Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тема 17. Кремний

    За последние несколько десятков лет благодаря рентгеноструктурным исследованиям в корне изменились представления в одном из наиболее сложных по химическому составу классов неорганических соединений — кислородных соединений кремния, называемых силикатами. Так как силикаты в большинстве своем нерастворимы в воде, то исследование их строения химическими методами оказалось чрезвычайно затруднительным и большей частью приводило просто к неверным результатам. А между тем кремний играет важную роль в неорганическом мире, подобно тому как углерод в органическом. Большинство горных пород, составляющих земную кору, состоит из силикатных минералов. В 95% всех минералов кремний—самая важная элементарная составная часть. Силикаты имеют и большое промышленное значение вся промышленность строительных материалов целиком базируется на них. Для объяснения их свойств было предложено большое количество предполагаемых структурных формул. Однако, как показали современные исследования, все эти формулы оказались неверными. Важность исследования строения этого класса соединений была настолько очевидна, что первые работы по установлению их структур были предприняты одним из основоположников рентгеноструктурного анализа У. Л. Брэггом, положившим начало кристаллохимии силикатов. Но только в последние годы, в основном, благодаря работам советских ученых во главе с Н. В. Беловым, были окончательно выяснены закономерности строения силикатов. [c.99]


    Последующие десятилетия были не столь богаты открытиями, но тем не менее число элементов продолжало расти. Так, Берцелиус открыл еще четыре элемента селен, кремний, цирконий и торий (рис. 12). Луи Никола Воклен в 1797 г. открыл бериллий. [c.92]

    Активным компонентом катализатора может быть не металл, а окисел, сульфид или другое металлосодержащее соединение. Тем не менее и в этом случае в целях единообразия в наименовании катализатора упоминается только металл. Например, кремний-алюминиевый (тривиальное наименование — алюмосиликатный ), хромовый (вместо — окисно хромовый ). [c.12]

    В то же время имеются данные о возможности применения никелевого катализатора на алюмосиликатном носителе (см. табл. 30, № 20). Содержание окиси кремния в таком катализаторе значительно превышает указанную норму. Из опыта крекирования нефтепродуктов известно, что алюмосиликатный катализатор проявляет большую активность при расщеплении углеводородов, чем окись кремния. Тем не менее такой катализатор стабильно работал более четырех месяцев при конверсии бензина, содержащего менее 0,0001 % серы (по другим данным переработка бензина с таким малым содержанием серы сопровождается зауглероживанием катализатора). [c.48]

    Такое большое различие между величинами, выражающими содержание водорода в процентах от общего числа атомов н в процентах по массе, объясняется тем, что атомы водорода намного легче атомов других элементов, в частности, наиболее распространенных в земной коре кислорода и кремния. [c.342]

    Кристаллы неметаллических элементов с каркасной структурой, подобные углероду или кремнию, обладают свойствами диэлектриков (изоляторов), т.е. не проводят электрический ток. Применение теории молекулярных орбиталей к обсуждению химической связи в неметаллических каркасных кристаллах сталкивается со значительными трудностями. Достаточно сказать, что в ковалентных каркасных кристаллах обычно удается вести подсчет валентных электронов вокруг каждого атома, подобно тому как это делается при составлении льюисовых структур, и оказывается, что при этом выполняется правило октета. Это объясняется тем, что атомы в неметаллических каркасных кристаллах обычно имеют по крайней мере столько валентных электронов, сколько у них есть валентных орбиталей. Следовательно, в таких кристаллах предпочтительны низкие координационные числа, и между каждым атомом и его ближайшими соседями могут образовываться простые двухэлектронные связи. Низкие координационные числа являются причиной того, что потенциальная энергия электрона внутри таких кристаллов не постоянна она значительно понижается в межъядерных областях, и поэтому электроны не могут свободно перемещаться по кристаллу, подобно тому как это происходит в металлах. [c.629]


    Различие в способности к окислению соединений углерода и кремния частично обусловлено тем, что связь Si—Si менее прочна, чем связь [c.278]

    Таким образом, углерод обладает удачным сочетанием свойств его небольшие атомы с таким же числом валентных электронов, как и число валентных орбиталей, образуют друг с другом связь настолько же прочную, как и связь с кислородом. Авторы научно-фантастических романов долгое время описывали воображаемую, совсем непохожую на обычную, внеземную жизнь, основанную на неводной химии и элементе, отличном от углерода. Их излюбленным элементом был кремний, и они заселяли Марс чудовищами, тела которых подобны силиконовой замазке, а пища состоит из камней. Но чем больше становится известно о роли соединений углерода в земных живых организмах, тем труднее представить себе, что соединения кремния способны выполнять даже отдаленно напоминающую роль. Углерод обладает уникальными свойствами, которые не могут дублироваться ни одним другим известным элементом. [c.282]

    Выберите для системного описания, т. е. описания, включающего все доступные вам знания, расположенные в определенной последовательности, одну из следующих тем водород, кислород, азот, углерод, кремний, вода, аммиак, диоксид углерода, хлорид натрия, карбонат кальция. [c.163]

    Решение. На основании кривых охлаждения (рис. 30,д) стро им диаграмму плавкости в координатах состав — температура плавлении (рис. 30,6). При охлаждении чистого кремния (кривая охлаждении I) наблюдается температурная остановка при 1693 К. Эта тем пературная остановка связана с выделением скрытой теплоты кристаллизации кремния при его температуре плавления. Эту температуру откладываем на оси ординат (рис. 30,6), отвечающей чистому кремнию. [c.275]

    Данный процесс интересен тем, что идут сразу две реакции бутилмеркаптан не только дегидрируется, но и циклизуется с образованием тиофена. Процесс ведут при температурах 350— 400 °С в присутствии сероводорода. Катализатором служит дисульфид молибдена или вольфрама, нанесенный на оксид алюминия или кремния. Используется трубчатый реактор, показанный на рис. 2. [c.160]

    Для достижения высокой активности первостепенное значение имеют два фактора общая внутренняя поверхность катализатора и внешняя поверхность экструдата. Последний фактор указывает, что реакция протекает в диффузионной области. Чем меньше размер экструдата, тем выше его активность. Но при этом растет гидравлическое сопротивление слоя катализатора, а на повышение давления газа для преодоления этого сопротивления требуются дополнительные затраты. Поэтому нужно учитывать влияние размера и формы экструдата, а также найти компромисс между величинами внутренней и внешней поверхности. Внутренняя поверхность в основном регулируется за счет изменения количества добавляемого оксида кремния. Влияние количества оксида кремния на удельную поверхность катализаторов видно из табл. 1. Хотя общая поверхность катализатора постоянно растет с увеличением содержания 5102, поверхность металлического железа, измеренная по хемосорбции СО после восстановления катализатора, уменьшается, начиная с определенного содержания 5102. [c.172]

    Включения MnS имеют более низкую электропроводимость, чем FeS, к тому же марганец снижает растворимость серы в твердом железе, восстанавливая тем самым анодную поляризацию железа, пониженную благодаря присутствию серы [41]. Присутствие кремния слегка повышает скорость коррозии в разбавленной соляной кислоте (рис. 6.16). [c.126]

    Легирование железа и никеля кремнием обеспечивает коррозионную стойкость сплавов в различных средах, особенно в сильных неокислительных кислотах. Эти сплавы хрупкие, поэтому они могут разрушаться при резких перепадах температуры и при ударе. Сплав кремний—никель имеет значительно больший предел прочности и менее склонен к разрушениям. Эти сплавы применяют только в виде литья, и обычно требуется дополнительная шлифовка изделий. Сплав кремний—никель с трудом поддается механической обработке. Твердость этого сплава тем выше, чем быстрее его охлаждают, примерно от 1025 °С. [c.384]

    При сверхвысоком давлении и нагревании ( 1,2 10 Па 1300°С) была получена особая модификация 5102, названная стишовитом. Его плотность на 60% выше плотности кварца. Это объяняется тем, что стишовит имеет структуру типа рутила (см. рис. 70, б), т. е. кремний в нем имеет координационное число 6. Благодаря плотной структуре стишовит еще менее активен, чем кварц. Он устойчив даже к концентрированному раствору плавиковой кислоты. [c.417]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]


    При превращении бутена-1 в цис- и трямс-бутены-2 равновесный состав смеси быстро достигается при 270° над катализатором из окиси кремния, окиси алюминия и окиси магния (Налко № 300) п катализатором иОР 1 типа В. Превращение быстро протекает при температурах до 150° [18]. Температуры, значительно превышающие 270°, вызывают изменение структуры, образование изобутилена и разложение. Аналогичным образом при разложении изобутилового спирта при умеренных тем-ияратурах над чистой окисью алюминия получается чистый изобутил. н, но нри высо1 их температурах образуются все три бутена [37]. [c.104]

    Диорганодихлорсиланы и хлоролигомеры гидролизуют обычно при охлаждении и pH среды от 7 до 11 (чем pH выше, тем больше а в получаемом силоксандиоле), гидриды кремния — в нейтральной среде в присутствии катализаторов, алкоксипроизвод-ные — в нейтральной или слабокислой среде. Хорошие выходы диолов получают при гидролизе ацилоксипроизводных и при нейтрализации растворов силан- и силоксандиолятов щ,елочных металлов слабыми кислотами. Силоксандиолы с а = 200—1000 (жидкие каучуки) получаются полимеризационным методом, так как гидролитические методы не обеспечивают надежного контроля молекулярной массы. [c.467]

    При очень высоких температурах углерод со единяетея с водородом, серой, кремнием, бором и многими металлами уголь вступает в реакции легче, чем графит и тем более алмаз. [c.437]

    Уг л е р о д н с т ы е стали — это сплавы железа с углеродом, причем содержание последнего не превышает 2,14%. Однако в углеродистой стали промышленного пронзводстп.з все1 да имеются примеси миогих элементов. Присутствие одних примесей обусловлено особенностями производства стали например, при раскислении (см. стр. 682) в сталь вводят небольшие количества марганца или кремния, которые частично переходят в шлак в виде оксидов, а частично остаются в стали. Присутствие друп х примесей обусловлено тем, что они содержатся в исходной руде и в малых количествах переходят в чугун, а затем и в сталь. Полностью избавиться от них трудно. Вследствие этого, например, углеродистые стали обычно содержат 0,05—О,Р/о фосфора н серы. [c.685]

    Присадка кремния в аустенитные стали типа 25—20 повышает их сопротивление окислению при высоких температурах до 1150°С и коррозии в атмосфере продуктов сгорания топлива с повышенным содержанием серы и сернистых соединений. В восстановительных средах пиролиза углеводородного сырья эта сталь более устойчива к науглероживанию по сравнению с обычными хромоникелевыми аустенитными сталями. Однако присадка кремния увеличивает склонность стали к образованию в структуре о-фазы. Чем выше содержание кремния в стали типа 25—20, тем быстрее и в большем количестве выделяется а-фаза, особенно при длительном нагреве в интервале умеренно высоких температур. Эта фаза — очень твердая, хрупкая и немагнитная. Она представляет собой интерметаллнческое соединение железа с хромом типа Ре—Сг и образуется из твердого раствора по схеме у——> а-фаза либо непосредственно у —йт-фаза. [c.30]

    Двухфазная структура аустенитно-ферритного шва (в зависимости от концентрации в ней кремния) может быть стойкой или не стойкой к образованию трещин. Если для увеличения содержания кремния в шве ислользуют сталь или проволоку с более высокой концентрацией данного элемента либо применяют электродные покрытия, дополнительно легированные кремнием или ферросилицием, то положительный эффект обеспечен. Если же повышение количества кремния в шве достигается вследствие перехода кремния из флюса или электродного покрытия, которые содержат 5102, то в шве могут возникнуть трещины. Это объясняется тем, что кремний обычно восстанавливается в результате окисления хрома из сварочной ванны. Уменьшение содержания хрома в шве нежелательно, поскольку оно сказывается на стойкости швов к появлению трещин. Кроме того, кремневосстановительный процесс сопровождается возрастанием концентрации оксидов кремния (5102 и 510) в шве, что также ослабляет структуру стали. [c.160]

    Обычно наличие кремния в нефти, связывают с присутствием коллоидных частиц SiOj. Тем ие менее кремний обнаруживается и в тщательно очищенных нефтях. При этом электронно-микроскопическое изучение не выявляет никаких частиц размером более [c.175]

    Рассматриваемые элементы отличаются от углерода (и отчасти от кремния) тем, что для нпх становится характерной sp d -г бpи-дизация, в частности, образование октаэдрических комплексов (в отличне от углерода для кремния известен только [3 Рб] ) примерами таких комплексов являются [Ое(ОН)б] , [5п(ОН)б] , [5пС1б]2-, [РЬС1б]2- [c.382]

    Адсорбенты можно разделить на следующие общие категории бокситы (природные минералы, состоящие в основном из А1зОз) активированная окись алюминия (очищенный боксит) гели (вещества, состоящие из окиси кремния или алюмогеля и получаемые с помощью химических реакций) молекулярные сита (натрийкальциевые силикаты, или цеолиты) углерод (древесный уголь), адсорбционные свойства которого получаются в результате активирования. Все эти вещества, кроме угля, применяются для осушки газа. Активированный уголь используется для извлечения углеводородов из природного гааа и очистки газа от некоторых примесей. Активность угля по воде очень незначительна. Первые четыре класса адсорбентов приведены в порядке возрастания их стоимости, определяемой их свойствами. Чем больше поглотительная активность адсорбента, тем он дороже стоит, хотя пропорциональность здесь и не соблюдается. Окончательный выбор адсорбента должен производиться с учетом стоимости оборудования, срока службы адсорбента, эффективности его применения в данном процессе и т. д. Чрезмерное внимание к одной лишь стоимости может [c.240]

    Перейдем теперь к вопросу о водородной связи. В различных состояниях водородного атома такая способность к присоединению может быть свойственна ему не в одинаковой степени. Наиболее сильной она будет тогда, когда он в наиболее полной степени отдает свой электрон, т. е. прежде всего, когда он находится в состоянии положительного иона Н+, а также, когда он связан с атомом одного из наиболее э 7ектроотрицательных элементов — в первую очередь с атомами фтора и кислорода и в меньшей степени с атомами хлора и азота. Наоборот, в случае неполярной ил11 малополярной связи (с углеродом, кремнием или другими) и тем более в случае связи с менее электроотрицательными элементами— с металлами (гидриды металлов)—этой способности у атома водорода быть не может. [c.82]

    М. X. Карапетьянц показал хорошую применимость этого ме тода сопоставленпя к большому числу веществ в кристаллическом состоянии, включая многие простые вещесра, окислы, сульфиды, галогениды и др. Рис. V, 5 иллюстрирует наблюдаемые соотно шения при сопоставлении температур, отвечающих одинаковым значениям теплоемкостей (Ср) алмаза, кремния, германия и олова (в а-модификации). Здесь в качестве эталонного вещества принят кремний. Для каждого из этих веществ зависимость имеет линейный характер, причем все прямые пересекаются практически в одной точке. Это объясняется тем, что все рассматриваемые вещества обладают кубической решеткой алмаза. Для свинца же, обладающего кубической гранецентрированной решеткой, такая [c.205]

    В Советском Союзе распространены две марки железокремнистых сплавов (кремнистых чугунов), различающиеся содержанием кремния и углерода С15 (0,5—0,8% С, 14,5—157о Si) и С17 (0,3—0,8% С, 16,0—18,0% Si). Чем больше в сплаве кремння, тем меньше должно быть углерода. Оптнму.л])Ное содержание углерода соответствует эвтектическому составу для. данного сплава. Благодаря большому сродству кремния к железу, углерод не дает карбидов железа. Силав С17 применяется в тех случаях, когда требуются отливки с повышенной коррозионной стойкостью. [c.239]

    Из табл. 6 видно, что СгОз восстанавливается монооксидом углерода ири более низких температурах, чем VjOs и М0О3. Аналогично этому ванадиевые и молибденовые катализаторы не могут легко восстанавливаться этиленом ири температуре его полимеризации, поэтому для достижения высокой активности необходимо использовать промотор, служащий восстановителем. Как показано в табл, 6, температура плавления оксида резко возрастает ири переходе от хрома к ванадию и молибдену. Низкая точка плавления СгОз обеспечивает его подвижность по поверхности оксида кремния и тем самым высокую дисперсность. [c.188]

    Очень сильно разрушает кислота стекло, кварц и кремнистые чугуны с образованием летучего фторид 1 кремния. При высоких тем пературах стойки платина, палладий и золото, но и присутстоии кислорода их коррозионная стойкость снижается. [c.853]

    Служащие исходным сырьем для получения как силиконов, так и кремнеуглеводородов (тетраалкил- или алкиларилсила-нов), органогалогенсиланы могут получаться не только магнийорганическим, но и прямым синтезом. Последний получил свое название в связи с тем, что кремнийорганические соединения по этому методу получаются путем воздействия органогалогенидов непосредственно на элементарный кремний, минуя стадию получения галогенида кремния или эфира орто-кремневой кислоты. С точки зрения технологии и экономики производства это дает значительные выгоды, а потому прямой. метод получил значительное распространение в промышленном производстве силиконов. Реакция прямого синтеза, выражаемая в основном уравнением [c.443]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    При изготовлении катализаторов содержание натрия снижают до минимума, так как в его присутствии при высоких температурах в средах, содержащих водяной пар, резко снижается активность и стабильность катализатора. При замене в цеолите одновалентного металла (Na) на двухвалентный и более, например на кальций, рений, церий н др., его структурная характеристика изменяется (увеличивается размер пор) прн этом благодаря наличию на внутренней поверхности кристаллов цеолитов кислотных центров активность катализатора возрастает. Чем больше окнслов кремния и чем меньше окислов алюминия в решетке цеолита, тем больше расстояние между атомами алюминия. Следовательно, валентные связи между атомами алюминия -и других трехвалентных металлов все больше ослабевают, и образуются сильно выраженные диполи. Прн этом активность кислотных центров возрастает. Применяя цеолиты с различными типами решеток и различными катионами металлов, можно регулировать каталитические свойств а цеолитов и получать катализаторы различного назначения. [c.54]

    По существующим условиям в углеродистом материале, используемом в качестве компонента шихты, содержание золы не должно превышать 3 вес. %, а серы 0,5 вес. %. Увеличение доли нефтяного кокса в суммарном количестве восстановителя позволит также существенно снизить содержание золы и тем самым количество примесей в карбиде кремния. Поскольку при производстве карбида кремния наибольшие размеры зерен углеродистых ма-1ериалов в шихте составляют 3—3,5 мм, для этой цели может быть рекомендован кокс, полученный коксованием в кипящем слое, [юсле предварительного обессеривания его до требуемых норм. [c.32]

    При pH ниже 9 коллоидная двуокись кремния превращается в гель. Чем выше концентрация золя, тем плотнее гель и тем меньше поры. Введение поваренной соли также приводит к превращению золя в гель, но в этом случае структура пор более открытая, т.е. поры крупнее. Спирт приводит к образованию геля с открытой системой пор. При низких pH ионы благоприятствуют образованию групп 5Si—О—81ёиз SiOH - групп. [c.357]


Смотреть страницы где упоминается термин Тема 17. Кремний: [c.95]    [c.161]    [c.200]    [c.76]    [c.275]    [c.205]    [c.239]    [c.270]    [c.238]    [c.69]    [c.45]    [c.22]    [c.79]    [c.309]    [c.100]   
Смотреть главы в:

Вопросы, упражнения и задачи по неорганической химии -> Тема 17. Кремний




ПОИСК





Смотрите так же термины и статьи:

Тема 23. Углерод и кремний. Адсорбция. Коллоиды

Хай-Темя



© 2025 chem21.info Реклама на сайте