 1 облегчает работу аппарата при высоких давлениях и гарантирует от попадания в него посторонних примесей. [c.121]

    На рис. 76 представлена схема однопоточной установки Л-24-9-РТ. Оборудование обеспечивает работу установки на режимах гидроочистки и деароматизации. В последнем случае используют специальный катализатор и осуществляют более жесткий режим по сравнению с режимом гидроочистки. Сырье / смешивается с циркуляционным и водородсодержащим газом. Газосырьевая смесь нагревается сначала в теплообменниках 5 горячим потоком газопродуктовой смеси, затем в трубчатой печи 1 до температуры реакции и направляется в реактор 2. Газопродуктовая смесь охлаждается в теплообменниках 3, воздушном холодильнике 4, доохлаждается в водяном холодильнике 5 и поступает в сепаратор высокого давления 6. Выделившийся циркуляционный газ очищается от сероводорода раствором МЭА и подается в линик> всасывания циркуляционного компрессора. Для поддержания концентрации водорода в циркуляционном газе не менее 70—75% (об.) Б линию всасывания компрессора постоянно подается свежий водородсодержащий газ. Часть циркуляционного газа отдувается в общезаводскую сеть. [c.237]

    В водяных реакторах высокого давления атомных электростанций трубы теплообменников изготавливают в основном из отожженного инконеля 600. Теплоноситель реактора поступает в трубы при 315 С и выходит при температуре на 30—35 °С ниже. Вода, контактирующая с наружной поверхностью труб, проходит подготовку дистилляцией (минимум растворенных солей и кислорода, слабая щелочность создается с помощью NH3). Утоньшение и межкристаллитное КРН труб наблюдается на входных участках вблизи трубной доски в щелях и местах отложения шлама [И ]. Анализ смывов этих отложений показал, что они имеют щелочную реакцию и содержат большое количество натрия. На основании этих результатов для ускоренных испытаний на стойкость к КРН в условиях работы паровых установок сплав помещали в горячие растворы NaOH (290—365 °С). Выяснилось, что термическая обработка инконеля 600 при 650 °С в течение 4 ч или при 700 С в течение 16 ч и более значительно повышает его стойкость к КРН в растворах NaOH [9, 12, 13]. Попутно дости- [c.364]

    Режим работы реактора подбирают с учетом вида очищаемого сырья, требуемой степени его очистки и активности катализатора. Например, процесс гидрообессеривания вакуумных газойлей (температура начала кипения 340—360 °С, конца кипения 500—530 °С) проводят при более высоком давлении и меньшей объемной скорости, чем процесс обессеривания дистиллятов дизельного топли- [c.284]


Смотреть страницы где упоминается термин Реакторы, работающие под высоким давлением: [c.131]    [c.212]    [c.73]    [c.412]    [c.42]    [c.300]    [c.301]    [c.193]    [c.100]    [c.234]    [c.122]    [c.8]    [c.557]   
Смотреть главы в:

Технологическое оборудование химических и нефтегазоперерабатывающих заводов -> Реакторы, работающие под высоким давлением




ПОИСК





Смотрите так же термины и статьи:

Давление высокое, работа

Реактор работы

Реакторы давлением



© 2025 chem21.info Реклама на сайте