Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические покрытия металлами

    ЭЛЕКТРОХИМИЧЕСКИЕ ПОКРЫТИЯ МЕТАЛЛАМИ [c.166]

    Металлизация поверхности пластических масс иногда производится путем нанесения на изделия токопроводящего подслоя на основе клея БФ-4 и графита с последующим электрохимическим покрытием металлами в обычных гальванических ваннах [5]. Часто вместо графита применяются металлические порошки из чистой меди или ее сплавов. Обычно их применяют в смеси с лаком и наносят на поверхность образца, как обычную порошкообразную краску, пульверизатором или кистью. Качество таких покрытий получается не всегда удовлетворительным. [c.110]


    Толщина, пористость и твердость полученных покрытий по данному методу не отличаются от серийных электрохимических покрытий металлов. К полученной металлической поверхности на пластмассе легко осуществляется пайка. [c.113]

    Покрытия, создаваемые химической или электрохимической обработкой металла, представляют собой в основном защитные оксидные или солевые пленки. Примерами могут служить оксидирование алюминия (создание на его поверхности стойких оксидных пленок), фосфатирование стальных изделий (создание защитных пленок, состоящих из фосфатов). [c.559]

    В электрохимических производствах химические процессы происходят под действием постоянного электрического тока на раствор или расплав электролита. Электрохимические процессы широко применяются для производства хлора, щелочей, водорода, кислорода, металлов, неорганических окислителей, а также для получения декоративных и защитных покрытий металлов, для рафинирования металлов и др. [c.78]

    Композиционные, или двухфазные, электрохимические покрытия [18] представляют собою осадки металлов, содержащие больщое число включений очень мелких (0,1 —1,0 мкм) частиц минеральных материалов корунда, каолина, карбида кремния, окиси кремния, органических полимеров, боридов, нитридов, окиси алюминия, карбидов хрома, вольфрама, титана и др. Они вводятся в обычные электролиты, применяемые в гальваностегии, и поддерживаются в них во взвешенном состоянии путем перемешивания механическим способом, сжатым воздухом или циркуляцией раствора. [c.353]

    Анодное травление основано на электрохимическом растворении металла и механическом отрывании окислов выделяющимися пузырьками кислорода. Катодное травление происходит за счет электрохимического восстановления и механического отрывания окислов металла бурно выделяющимся водородом. Этот способ травления применяется только для нелегированных сталей, покрытых окалиной. [c.374]

    Источниками постоянного тока при электрохимической обработке металлов служат электродвигатели — генераторы низкого напряжения, рассчитанные на большую силу тока, или полупроводниковые многоамперные выпрямители, состоящие из трансформатора и вентиля, пропускающего электрический ток только в одном направлении электронные, селеновые, германиевые, кремниевые и др. В практике электролитических цехов покрытий применяют индивидуальное питание отдельных ванн и питание одновременно нескольких ванн, включенных параллельно. Регулировать [c.452]


    Качество и свойства электрохимических покрытий определяются не только структурой, но и равномерностью распределения металла по толщине слоя на поверхности покрываемых изделий. Согласно закону Фарадея, толщина с1 электрохимических покрытий зависит от плотности тока I, продолжительности т электролиза и с учетом выхода по току ВТ металла и его электрохимического эквивалента может быть вычислена по формуле  [c.5]

    Латунь с содержанием меди 68—73 % имеет большую прочность сцепления с резиновыми покрытиями, поэтому электро и-мическое латунирование широко используют для улучшения адгезии резины со стальными и алюминиевыми изделиями. При более высоком содержании меди электрохимическое покрытие сплавом медь — цинк применяют для получения биметалла сталь — томпак, оно может использоваться также в качестве подслоя под покрытия другими металлами. [c.59]

    Окислительно-восстановительные реакции имеют большое теоретическое и практическое значение. Эти процессы обусловливают многие явления, имеющие место в химии, биологии и технике. Например, явления окисления — восстановления лежат в основе процессов дыхания и горения, получения металлов из руд, коррозии металлов, электрохимических покрытий и т. д. [c.103]

    Электролиз находит широкое практическое применение. Он позволяет получать чистые металлы, осуществлять декоративные и защитные их покрытия, изготовлять точные металлические копии с рельефных предметов и т. п. Большое значение начинает приобретать направленный электролиз — размерная электрохимическая обработка металлов. Методы электролиза широко применяются также при получении различных продуктов гидроксида натра, пероксидов фтора, хлора, водорода, кислорода и многих других. [c.265]

    С помощью приведенных соотношений решают электрохимические задачи, имеющие большое практическое значение, в таких разделах, как химические источники электрической энергии, защита металлов от электрохимической коррозии, гальванические покрытия, электрохимическая очистка воды, электрохимический синтез, электрохимическая обработка металлов. [c.156]

    ТО ЦИНК будет вытеснять железо из раствора. Это означает, что пока есть металлический цинк, находящееся с ним в контакте железо растворяться, т. е. корродировать, не будет. Вид защитного металлического покрытия следует выбирать с точным учетом условий, в которых будет находиться предохраняемый покрытием металл. Из приведенного примера видно, что цинковое покрытие железа — хорошая защита против электрохимической коррозии. Другое распространенное покрытие железа—оловянное (лужение) — в тех же условиях будет способствовать усилению коррозии железа, действительно  [c.162]

    С помощью электролиза наносят металлические за щитные и декоративные покрытия из хрома, никеля, цинка, кадмия, меди и других металлов. Эта область применения электролиза называется гальваностегией. Электролиз применяют также для изготовления деталей требуемой формы (электрохимическая обработка металлов). [c.215]

    Эти данные показывают, что время диффузии воды через пленку незначительно по сравнению со сроком службы полимерных покрытий, поэтому решающая роль принадлежит не экранирующей функции пленки, а электрохимическому поведению металла под покрытием. [c.129]

    В различных отраслях промышленности находят широкое применение защитные гальванические покрытия металлами и сплавами, которые обладают повышенной коррозионной стойкостью, твердостью, декоративными качествами, жаропрочными свойствами и др. Для обоснованного выбора оптимальных условий получения функциональных покрытий с заданными свойствами большое значение имеет изучение закономерностей, устанавливающих связь свойств гальванических покрытий с ионным составом электролита, механизмом и кинетикой электрохимических процессов, параметрами стадии нанесения электрохимических покрытий на металлы и др. Большое значение имеет разработка стабильных, нетоксичных и производительных электролитов. [c.22]

    Поскольку качество и свойства электрохимических покрытий наряду с прочими факторами определяются и толщиной покрытия, вопрос о распределении металла на поверхности катода имеет большое практическое значение. Особенно неравномерно осаждается металл на изделиях сложной конфигурации. Это отрицательно сказывается на антикоррозионных, механических, электрических и других свойствах покрытия, поскольку на отдельных участках его толщина может быть меньше минимально допустимой. При некоторых обстоятельствах, чаще в глубине пустотелых деталей (в трубах, глубоких отверстиях и т. д.), покрытие вообще отсутствует. [c.259]

    Композиционные (комбинированные) электрохимические покрытия (КЭП) представляют собой осадки металла, содержащие включения большого числа мелких инертных частиц, так называемой второй фазы. В зависимости от назначения КЭП в качестве второй фазы используют различные вещества и соединения. Комбинированные покрытия позволяют улучшать поверхностные свойства изделий путем совмещения свойств гальванопокрытий со свойствами других материалов. Так, в технике используют износостойкие и твердые композиционные покрытия никель —алмаз никель — карборунд, никель — корунд, само-смазывающиеся покрытия с пониженным коэффициентом трения, никель — сульфид молибдена, медь — графит, термостойкие покрытия никель —карбид кремния или вольфрама, антикоррозионные покрытия и др. [c.271]


    Наибольшее практическое значение имеют электрохимические покрытия никелем и железом и в меньшей степени кобальтом. Никелирование — один из самых старых и распространенных видов защитно-декоративных покрытий, одновременно выполняющего функцию защиты от коррозии и декоративной отделки. Никелирование применяется как самостоятельное покрытие для меди и ее сплавов, а также в составе многослойных покрытий медь — никель — хром для стали. Никелирование относится к катодным покрытиям, так как никель более благородный металл, чем железо, и в атмосферных условиях и некоторых агрессивных средах может надежно защищать от коррозии только тогда, когда покрытие имеет достаточную толщину (40— 50 мкм) и беспористое. Поэтому с целью снижения пористости и экономии никеля его осаждают обычно на подслой меди толщиной 25—30 мкм. Для повышения защитной способности рекомендуется также способ никелирования в 2—3 слоя, основанный на различной электрохимической активности слоев никеля, содержащих и не содержащих серу (см. стр. 273). [c.306]

    Установлено, что с помощью технологических мероприятий в значительной мере можно управлять электрохимическим поведением металла у сварных соединений, выполненных автоматической сваркой (рис. 107, кривая 2), меньший градиент потенциалов в зоне шва, чем у образцов ручной дуговой сварки, выполненной электродами с фтористо-кальциевым покрытием (кривая /), а у сварных соединений, выполненных электродами с рутиловым покрытием, обнаружено иное электрохимическое поведение (кривая 7) экстремальное значение разности потенциалов здесь также соответствует зоне шва, однако потенциал металла шва у них является более благородным, чем у основного металла. [c.239]

    Косвенные лабораторные испытания проводят для определения возможной коррозионной стойкости металлов при изменении некоторых их физических или химических свойств, если известна связь между этими свойствами и коррозионной стойкостью металлов в природных или эксплуатационных условиях. Например, известны экспериментальные данные о корреляции между толщиной, пористостью и стойкостью электрохимических покрытий к атмосферным явлениям. Поэтому нецелесообразно проводить длительные коррозионные испытания. Имея данные по накопленным за длительное время испытаниям, достаточно определить толщину и пористость покрытий, и если покрытие не отвечает предъявляемым требованиям, можно считать его непригодным. К этой группе можно отнести и испытания, которые проводят в стандартных условиях, и по полученным результатам судить о реальных коррозионных процессах. Например для оценки склонности металла к межкристаллитной коррозии проводят испытания, которые невозможно воспроизвести в условиях эксплуатации. [c.91]

    Кулонометрический метод. Принцип этого электрохимического метода определения толщины, заключающийся в анодном растворении металла на известной площади с измерением электрического заряда, потребляемого в данном процессе, противоположен принципу электроосаждения. С учетом площади, на которой происходит электролиз, и электрохимического эквивалента металла по закону Фарадея делается простой расчет количество электричества в кулонах, расходуемое в процессе, переводится в толщину растворенного покрытия. Для получения точных результатов расчета необходимо, чтобы растворение происходило с известным постоянным выходом по току на аноде (желательно 100%-ным). Выбранный электролит должен устранить возможность возникновения эффектов пассивации или избыточной поляризации и, кроме того, не оказывать химического воздействия на покрытие при отсутствии электрического тока. Разумеется, важно точно определить площадь анода. [c.144]

    Надежным средством защиты металлов от коррозии являются лакокрасочные покрытия. Коррозия под лакокрасочными покрытиями, электрохимическая по своей природе, зависит от природы и концентрации электролитов и паров кислот в воздухе, поэтому к ней применимы все основные законы электрохимического разрушения металлов. [c.33]

    До настоящего времени в промышленности применяется анодное электроосаждение, однако интенсивно начинает внедряться катодное электроосаждение. При этом защитные свойства возрастают в 1,5—2 раза при меньшей толщине покрытия за счет отсутствия процессов электрохимического растворения металла на катоде отсутствия или уменьшения содержания в осажденной пленке карбоксильных групп, снижающих водо- [c.86]

    Технология электрохимического окисления алюминия похожа на технологию электрохимического покрытия металлами (см. гл. VIII). [c.396]

    На увеличении смачиваемости при поляризации основаны также технические способы катодного и анодного обезжиривания металлов, широко применяемые в металлообрабатывающей промышленности. Обезжирпвание металлов производится прп подготовке поверхности металла к процессам электрохимического покрытия металлами и к некоторым процессам обработки поверхности металлов. Катодному обезжириванию способствует попадание пузырьков водорода на границу между слоем масла и раствором гидростатическое поднятие пузырька вместе с некоторым количеством масла, к которому он прилип, приводит к дополнительному очищению поверхности металла [18]. Можно показать, что в случае неполного смачивания, т. е. нри существовании конечного краевого угла, устойчивыми являются либо относительно толстые слои жидкости между твердой и газообразной фазой, либо очень тонкий слой молекулярных размеров. Слои промежуточной толщины неустойчивы. Прп приближении пузырька к поверхности твердого тела, находящейся под раствором, слой раствора между поверхностью и пузырьком сначала постепенно утоньшается, пока не приходит в неустойчивое состояние после этого слой разрывается, что и приводит к прилипанию иузырька. Существенное значение имеет, таким образом, кинетика процесса прилипания. Наблюдения над прилипанием пузырьков к поверхности ртути показали, что чем меньше концентрация электролита и чем больше заряд поверхности, тем медленнее прилипает пузырек [21]. Стабилизирующее действие заряда двойного слоя на пленку воды вызвано в основном электрическим отталкиванием ионов двойного слоя от свободной поверхности воды, препятствующим ее утопьшепию. При больших зарядах границы электрод — раствор толщина равновесной пленки раствора между электродом и пузырьком может достигать нескольких сотен ангстрем [22]. [c.23]

    Гальванопластика, т. е. покрытие поверхности изделий теми или другими металлами, является первым электрохимическим и, в частности, электрометаллургическим производством. Открытие гальванопластики (1836) — заслуга Б. С. Якоби. В последующем электролитические покрытия металлами получили очень широкое распространение. Электролитическое никелирование, хромирование, лужение (покрытие оловом), кадмирование, серебрение, меднение и др. применяются для различных целей. Хромирование применяется для повышения коррозионной стойкости черных металлов, а также для увеличения твердости поверхностного слоя и сопротивления истиранию. Никелирование применяется обычно для изменения внешнего вида изделия и т. д. Все эти процессы осу-ществ 1яются методами в общем аналогичными применяемому при рафинировании мёди. Покрываемое изделие служит катодом, покрывающий металл — анодом. Качество покрытия зависит от состава электролитической ванны, плотности тока и пр. [c.447]

    Механизм электрохимической зап1пты металлов от коррозип позволяет рассмотреть течепие коррозионных процессов в случаях механического повреждеиня металлических защитных покрытий. Здесь возможны два случая  [c.244]

    Электрохимическое осаждение некоторых металлов платиновой группы нашло применение в гальванотехнике. Практически используется покрытие металлов платиной, палладием и родием. Платину осаждают в виде блестяшего слоя толш,иной от [c.260]

    Для целей повышения поверхностноГ) прочности изделий применяют композиционные электрохимические покрытия (КЭП) на основе никеля с включениями частиц второй фазы, роль которой выполняют оксиды, карбиды, нитриды и другие соединения металлов, например КЭП никель-карбид кремния с размером частиц второй фазы 3—10 мкм. Такие покрытия имеют повышенные значения микротвердости, предела прочности, износостойкости, а также защитной способности. [c.39]

    Из-за устойчивости к перепаду температур и высокой температуры размягчения твердый фарфор применяют главным образом для изготовления тиглей, чашек для выпаривания и трубок. Фарфор, покрытый глазурью, выдерживает температуру 1200 °С, неглазурованный фарфор — почти 1400 °С. Большие толстостенные фарфоровые сосуды нельзя нагревать ни на открытом пламени (даже на асбестовой сетке с проволочным каркасом), ни на песчаной бане. Фарфор мало устойчив к действию шелочных вешеств и сильных восстановителей, например электрохимически активных металлов. Для работы при повышенных температурах применяют некоторые специальные сорта фарфора с высоким содержанием АЬОз (массу Пифагора, К-массу, пиродур и др.). Надписи на фарфоровом тигле можно выцарапать железной иглой на наружной поверхности дна. [c.478]

    Поскольку ртуть легко растворяет другие металлы с образованием амальгам, ее необходимо очистить от примесей металлов. Ют грязи и механических примесей ртуть очищают обычным фильтрованием через гладкий сухой фильтр, в дне которого сделано маленькое отверстие. Все металльг (кроме благородных) можно удалить из ртути, окисляя их воздухом или HNO3. С этой целью ртуть помещают в склянку для отсасывания, размер которой выбирают таким, чтобы дно было покрыто слоем ртути толщиной 1—2 см. Затем приливают 3 М раствор HNO3 и закрывают склянку плотно прилегающей к ее горлу просверленной резиновой пробкой, через отверстие которой проходит стеклянная трубка, доходящая до дна склянки. Под--соединяют отвод к водоструйному насосу и через ртуть пропускают поток воздуха, приводящий ее в движение. В азотной кислоте наряду с электрохимически активными металлами растворяется также небольшое количество ртути, однако все металлы, стоящие в ряду напряжений перед ртутью, первыми растворяются в кислоте. Через 24 ч раствор сливают, промывают ртуть водой, сушат листами фильтровальной бумаги и затем фильтруют, как описано выше. Полученная таким способом ртуть по чистоте пригодна для очень многих целей. [c.586]

    Электрохимический метод отличается от термохимических, пирометаллургичёских и других способов переработки сырья тем, что изменение свойств вещества достигается с помощью электрического тока. Получение тяжелых цветных, легких, благородных и редких металлов, гальванических защитных, декоративных покрытий, обладающих заданными механическими и антикоррозионными свойствами, изыскание новых и совершенствование имеющихся химических источников электрической энергии, производство разнообразных продуктов окисления и восстановления, размерная электрохимическая обработка металлов и сплавов, хемотроника — вот далеко не полный перечень областей производства, использующих электрохимический метод. [c.14]

    Покрытия алюминия и его сплавов. Алюминий электрохимически покрывают металлами и сплавами. Для придания декоративного вида и увеличения поверхностной твердости его хромируют с целью повышения прочности сцепления резины с алюминием — латунируют, меднят, серебрят, для уменьшения переходного электрического сопротивления или улучшения паяе-мости — оловянируют. Однако непосредственное нанесение гальванических осадков из стандартных электролитов связано с большими трудност ями в связи < наличием плотной пленки оксидов. Присутствие пленки оксидов ухудшает сцепление осадков. Кроме того, алюминий может разрушаться во многих электролитах, особенно вследствие коррозии при контакте с металлом, обладающим более электроположительным потенциалом. Перед нанесением покрытия поверхность алюминия должна быть очищена путем травления или активирования. Затем наносят промежуточный слой, обладающий хорошим сцеплением. [c.332]

    Наиболее широко распространенный вид электрохимической защиты металла—катодная поляризация. Для ряда металлических сооружений и сред нормированы пределы, в которых должна находиться защитная величина катодного потенциала металлической поверхности. Выбор минимального потенциала защиты ограничен нежелательностью выделения водорода, разрушающего противокоррозионное покрытие и охрупчивающеТо металл (последнее не учитывается действующими правилами защиты подземных сооружений). Поэтому в нормальном режиме катодной защиты превалирует катодная реакция ионизации кислорода. [c.208]


Смотреть страницы где упоминается термин Электрохимические покрытия металлами: [c.36]    [c.317]    [c.88]    [c.368]    [c.185]    [c.29]    [c.28]    [c.104]   
Смотреть главы в:

Коррозия и основы гальваностегии -> Электрохимические покрытия металлами




ПОИСК





Смотрите так же термины и статьи:

Покрытия электрохимические

Электрохимический ряд металлов



© 2025 chem21.info Реклама на сайте