Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Роль активных центров и отравление катализаторов

    О роли такого механизма реакции можно также судить по специфическому действию азотсодержащих соединений на каталитические свойства алюмоплатинового катализатора [17]. Органические соединения азота в условиях риформинга реагируют с образованием аммиака. Адсорбируясь на кислотных центрах и блокируя их, аммиак подавляет все реакция, протекающие с участием кислотных центров катализатора, в том числе и реакции дегидроциклизации парафинов. Так, добавление к -нонану диэтиламина (0,2% в пересчете на азот) приводит к снижению степени превращения нонана в ароматические углеводороды с 63 до 24%. При этом дегидрирующая активность катализатора полностью сохраняется, что подтверждено испытанием катализатора в реакции дегидрирования метилциклогексана. Следовательно, при отравлении катализатора аммиаком дезактивируется только его кислотная функция, что и обусловливает резкое снижение активности катализатора в реакции дегидроциклизации парафинов. [c.38]


    Д,алее излагаются основные принципы работы с катализаторами и методы их приготовления. Катализаторы на носителях. Роль носителей в катализе. Изменение активности катализаторов в процессе работы. Утомление катализаторов. Отравление и промотирование. Различные точки зрения на механизм этих явлений. Блокировка и модификация активных центров. Различные методы и варианты регенерации катализаторов. Н [c.232]

    Отравление катализатора, как и некоторые другие явления, заставляют ученых предполагать, что в большинстве случаев поверхность катализаторов не однородна. Различные его участки имеют разную активность по отношению к процессу, который катализируется. Те места поверхности, которые оказывают самое сильное влияние на реакцию, называются активными центрами. Отравление катализатора ничтожно малым количеством вещества доказывает, что активных центров на его поверхности немного. Некоторые ученые считают, что роль активных центров играют вершины, ребра и углы кристаллов. Другие предполагают, что активные центры углублены, третьи связывают их с нарушением кристаллической решетки — включением в нее чужеродных атомов, выпадением отдельных атомов из решетки и т. п. [c.294]

    Роль активных центров и отравление катализаторов. [c.471]

    Соотношения размеров поры и молекул, участвующих в каталитическом процессе (исходных веществ и в том числе нейтральных примесей и каталитических ядов, промежуточных комплексов и продуктов реакций), определяют структурную возможность осуществления данного набора каталитических реакций в порах данного размера. Перекрывание электрических полей противоположных стенок норы или изменение строения электрического поля катализатора вследствие искривления его поверхности в микропорах может существенно повлиять на величину адсорбции и энергию активации каталитических реакций. Изменение расположения и взаимного влияния активных центров на сильно искривленной поверхности катализатора изменяет его активность, селективность и стойкость к отравлению, вызывает новые побочные реакции. При этом тонкие поры, сопоставимые с размерами молекул реагирующих веществ, инертных примесей или продуктов реакций, могут уже в самом начале процесса оказаться полностью исключенными из участия в нем в результате геометрического несоответствия размеров молекул и пор. Это происходит в результате чрезвычайно сильной адсорбции веществ, которые, прочно фиксируясь в порах катализатора, будут экранировать их, играя роль порового яда . В таких случаях целесообразно говорить об эффективной микропористости катализатора. Для пор надмолекулярных размеров возможно также интенсивное взаимодействие электронных полей молекул и стенок пор, изменяющее скорости диффузии веществ в порах [53]. [c.140]


    Рогинским , во всяком случае — феноменологически, т. е. случай, экспериментально иллюстрирующий некоторые из положений этой теории. Действительно, до отравления катализатор работает своими наиболее активными участками — контролирующей полосой , а на различных стадиях отравления эта контролирующая полоса последовательно перемещается в сторону возрастающей энергии активации роль контролирующей полосы при последовательном отравлении выполняют приблизительно однородные группы активных центров, обусловливающие минимальную энергию активации на данной стадии отравления. [c.135]

    Подвижность молекул субстрата делает возможным создание определённой структурированной системы вокруг активных центров катализатора [5]. То есть, на поверхности катализатора присутствует слой хемосорбированных органических молекул, играющих роль лигандов [5], а такие системы более устойчивы к отравлению и дезактивации. Таким образом, процессы, происходящие на поверхности катализатора при проведении реакции изотопного обмена в твердофазном режиме между газообразным тритием и органическими соединениями, концептуально можно представить в виде следующей схемы. Сначала при нагревании на поверхности катализатора происходит перераспределение адсорбированных молекул вещества, при этом образуется упорядоченная система определённой части вещества с активными центрами катализатора. Основная же часть молекул, свободно перемещаясь, вступает в контакт с этими упорядоченными образованиями, которые в условиях проведения подобных реакций являются эффективными промоторами активированного трития [5]. [c.512]

    Образование рассмотренных комплексов на поверхности переходных металлов или оксидов зависит от донорно-акцепторной способности их атомов или ионов, на которую большое влияние может оказывать присутствие в катализаторе других веществ либо введение даже небольших количеств модификаторов. При этом донорно-акцепторная способность прямо связана с работой выхода электрона, чем легко объясняются имеющиеся корреляции с ней активности и селективности катализаторов. Ясна и роль каталитических ядов, которые при этом виде катализа все принадлежат к веществам, способным образовывать прочные донорно-акцепторные связи с -орбиталями переходных металлов (соединения Р, S, As, Se, ионы Hg, Pd, молекулы с ненасыщенными связями СО, H N и др.). Эти яды блокируют активные центры поверхности или изменяют в нежелательную сторону донорно-акцепторную способность активных центров, причем отравление особенно сильно проявляется для металлических катализаторов. Наконец, из-за влияния -электронных орбиталей на структуру кристалла и энергетику взаимодействия могут наблюдаться отмеченные выше связи каталитических эффектов с геометрическими и энергетическими факторами. [c.285]

    Металлические комплексы иорфиринов с N1, V, Со, а также комплекс метоксимолибденоксида с октаэтилиорфирином ингибируют гидрообессеривание примерно в той же степени, что и сами порфирины (глубина гидрообессеривания 41—43%)- Следовательно, в процессах отравления катализатора решающую роль играет органическая часть комплекса. В случае производных СО и V степень отравления меньше, чем для порфиринов, но увеличивается, если анион органический так, глубина гидрообессеривания в присутствии СоО — 63%, а в присутствии ацетилацетонатов СО и V — 57 и 52% соответственно. Это связано, ио-видимому, с образованием кокса. Следует отметить, что Со и Мо комплексов с порфири-нами не образуют. Для асфальтенов степень отравления больше, чем для порфиринов. Дезактивацию катализатора ядами объясняют блокированием активных центров, влияет также и образование кокса. Хотя асфальтены отравляют катализатор сильнее, однако катализаторы, отравленные ими, полностью восстанавливают свою активность после 12-часового прогрева на воздухе при 450 °С. Следовательно, отравление асфальтенами действительно связано с процессами коксообразования. Зависимость глубины гидрообессеривания от вида катализатора показана на рис. 82. [c.258]

    Дезактивация катализатора может также происходить в результате постепенного обволакивания поверхности его высокомолекулярными продуктами вторичных реакций, не десорбирующимися при температурах опыта (смолы, высокополимерные соединения). В дезактивации катализаторов играют большую роль также и процессы кумулирующего отравления—прогрессивное поражение активных центров следами ядов. Все это, выражаясь фигурально, нарушает нормальный обмен веществ —адсорбцию реагентов и десорбцию продуктов. Утомление катализаторов в силу тех или иных причин является процессом прогрессирующим, что сказывается реально на уменьшении выхода продуктов. Часто в многостадийных каталитических процессах утомление катализатора и понижение активности его влекут за собой и изменение функции катализатора, который становится неспособным проводить реакции до конца, а останавливает их на промежуточных стадиях (см. благоприятствующее отравление, стр. 69). [c.56]


    Таким образом, при гетерогенном катализе промежуточные соединения образуются на поверхности катализатора, Существонание активных центров на поверхности катализаторов подтверждается прямыми и косвенными данными. Известно, что для отравления катализатора бывает достаточно весьма малых количеств ядов, что указывает на активность не всей поверхности катализатора, а ее отдельных участков — активных центров. Неравноценность отдельных участков поверхности катализаторов обнаруживается по фигурам травления, а также методами рентгенографического анализа и электронной микроскопии. Адсорбция вещества происходит главным образом на этих центрах в силу наличия у них доиольно сильного неуравновешенного электрического поля. Все теории адсорбционного гетерогенного катализа сводятся к выяснению роли и строения активных центров, а также энергетического состояния молекул иа них. [c.164]

    Сведения об активности в олигомеризации олефинов никеля, нанесенного на различные носители, довольно многочисленны как в патентной, так и научной литературе. Еще в 30-х годах XX века Морикава обнаружил, что никель, нанесенный на кизельгур, может вызывать димеризацию этилена при комнатной температуре. Позднее в олигомеризации этилена и хфопилена испытывались катализаторы, получаемые нанесением солей двухвалентного никеля на оксид алюминия, кремния, аморфные и кристаллические алюмосиликаты. Сопоставляя подобные катализаторы с гомогенным координационным катализом, В.Ш. Фельдблюм рассматривал в качестве активного центра гидрид никеля. Другими исследователями активными считались также координационно ненасыщенные атомы N1 и N1 , а также N1 . Основанием для этого служило влияние кислотности носителя и восстановительной атмосферы на повышение активности катализаторов в олигомеризации этилена и пропилена. С помощью метода селективного отравления щелочью и оксидом углерода сделан вывод о протекании олигомеризации прогшлена по бинарному механизму, т. е. как по координационному — на N1 так и по кислотному механизму. При возрастании числа атомов углерода в молекуле алкена возрастает роль кислотного механизма. Хорошие результаты в олигомеризации низших олефинов наблюдаются при нанесении на оксид алюминия смсси сульфатов никеля и железа в присутствии РгО . [c.915]

    Опытами с мышьяковистым ангидридом, играющим роль яда при каталитическом окислении двуокиси серы с ванадиевыми катализаторами, найдено, что отравление влечет за собой уменьшение числа каталитически активных центров при данной температуое. С другой стороны, исследование влияния азота и железа на каталитическое поведение угля при окислении щавелевой кислоты [240] показало, что не обязательно все яды, как правило, должны адсорбироваться на наиболее активных каталитических участках. Кривая, полученная при отравлении этого катализатора цианистым калием, была иной, отличной от кривой, полученной с содержащим железо углем, но не содержащим азота. Амиловый спирт распределяется между каталитически активным и инак-тивным углеродом, продолжительность жизни у молекул спирта, отравляющих активный углерод, больше, чем у щавелевой кислоты. Цианистый калий и тио-цианат калия более легко адсорбировались на железо-углеродной поверхности, чем на поверхности железо—углерод—азот, хотя последняя каталитически более активна разница в продолжительности жизни иона циана на железо-углеродной поверхности и поверхности железо —углерод—азот была не так велика, как разница в продолжительности жизни тиоцианатного иона, который поэтому должен рассматриваться как более селективный яд. Остаточное сродство железо-углеродного комплекса для цианида и тиоцианида больше, чем сродство железо-углерод-азотного комплекса, однако каталитическая активность для окисления щавелевой кислоты гораздо меньше. [c.394]

    Результаты многих спектральных работ по исследованию природы кислотных центров цеолитов сопровождаются сопоставлениями с результатами исследований модельных каталитических реакций. В задачу этой книги не входит рассмотрение такого рода исследований. Отравление цеолитов молекулами оснований — аммиака, пиридина и хинолина [119, 125] указывает на существенную роль кислотных центров в каталитических реакциях. Уменьшение активности катализатора ЫН4У с ростом числа [c.377]

    Доступность поверхности катализатора для реагирующих газов играет важную роль при выборе твердого вещества, которое должно служить активным катализатором для гетерогенных газовых реакций. Чем больше для каждого данного катализатора величина новерхности, доступной для реагирующего газа, тем выше степень превращения этого газа в конечные продукты. Немногие катализаторы обладают поверхностями, характеризующимися энергетической однородностью в том смысле, что все адсорбционные центры являются равноценными и что каждая молекула адсорбата обменивается с адсорбционным центром одним и тем же количеством энергии. Если такой катализатор и может быть приготовлен, то его активность должна быть пропорциональна площади поверхности, соприкасающейся с адсорбируемым газом. Однако, как уже говорилось в главе 2, катализаторы а priori характеризуются некоторой неоднородностью новерхности и, кроме того, эта неоднородность индуцируется взаимодействием между адсорбированными частицами. Независимо от причины появления такой неоднородности результатом ее является то, что некоторые участки новерхности катализатора оказываются более активными, чем другие. В таком случае активность катализатора уже не будет просто пропорциональна величине поверхности а скорее, должна зависеть от характера распределения активности но доступной поверхности. Однако, несмотря на существование энергетически неоднородных поверхностей, имеется множество катализаторов, характеризующихся пропорциональностью между активностью и величиной поверхности, причем на долю какой-либо неоднородности приходится лишь небольшая часть всей химически активной поверхности. Одним из самых первых приложений измерений величины новерхности было предсказание отравления катализаторов. Е1сли при длительном исиользовании катализатора его активность снижается быстрее, чем величина новерхности, то можно иред-нолагать, что происходит отравление этого катализатора, а если уменьшение площади поверхности катализатора сопровождается соответственным снижением активности, то это указывает на термическую дезактивацию катализатора. Другим приложением определения величины поверхности является метод оценки эффективности носителей и промоторов. Носитель или промотор может либо увеличивать площадь поверхности, доступной для адсорбции и протекания реакции, либо повышать каталитическую активность в расчете на единицу площади поверхности. Следовательно, зная величину новерхности, можно предвидеть поведение катализатора и определить роль его поверхности в гетерогенных газофазных реакциях. Следует, однако, подчеркнуть, что часто химической активностью обладает лишь небольшая доля поверхности, определяемой с помощью физических методов. [c.160]

    Исследование сравнительного гидрирования аддукта ЬХХХ и диэтилмалеата в качестве соединения сравнения на никеле, предварительно отравленном добавкой яда, позволило сделать заключения о роли неоднородных участков поверхности катализатора, так как при последовательном отравлении можно ожидать выключения наиболее активных центров поверхности и энергетического выравнивания ее таким путем. Отравление никеля проводилось тиофеном и -нонилтиолом длина углеводородной цепи у последнего соизмерима с расстояниями между активными цент1рами никеля (10 А) — вывод, который следует и на основаиии дачных по гидрогенолизу [8491. Поэтому можно ожидать, что экранирующий эффект при отравлении тиолом уменьшит различие в скоростях гидрирования аддукта ЬХХХ и диэтилмалеата. [c.319]

    Образование я- и а-комплексов зависит от акцепторной спо- собности атома или иона катализатора, иа которую значительное влияние оказывает смешение с другими веществами или добавление даже небольших количеств модификаторов. При этом акцепторная способность прямо связана с работой выхода электрона, чем можно объяснить корреляцию с этой величиной каталитиче- ской активности или селективности различных контактов. Наконец, ясна и роль каталитических ядов, которые при электронном жатализе все принадлежат к типу веществ, способных к образованию прочных донорно-акцепторных связей с -орбиталями переходных металлов (соединения Р, Аз, 5, 5е, Те ионы Hg, РЬ, В1, 5п молекулы с ненасыщенными связями — СО, НСМ и др.). Эти яды блокируют активные центры поверхности или меняют в нежелательную сторону акцепторные свойства кристалла, причем отравление особенно сильно проявляется для металлических катализаторов, поскольку окисные и солевые катализаторы уже имеют такое количество примесей, что добавление новых не оказывает на них столь значительного эффекта. [c.171]

    Проведены измерения кислотности прокаленных катализаторов состава Mg0/Si02 титрованием и-бутиламином и методом ДТА образцов с предварительной адсорбцией на них пиридина. Установлено, что увеличение температуры прокаливания приводит к уменьшению кислотности катализаторов. Методами ИК-спектроскопии обнаружено присутствие на поверхности активных центров двух типов кислых центров льюисовского типа и слабокислых изолированных гидроксильных групп. Сопоставление полученных данных по кислотности катализаторов с результатами определения их каталитической активности в реакции дегидратации изопропилового спирта позволяет сделать вывод о том, что в этой реакции существенную роль играют активные центры обоих типов. Этот вывод подтверждается формой изотермы отравления, полученной импульсным методом с использованием пиридина в качестве каталитического яда. [c.477]

    Хотя полосы поглощения, полученные таким электронным обменом с адсорбентом, представляют большой интерес и их следует искать в соответствующих системах, тем не менее в случае, описанном здесь, довольно сильные аргументы выступают против тех объяснений, которые были даны в развернутом виде Лефтином и Холлом [93, 94]. В частности, высокий потенциал ионизации фенилолефипов (9.0 эв для дифенилэтилена, 8.8 эв для стирана, около 8 эв для стильбена) должен требовать более сильного электронного акцептора, для того чтобы сместить полосу, обязанную переносу заряда из ультрафиолетовой области, где она обычно встречается, в красную область. Два альтернативных положения, касающихся интерпретации полосы 600 нм, были высказаны в защиту олефинового катион-радикала (РЬзС —СНа) , когда недавно, после многих попыток был обнаружен сигнал ЭПР для хемосорбированного дифенилэтилена [95]. Депрессирующее влияние дополнительно адсорбированного кислорода опровергает любое подозрение о его активной роли в образовании этого сигнала. На алюмосиликатном катализаторе, отравленном заменой протонов поверхностных центров на Na+, полоса 420 нм исчезает, но полоса 330 нм остается. Это также опровергает отнесение последних карбониевому иону [98]. Более вероятно то, что как раз эта полоса принадлежит к разыскиваемому оптическому переходу с переносом заряда. Действительно, она расположена в той же самой спектральной области, где, как известно, расположены и полосы переноса заряда различных межмолекулярных и тт-комплексов. [c.260]


Смотреть страницы где упоминается термин Роль активных центров и отравление катализаторов: [c.165]    [c.299]    [c.300]    [c.14]    [c.336]    [c.134]    [c.420]    [c.507]   
Смотреть главы в:

Физическая химия Том 1 Издание 4 -> Роль активных центров и отравление катализаторов




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активный центр

Катализатора активность

Катализаторы активные

Отравление катализаторов



© 2024 chem21.info Реклама на сайте