Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические и химические покрытия металлами

    Способы металлизации диэлектриком можно разделить на четыре вида механические, физические, химические и -)лектро-химические. Перечисленные способы применяют как самостоятельно, так и в различных сочетаниях. Чаще всего используют химико-гальваническую металлизацию, в которой на поверхность диэлектриков наносят металл сначала путем химического восстановления из растворов, а затем электрохимически. Большой интерес представляют новые электрохимические методы нанесения металлических покрытий непосредственно на диэлектрики, минуя стадию химического восстановления металлов. [c.96]


    Для получения металлических защитных покрытий применяются различные способы электрохимический (гальванические покрытия), погружение в расплавленный металл, металлизация, термодиффузионный и химический (см. 52). Из расплава получают покрытие цинка (горячее цинкование) и олова (горячее лужение). [c.219]

    В процессе электрохимического гальванического покрытия электробатареи или другие источники тока поставляют электроны, необходимые для перевода ионов металлов в атомы, которые образуют слой металла на поверхности предмета. Гальванопокрытие производят для защиты поверхности от механических повреждений или для придания ей красивого вида. Покрытия дешевых украшений тонким слоем золота делает их более привлекательными. Хромовое покрытие бамперов автомобилей защищает их и улучшает внешний вид. Ячейка, используемая для проведения таких химических изменений, состоит из двух электродов (анода и катода), раствора ионов и источника электричества. Гальванопокрытие - одна из форм электролиза, процесса, использованного вами в гл. II, разд. Г.4. [c.532]

    Борьба с коррозией (электрохимическим и химическим разрушением металлов и сплавов) — проблема особой важности. Важнейшими методами защиты от электрохимической и химической коррозии являются использование вместо корродирующих металлов нержавеющей стали, химически стойких (кислотоупорных) и жаропрочных сплавов, защита поверхности металла специальными покрытиями, а также электрохимические и другие методы. К электрохимическим методам защиты в средах, проводящих электрический ток, можно отнести катодную защиту и способ протекторов. При катодной защите предохраняемый от разрушения металл (конструкцию) присоединяют к отрицательному полюсу источника электрической энергии. При протекторном способе к защищаемому металлу (например, подводной металлической части морских судов) присоединяют в виде листа другой, более активный металл — протектор (цинк и некоторые сплавы), который и будет разрушаться. [c.161]

    ЭЛЕКТРОХИМИЧЕСКИЕ И ХИМИЧЕСКИЕ ПОКРЫТИЯ МЕТАЛЛАМИ [c.143]

    Покрытия, применяемые для защиты металлов, подразделяются на металлические, неметаллические и образованные в результате химической или электрохимической обработки поверхности металла. [c.559]

    Ряд покрытий, получаемых химической обработкой металла, включает защитные покрытия, образующие непосредственно на поверхности металла. Образование на поверхности металлических изделий защитных оксидных пленок в технике называют оксидированием. Некоторые процессы имеют специальные названия. Так, например, процессы нанесения на сталь оксидных пленок иногда называют воронением, а электрохимическое оксидирование алюминия — анодированием. Оксидные покрытия на стали можно получить при высокотемпературном окислении на воздухе или погружении в горячие концентрированные растворы щелочей, содержащих персульфаты, нитраты или хлораты металлов. В сухом воздухе оксидные пленки достаточно стойки во влажной атмосфере, и особенно в воде, защитные свойства их крайне невысоки. Защитные свойства оксидных пленок повышают пропиткой их маслом. [c.237]


    Посвящена проблеме организации противокоррозионной защиты оборудования химических производств. Приведены данные о коррозионной агрессивности водных сред к конструкционным материалам оборудования. Описаны основные методы предупреждения коррозии, основанные на обескислороживании воды, химической пассивации металлов, электрохимической защите, создании защитных покрытий и др. Дана характеристика методов консервации аппаратов. [c.2]

    К числу основных параметров контроля относится местная толщина покрытия. Для ее определения используют неразрушающие магнитные, электромагнитные методы, методы вихревых токов или изотопные. Магнитные и электромагнитные методы целесообразны для измерения толщины покрытий, полученных электрохимическим, химическим путем, погружением в расплавленный металл и т. д., толщины керамических и эмалевых, лакокрасочных и полимерных покрытий, а также покрытий нанесенных способом металлизации на ферромагнитные стали. Изотопным методом измеряют толщину металлических и неметаллических покрытий на металлических и неметаллических основных материалах. [c.88]

    В электрохимических производствах химические процессы происходят под действием постоянного электрического тока на раствор или расплав электролита. Электрохимические процессы широко применяются для производства хлора, щелочей, водорода, кислорода, металлов, неорганических окислителей, а также для получения декоративных и защитных покрытий металлов, для рафинирования металлов и др. [c.78]

    Электрохимическая коррозия вызывается образованием на поверхности металла или сплава гальванических микроэлементов, состоящих из частиц металла, расположенных рядом и имеющих разные потенциалы (основной металл и металл покрытия, компоненты сплава, включения других металлов в основной и т. д.) наличием влаги с растворенной в ней углекислотой или другими химическими соединениями, т. е. электролита. Пример электрохимической коррозии. — ржавление металла. [c.57]

    ТРАВЛЁННЕ — химическая и электрохимическая обработка поверхиости твердых материалов. Используется для удаления загрязнений, окислов (в частности, ржавчины), окалины, для выявления структуры материала (металла, минерала) или придания поверхности желаемой микрогеометрии, для снятия нарушенного мех. обработкой поверхностного слоя и получения структурно и химически однородной поверхностп при произ-ве полупроводниковых материалов, для придания матового вида стеклу и др. Часто применяется перед нанесением защитных покрытий, эмалированием, лужением и пайкой. Химическое Т. стали, меди, цинка и магния осуществляют в водных растворах серной, соляной или азотной кислоты стекла — в плавиковой кислоте алюминия — в водных растворах едких щелочей нержавеющих и жаростойких сталей, титана — в щелочных расплавах. Из-за неоднородности поверхиости (наличия пор, трещин и т. п.) химическое Т. металлов сопровождается действием гальванических микроэлементов. Электрохимическое Т. проводят в тех же средах, а также в растворах солен с применением катодного, анодного или переменного тока. При Т. на поверхности происходят хим. взаимодействие окисной пленки или материала основы с раствором или расплавом электрохим. растворение металла (на анодных участках микроэлементов или нри анодном травлении) электрохим. выделение водорода (на катодных участках микроэлементов или при катодном травлении) электрохим. выделение кислорода (при анодном травлении). Хим. очистке поверхности способствуют разрыхление и отрыв окалины под мех. воздействием [c.582]

    Разработаны принципы комплексной защиты техники [21], включающую защиту от биоповреждений составами, содержащими вещества многоцелевого назначения (обладающими свойствами ингибиторов коррозии и т. п.) и неопасными для людей. Защита осуществляется нанесением тонких пленок слабых водных и эта-нольных растворов этих веществ на поверхность эксплуатирующихся конструкций распылением в замкнутых воздушных пространствах и с ограниченным доступом воздуха составов,, содержащих легколетучие вещества с фунгицидными свойствами введением указанных веществ в растворы для химического и электрохимического полирования поверхностей металлов и нанесения покрытий в условиях производства и ремонта техники применением средств дополнительной защиты (пассивирующие растворы, рабоче-консервационные масла, легко снимаемые покрытия, содержащие биоциды) приданием биоцидных свойств растворам для очистки поверхностей (травящие, обезжиривающие, нейтрализующие растворы и пасты) сочетанием приведенных методов со статической или динамической осушкой воздуха добавлением биоцидных веществ в состав полимерных материалов, ЛКП на стадии приготовления их технологических смесей использованием биоцидных полимеров. [c.97]


    Электрохимические методы производства в ряде случаев имеют преимущества перед химическими упрощается технологический процесс, более полно используется сырье и энергия, одновременно может производиться несколько ценных продуктов, продукты получаются высокой степени чистоты, недостижимой при химических способах производства. Благодаря указанным достоинствам электрохимические методы охватывают многочисленные и разнообразные производства, важнейшими из которых являются получение хлора, щелочей, водорода, кислорода, неорганических окислителей (перманганатов, персульфатов, перекиси водорода и др.), получение и рафинирование металлов (алюминия, магния, цинка, натрия, меди и др.), декоративные и защитные (от коррозии) покрытия металлов. [c.410]

    Перед нанесением гальванических покрытий поверхности диэлектрика придают электропроводные свойства. Это достигается различными способами путем химического восстановления металла из раствора его соли, электрохимического восстановления металла из окислов, введенных в состав поверхностного слоя диэлектрика или промежуточного покрытия, образования электропроводных соединений (фосфидов, сульфидов и др.), нанесения электропроводных эмалей, металлических покрытий конденсационным способом, натирания порошка графита или металла и т. д. Самое широкое применение в промышленности нашел способ химического восстановления металла — никеля, меди и в некоторых случаях—серебра. Он является сравнительно высокопроизводительным и не требует сложного оборудования. [c.58]

    Для промышленного нанесения химико-гальванических покрытий на диэлектрики в большинстве случаев применяют такое же оборудование (автоматические или механизированные линии, ванны и др.), как и при химическом и электрохимическом получении покрытий на металлах. При этом основное оборудование — ванны изготовляют из химически стойких материалов, таких, как полипропилен, винипласт, полиэтилен, оргстекло, керамика, стекло, фарфор, коррозионностойкие стали, титан, фторопласт и др. Во многих случаях пользуются стальными ваннами, футерованными этими же материалами или поливинилхлоридным пластикатом, резиной, фторопластовым и иными покрытиями. Ванны обезжиривания в ш елочных растворах изготовляют из обычных низкоуглеродистых сталей, а ванны травления в хромовокислых растворах—из углеродистых или коррозионно-стойких сталей, футерованных преимуш е-ственно свинцом. Для нагрева ванн чаш е всего используют электрические или паровые нагреватели в корпусах из фарфора, титана, фторопласта. Другие конструктивные элементы или приспособления, погружаемые в растворы (электролиты), производят из тех же материалов, что и ванны. [c.144]

    Химические покрытия включают толстые органического происхождения слои пластика и резины, цемента, стекла и керамики, но они не будут рассматриваться в этой книге. Здесь будут описаны только покрытия, получаемые в результате химических или электрохимических превращений металлов. [c.154]

    Проведенные ранее исследования в области механизма процесса химического восстановления металлов с использованием гипофосфита натрия [6—8] выявили роль металла как передатчика электронов использование электрохимических методов описания процессов на электроде позволило более детально охарактеризовать природу каталитических этапов реакций, лимитирующих скорость суммарного процесса. Несмотря на то, что к настоящему времени мы еще далеки от полного понимания всей совокупности явлений, происходящих в ходе формирования покрытий, обобщение проделанных в этом направлении работ должно содействовать выбору более целесообразных путей дальнейшего изучения процесса. [c.145]

    В отношении коррозии, возникающей на местах повреждений, металлические покрытия можно разделить на две группы — анодные и катодные — в зависимости от того, какую функцию выполняет покрытие в гальваническом элементе, состоящем из основного металла, покрытия и адсорбированной на поверхности пленки влаги. При таком рассмотрении определяющим фактором является химический характер металлов (место, занимаемое в ряду стандартных электрохимических потенциалов). При отсутствии посторонних воздействий более благородный металл будет катодом, менее благородный — анодом. На практике, однако, определенные обстоятельства, например более быстрая пассивация первого металла, могут изменить положение. По отношению к железу анодом в обычных условиях являются цинк, кадмий, катодом — медь, никель, а часто также олово и свинец. Алюминий — в соответствии со стандартным потенциалом — как правило, выполняет по отношению к железу роль анода, но, более легко пассивируясь, может стать и катодом. [c.284]

    Процесс коррозии, как химической, так и электрохимической, всегда начинается, как было указано, с поверхности металла в результате действия на поверхность корродирующего агента. Поэтому основные методы борьбы с коррозией заключаются в изоляции поверхности металла от действия корродирующего агента. Такая изоляция достигается в большинстве случаев покрытием металла защитной пленкой, не проницаемой для коррозионной среды. В случаях, когда нанесение защитной пленки по условиям работы металла или изделия невозможно, применяют электрохимические методы защиты. [c.30]

    В настоящее время в промышленности известны следующие виды покрытий металлические, неметаллические (органического и неорганического происхождения) и покрытия, образованные в результате химической и электрохимической обработки поверхности металла. [c.85]

    Кроме металлизации, а также химической, механической и электрохимической подготовки поверхности металла на некоторых линиях [7] производят также предварительное нанесение на полосу грунтовочных покрытий или горячих активированных клеев. Для повышения адгезии плепки полимера к металлу используют подслой, полученный напылением на горячую полосу порошка того же полимера. Например, предложен [И, 12] способ нанесения пленки полиэтилена по полиэтиленовому подслою, полученному газопламенным напылением порошка. Поскольку адгезия полиэтилена в основном определяется степенью его окисления [13], неизбежного при газопламенном напылении, аналогичный эффект достигается при использовании в качестве подслоя порошка облученного полиэтилена, полученного при действии у-излучения изотопа °С (доза до 5 Мрад в кислородсодержащей среде). Адгезия пленок политетрафторэтилена также существенно повышается при использовании в качестве подслоя порошка того же полимера, облученного дозами до 0,2 Мрад [14]. Применение подслоя толщиной 5—50 мкм из радиационно-модифицированного порошкообразного полиэтилена, нанесенного на поверхность металла, например электростатическим методом, позволяет резко интенсифицировать процесс создания высокопрочного соединения пленочного полиэтилена с металлом за счет значительного сокращения продолжительности и снижения температуры формирования покрытия [c.181]

    Декапированием называется процесс удаления с поверхности металлических деталей тончайшего, зачастую незаметного для глаза, слоя окислов, которые могли образоваться в промежутках между операциями. При декапировании происходит одновременно легкое протравливание верхнего слоя металла и выявление кристаллической структуры металла, что благоприятствует прочному сцеплению покрытия с основой. Операция декапирования применяется непосредственно перед загрузкой деталей в ванны для нанесения покрытий. Декапирование производится химическим или электрохимическим путем. Электрохимическое декапирование осуществляется исключительно на аноде. Составы растворов для химического и электрохимического декапирования различных металлов и режимы работы ванн приведены в табл. 8. [c.41]

    Химическое и электрохимическое взаимодействие покрытия с поверхностью металла обусловлено введением компонентов, содержащих фосфорную кислоту (фосфатирующие грунтовки), которая при нанесении на стальную поверхность образует покрытие с высокими адгезионными и пассивирующими свойствами. Пассивирующими свойствами обладают также лакокрасочные покрытия, в которых пигментами являются свинцовый сурик, хромат цинка, бария, стронция, калия и некоторые дру гие пигменты. [c.161]

    Если восстановленный металл служит лишь токопроводящей основой для нанесения гальванических или химических покрытий, то сразу же после промывки в проточной воде можно проводить следующий процесс. Хорошая адгезия покрытий, полученных сорбционным способом, делает его особенно целесообразным для отделки изделий, которые нуждаются в последующей электрохимической металлизации. [c.81]

    Различают электрохимические и химические покрытия чистыми металлами и сплавами. Все покрытия делят на твердые и мягкие. К твердым относятся хромовые, никелевые и стальные, к мягким — покрытия цинком, медью, оловом, латунью и др. [c.39]

    Применяемые в технике покрытия подразделяются на металлические, неметаллические и покрытия, получаемые химической и электрохимической обработкой поверхности металла. (Последние рассматриваются во-втором разделе.) [c.115]

    При катодном осаждении металла электроны, необходимые для восстановления ионов металла, посылаются при помощи внешнего источника тока. При осаждении металла без внешнего источника электроны получаются в результате химического или электрохимического процесса. При способах кипячения, натирания и нанесения кистью образование покрытия металлов основывается на принципе обмена электронами двух металлов  [c.34]

    В книге приведены основные закономерности электро-лиза и механизма образования катодных осадков. Рассматриваются факторы, влияющие на распределение металла на катоде, на структуру осадков, а также другие вопросы теории химической и электрохимической обработки поверхности металлов, знание которых имеет важное значение для получения высококачественных покрытий. Приводится современная рецептура ванн и режимы их работы. Детально излагаются технологические процессы и методы их контроля. Рассматриваются основы проектирования цехов гальванических покрытий. [c.2]

    Электролитическое никелевое покрытие с 9 %-ным содержанием Р по защитным свойствам можно сравнить с химическими покрытиями из раствора с гликолевой кислотой Электрохимические никелевые покрытия с 3 %-ным содержанием фосфора хуже защищают основной металл но все же несколько лучше, чем электроосажденный никель При увеличении продолжительности коррозионных испытаний все покрытия тускнеют и становятсн пятнистыми Блеск сохраняется дольше на химических покрытиях, полученных из кислых растворов с гликолевой или янтарной кислотой [c.13]

    Процесс получения покрытий из сплавов химическим спссобом имеет ряд особенностей, так как основной металл должен осаждаться вследствие автокаталитической реакции. Во-первых, соссаждаемый металл не должен быть ингибитором и не должен уменьшать каталитические свойства основного металла. Во-вторых, его стандартный электрохимический потенциал должен быть близок к стандартному электрохимическому потенциалу основного металла, во всяком случае он не должен быть значительно меньше его. [c.27]

    Исследованиями было установлено, что сенсибилизация обезжиренной поверхности пластмассы раствором двухлористого олова способствует улучшению адгезии покрытия к пластмассе. Ряд работ посвяшен созданию шероховатости механическим или химическим путем. Были разработаны два способа химической металлизации пластмасс погружением изделий в ванны и разбрызгиванием раствора с помощью пистолета-распылителя [1—4]. Однако ни при одном из этих способов на химическую пленку металла нельзя электрохимически наращивать слой металла какой угодной толщины. [c.131]

    При исследовании защитной способности антикоррозионных органических покрытий наряду с другими методами широко используют и электрохимические методы. В обзорах [I, 2] дается обобщащая и критическая оценка этих методов. Подчеркивается, что большая часть измерений проводилась исследователями на постоянном токе. При протекании постоянного тока через систему металл-покрытие-электролит в ней протекают все процессы от самых медленных до самых быстрых (электрохимические, химические реакции, сольватация, адсорбция промежуточных частиц реакции, транспорт веществ путем шграции, диффузия, естественная и вынужденная конвекция, осмос и электроосмос,форе3 и электрофорез и др.).Полученные при этом значения измеряемых электрических величин можно поэтому рассматривать как характеристики суммарного процесса коррозии [з]. Эти значения можно использовать для оценки защитной антикоррозионной способности покрытий. [c.73]

    В зависимости от среды, с которой взаимодействует металл, различают два вида коррозии — химическую и электрохимическую. Химической называется коррозия, происходящая при действии на металл сухих газов или жидкостей, не проводящих тока, т. е. неэлектролитов. Электрохимической называется коррозия, вызываемая действием на металл электролитов, когда разрушение металла связано с переносом электричества, т. е. протеканием электрического тока. С Ш1Ность процесса электрохимической коррозии состоит в том, что вследствие неоднородности структуры металла или сплава на его поверхности, покрытой слоем электролита, возникает множество мельчайших гальванических элементов. Каждый из этих микроэлементов состоит из двух участков поверхности металла, имеющих несколько различный химический состав и вследствие этого различную способность переходить в раствор в виде положительно заряженных ионов (катионов). Один из этих участков играет роль катода, а второй — анода гальваш че-ского микроэлемента. Простейшим примером этого может служить коррозия цинка, загрязненного медью, выделившейся в виде отдельных микроскопических зерен — включений. Цинк, как более активный (электроотрицательный) металл, теряя электроны, переходит в раствор в виде катионов Zn . Освободившиеся электроны переходят по металлу на медь и присоединяются на ее поверхности к имеющимся в растворе ионам водорода Н. Образующиеся атомы водорода соединяются в молекулы, и с поверхности меди выделяются пузырьки водорода. [c.38]

    Оборудование для химической и электрохимической обработки изделий разделяется на оборудование, применяющееся для подоготовки изделий к покрытию, и оборудование для покрытия металлами. [c.314]


Библиография для Электрохимические и химические покрытия металлами: [c.261]   
Смотреть страницы где упоминается термин Электрохимические и химические покрытия металлами: [c.330]    [c.220]    [c.40]    [c.195]    [c.681]    [c.64]   
Смотреть главы в:

Коррозия и основы гальваностегии Издание 2 -> Электрохимические и химические покрытия металлами




ПОИСК





Смотрите так же термины и статьи:

Металлы химические

Покрытия химические

Покрытия электрохимические

Электрохимический ряд металлов



© 2025 chem21.info Реклама на сайте