Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностные центры протонные

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]


    Использование различных методов дает определенные сведения о поверхностных центрах, по последние, естественно, не обязательно должны быть центрами катализа. Однако систематическое изучение ряда катализаторов, активность и поверхностные свойства которых зависят только от поверхностной концентрации фтора, дает возможность проследить за формированием каталитически активных структур и установить причины возникновения активных центров. Основное отличие между активными катализаторами и неактивной окисью алюминия проявлялось в возникновении сильных кислотных центров, причем активность в реакциях крекинга и алкилирования линейно возрастает с увеличением количества сильных протонных центров [26]. Что касается происхождения протонной кислотности, то на основании обсуждаемых результатов можно определенно утверждать, что источником протонодонорных центров не являются поверхностные группы ОН исходной окиси алюминия. [c.231]

    Количественное исследование кислотно-основных свойств поверхности требует обширного и квалифицированного применения ИК-спектроскопии адсорбированных молекул. С помощью этого метода, подобрав соответствующее вещество-зонд и установив функциональные зависимости между частотами его нормальных колебаний, чувствительных к взаимодействию с поверхностными центрами, и термодинамическими характеристиками этого взаимодействия, можно определить силу протонных, апротонных и оснбвных центров. При использовании комбинированных ИК-спектроскопических и адсорбционных экспериментов также можно определять концентрации кислотных центров поверхности. [c.30]

    Проведенное исследование указывает также на то, что в адсорбционных полостях катионированных и декатионированных цеолитов имеются центры протонной и апротонной кислотности. Следовательно, результаты спектральных измерений [114] подтвердили основные выводы об образовании поверхностных КПЗ и кислотной [c.119]

    Исследования показали, что введение натрия в состав алюмоплатинового катализатора приводит к снижению количества электроноакцепторных центров, характеризующих льюисовскую кислотность, одновременно может происходить удаление протонов из поверхностного слоя гидроксида алюминия и подавление бренстедовской кислотности. [c.48]


    На энергию деформации влияют два основных фактора поверхностное натяжение , обусловленное ядерными силами взаимодействия между составляющими ядро нуклонами, и электростатическое отталкивание протонов. При колебании ядра любое отклонение от первоначальной формы приводит к увеличению его потенциальной энергии за счет энергии поверхностного натяжения. Однако такие деформации обусловливают перераспределение протонов в ядре и появление центров электростатического отталкивания. Силы электростатического отталкивания уменьшают потенциальную энергию системы и способствуют дальнейшему увеличению деформации. Если колебания приводят к гантелеобразной форме ядра, то силы электростатического отталкивания могут при известных обстоятельствах преодолеть ядерные силы притяжения и ядро распадется. [c.10]

    Оценку относительной кислотности производят по рассогласованности координационных чисел [72]. Так, если координация катиона по кислороду 6, а введен ион с координацией 4 (даже, если новый ион имеет аналогичный заряд), в окрестностях такого катиона будет избыточный положительный заряд. Эта область будет характеризоваться высоким сродством к электрону и представлять собой сильную кислоту, по Льюису (акцептор электронной пары) — сильное акцепторное поверхностное состояние. Если в окрестностях легирующего катиона создается из-за координационной рассогласованности отрицательный заряд, то такой центр будет нейтрализоваться протонами, например при воздействии кислоты. Если протоны могут отдаваться, центр будет проявлять свойства кислоты Бренстеда. [c.46]

    При адсорбции а- и р-нафтиламина на кислотных центрах алюмо-силикагеля и бентонита V, VI, VII), в результате присоединения поверхностного протона к аминогруппе и перетягивания электронной плотности 2,5-электронов из нафталинового ядра к атому азота, по схеме [c.59]

    Бросается в глаза, что рассмотренный вид потенциальной кривой существенно отличается от вида кривой с двумя минимумами, который обычно схематически изображают для переноса протона в гомогенном катализе. Это различие объясняется тем, что в гомогенных системах координата реакции не имеет смысла простого удлинения ОН-связи, а включает в себя перестройку сольватных оболочек и пространственное разделение основной части кислого центра и протонированного субстрата. Иными словами, в этом случае происходит реальная диссоциация кислоты с полным переносом протона к основанию, что возможно лишь благодаря эффектам сольватации образующихся при электролитической диссоциации положительного и отрицательного ионов. Реакции же гетерогенного кислотного катализа обычно проводят при повышенных температурах в отсутствие полярных молекул растворителя, в результате чего перенос протона не сопровождается разделением основной части кислого центра и протонированного субстрата. Вместо этого на поверхности катализатора образуются ионные пары, в которых протонированная форма субстрата и кислотный остаток связаны сильным кулоновским взаимодействием. Это взаимодействие и является основным фактором, компенсирующим менее выгодный по сравнению с гомолитическим гетеролитический разрыв ОН-связей в поверхностных гидроксильных группах. В этом смысле оно аналогично эффектам сольватации в растворах сильных электролитов. В основе гомогенного и гетерогенного катализа лежат, таким образом, совершенно различные физические модели. [c.28]

    Термин поверхностный центр в хемосорбции определяется как один или микроскопическая группа атомов на поверхности, которая в каком-либо смысле химически активна. Наряду с рассмотренными выше атомами, связанными, например, с дефектами, кристаллографическими ступеньками и т. д., это может быть, иапример, атом с оборванной связью , катион, нескомпенсированный необходимым числом аииоиов, кислотный или основной центр . Кислотные центры Льюиса обладают свободными орбиталями с высокой энергией сродства к электронам, кислотные центры Врен-стеда обладают тенденцией отдавать протон. Один вид этих центров может переходить в другой. Так, при взаимодействии с водой -f НоО = (L ОН) 4-Hs на поверхности, кислотный центр Льюиса L+ делит электронную пару с ОН , а остающийся адсорбированный протон Н+ может вступать в химические реакции, представляя собой теперь кислотный центр Вренстеда, Если группа ОН связана с катионом менее прочно, чем Н+ с решеточным ионом О , она становится основным центром Вренстеда и вещество будет проявлять основные свойства. Они связаны с электроотрицательностью металла и кислотность окислов уменьшается в следующем ряду  [c.130]

    Обработка уМг( шялочью приводит к исчезновению зависимости от заполнения и уменьшению сдвига (рис. I). Можно было бы предположить, что это обусловлено взаимодействием с различными типами гидроксильных групп, имеющимися на поверхности. Вели взаимодействие происходит в основном с гидроксильными протонами, то при увеличении степени дегидроксилирования образцов должно было бы происходить уменьшение сдвигов, поскольку величина сдвига пропорциональна числу поверхностных центров. Однако результаты оказываются прямо аротивоположньши. Так для образца, откачанного при 500°С, несмотря на уменьшение концентрации гидроксильных прогонов в 3-4 раза по сравненшо с образцом, откачанным при 200° сдвиг возрастает и наблвдается сильная зависимость от покрытия, в то время 1сак для образца откачанного при 200° сдвиг не зависит от покрытия (рис. I). [c.302]


    Образующиеся при этом си-ланольные группы, сильно прото-низированные пол влиянием соседних атомов алюминия, могут 8 п ,мoлeкJэл.йч. играть роль бренстедовских кислотных центров, а сами трехкоординационные атомы алюминия могут рассматриваться как льюисовы кислотные центры. Молекулы, проявляющие свойства оснований, могут энергично взаимодействовать с кислотными центрами, образуя координационные связи с атомами алюминия или акцептируя протоны. Гидроксильные группы, связанные с ионами поливалентных металлов, должны рассматриваться скорее как поверхностные центры основного характера. Они, по-видимому, способны в ряде случаев к взаимодействию с адсорбирующимися молекулами кислотной природы [237]. [c.172]

    Монослой молекул обычных размеров будет прочно удерживаться на поверхности при температурах колонки только в случае, если его молекулы будут связаны с поверхностью химически (за счет проведения соответствующих поверхностных реакций) или же при очень сильной специфической адсорбции. Поэтому для нанесения монослоев использовался макропористый силикагель с удельной поверхностью 26 полученный из обычного промышленного силикагеля [6]. На поверхности таких силикагелей имеются кислотные центры протонные (гидроксильные группы) и апротонные (обусловленные присутствием окиси алюминия). Апротонные кислотные центры обладают особенно сильной электронноакцепторной способностью, благодаря чему они хемосорбируют органические основания [7, 8]. Поэтому в качестве наносимых веществ использовались пары специфически адсорбирующихся на силикагеле полярных соединений. Предполагая, что при температуре на 10—20° С выше температуры кипения наносимого вещества образуется преимущественно монослой, в колонку, наполненную адсорбентом-носителем, с потоком газа-носителя при соответствующей температуре вводились пары моноэтаноламина, триэтаноламина, триэтиленгликоля и бути-рата триэтиленгликоля до насыщения адсорбента. С этой целью в колонку последовательно дозировалось по 10 мкл соответствующей жидкости. Первые пробы не выходили из колонки, при дальнейшем дозировании на выходе из колонки регистрировались постепенно возрастающие пики. Адсорбент считался насыщенным, когда величина пика при последующих пробах не изменялась. Температура в испарителе устанавливалась на 50—60° С выше температуры кипения. После насыщения колонка продувалась газом-носителем в течение суток. [c.46]

    Можно предположить, что этот эффект имеет химическую природу. В этом случае можно думать, что молекула воды диссоциирует на поверхности германия и или протон, или гидроксил насыщают свободную валентность поверхностного центра, наличием которой и обусловливается поверхностный рекомбинационный уровень. В этом случае эффект нейтрализации должен обладать двумя характерными особенностями. Во-первых, ов возможен только с легко диссоциирующими молекулами, дающими при этом ионы или радикалы, способные насытить свободную валентность рекомбинационного центра. Во-вторых, трудно допустить изменение параметров рекомбинационного центра. Центр может либо функционировать, имея определенное значение энергетического уровня и эффективных сечений захвата дырки и электрона, когда свободная валентность не насыщена, либо не функционировать в качестве рекомбинационного центра, когда валентность насыщена. [c.78]

    Хотя полосы поглощения, полученные таким электронным обменом с адсорбентом, представляют большой интерес и их следует искать в соответствующих системах, тем не менее в случае, описанном здесь, довольно сильные аргументы выступают против тех объяснений, которые были даны в развернутом виде Лефтином и Холлом [93, 94]. В частности, высокий потенциал ионизации фенилолефипов (9.0 эв для дифенилэтилена, 8.8 эв для стирана, около 8 эв для стильбена) должен требовать более сильного электронного акцептора, для того чтобы сместить полосу, обязанную переносу заряда из ультрафиолетовой области, где она обычно встречается, в красную область. Два альтернативных положения, касающихся интерпретации полосы 600 нм, были высказаны в защиту олефинового катион-радикала (РЬзС —СНа) , когда недавно, после многих попыток был обнаружен сигнал ЭПР для хемосорбированного дифенилэтилена [95]. Депрессирующее влияние дополнительно адсорбированного кислорода опровергает любое подозрение о его активной роли в образовании этого сигнала. На алюмосиликатном катализаторе, отравленном заменой протонов поверхностных центров на Na+, полоса 420 нм исчезает, но полоса 330 нм остается. Это также опровергает отнесение последних карбониевому иону [98]. Более вероятно то, что как раз эта полоса принадлежит к разыскиваемому оптическому переходу с переносом заряда. Действительно, она расположена в той же самой спектральной области, где, как известно, расположены и полосы переноса заряда различных межмолекулярных и тт-комплексов. [c.260]

    Ранее нами было показано [1—3], что при адсорбции полициклических молекул из газовой фазы в вакууме на поверхности тщательно оттренирован-ного алюмосиликатного катализатора помимо полос поглощения физически адсорбированных молекул появляются новые полосы в видимой области спектра. Эти полосы свидетельствуют об образовании и стабилизации на активных центрах поверхности катализаторов новых адсорбированных соединений. В частности, в спектре хемосорбированного антрацена полоса у 715 нм обязана катион-радикалу антрацена А+, образующемуся при переходе я-электрона адсорбированной молекулы на электроноакцепторный центр катализатора. Полоса у 425 нм возникает в результате взаимодействия молекул антрацена с поверхностными центрами, имеющими слабо связанный протон АН . Появление первой полосы сопровождается сигналом ЭПР с характерной сверхтонкой структурой. [c.318]

    Использование в качестве носителя кристаллических алюмосиликатов (цеолитов) типа У позволяет резко увеличить силу поверхностных кислотных центров, которая возрастает при деалюми-нирова-нии -и обмене структурных катионов Na+ на поливалентные катионы. Как показано Г. Д. Чукиным и др. [146], с металлом способны взаимодействовать лишь наиболее сильные протонные центры цеолитов, характеризующиеся частотой колебаний связи О—,Н в ИК-спектрах менее 3640 см , что соответствует энергии активации десорбции азотистых оснований >84 кДж/моль. При этом образуется комплекс с переносом заряда. По-видимому, указанная закономерность справедлива для любых носителей, содержащих поверхностные группы О—Н. [c.230]

    Образование карбокатионов на поверхности алюмосиликатного катализатора возможно с участием подвижного протона ОН-групп или кислотного центра Льюиса (ион АР+ с незанятой я-ор-биталью). Для насыщенных, гидроароматических и олефиновых углеводородов образование карбокатиона может протекать при переносе гпдрнд-пона к поверхностному карбокатиону, полученному прн взапмодействии протона катализатора и олефина. Не ис-14 1Ючено также, что сильное электростатическое поле поверхности, особенно в порах цеолита, способно поляризовать молекулу углеводорода [И]. [c.74]

    Наиболее успешно используется этот метод для исследования алюмосиликатных катализаторов крекинга и окисных катализаторов в связи с возможностью возникновения на них в процессе хемосорбции заряженных форм адсорбированных веществ. Исследования спектров поглощения адсорбированных молекулярных ионов ароматических аминов и ароматических углеводородов с конденсированными ядрами показали присутствие на поверхности алюмосиликатных катализаторов сильных кислотных центров двух типов электроноакцепторных (льюисовских) и протонодонорных (брен-стедовских). При адсорбции молекул на кислотных центрах образуются молекулярные ионы в результате контакта молекул с поверхностью при комнатной температуре. При этом возникали молекулярные ионы двух типов МН+ — в результате присоединения к молекуле поверхностного протона (бренстедовские центры), и М+ — при отрыве одного электрона от молекул (льюисовские центры). Появлялась возможность устанавливать не только заряженные формы адсорбированных молекул, но и распределение двух типов активных центров на поверхности. [c.180]

    Катализ на твердых кислотах и основаниях. Для катализаторов кислотно-основного типа специфика твердого тела не выражена так резко, как для полупроводников и металлов. Активные центры кислотных кат. представляют подвижные протоны И (центры Бренстеда) или атомы, способные присоединять пару электронов (центры Льюиса), напр, атом А1 на пов-сти AljOj. Соотв. основными центрами являются акцепторы протона или доноры электронной пары, напр, атомы кислорода на пов-сти СаО, MgO и т.п. Кислотными бренстедовскими центрами простых оксидов металлов являются поверхностные гидроксильные группы, остающиеся после частичной дегидратации пов-сти при нагр., или молекулы Н О, координационно связанные с пов-стью. Для металла М, находящегося в начале каждого периода, гидроксильные группы имеют основные св-ва [...ОМ] [ОН] для находящегося в конце периода-кис-лотные [...ОМО] Н . Льюисовскими кислотными центрами служат координационно-ненасыщенные ионы, напр. A10J на AljOj. Эти центры способны взаимод. с реагирующей молекулой-донором пары электронов. Кислотными катализаторами являются оксиды металлов с большим отношением заряда иона к его радиусу - окси ды Мо, Zn, Са, РЬ и др. Их активность связана с положением металла в периодич. системе и возрастает в периодах при переходе к V-VII группам, а в группах-при переходе к [c.540]

    Среди других известных кислот Бренстеда отметим иммобилизацию HF (несомненные удобства в работе в связи с устранением его высокой летучести и токсичности) и, особенно гетерополикислот [108, 122-125]. Имея в своем составе прочный каркас гетерополианионов, построенных из металлоксидных (Мо - О, W - О) октаэдров с включенными гетероатомами (Р, Si, As и др.), они являются сильными протонными кислотами и активны (селективны) во многих гомогенных и гетерогенных реакциях, превосходя в этом отношении обычные минеральные кислоты (H2SO4, H IO4) и одновременно выгодно отличаясь от них высокой термостойкостью и низкой коррозионной активностью. Учитывая наличие объемных полианионов с низкой поверхностной плотностью заряда, являющихся в терминах ЖМКО мягкими основаниями, гетерополикислоты могут рассматриваться как иммобилизованные Н-кислоты со слабой электростатической связью протона с анионом в ионной паре и высокой кислотностью. Характерные структуры протонных центров в гомогенных, гетерогенных (водных) и гетерогенных (обезвоженных) вариантах гетерополикислот соответственно подтверждают это [124]  [c.58]

    Наличие оксид-ионов обусловливает основность поверхности АЬОз (по оценкам, pH 12). Кислоты с рКл < 13 отдают протоны этой поверхности, образуя заряженные сопряженные основания, которые сильно адсорбируются на поверхности. Сообщается, что при использовании сульфата кальция в качестве связующего поверхность оксида алюминия нейтрализуется и, следовательно, центры селективной адсорбции уничтожаются. Оксиды алюминия обладают уникальной селективностью к ароматическим углеводородам. Параметр а косвенно характеризует среднюю поверхностную энергию таких адсорбентов, как оксид алюминия. В ходе систематического исследования [112] было показано, что оксиды алюминия, приготовленные различными способами как при высокой, так и при средней температуре, характеризуются значениями а, равными 0.30-0.34 (отн. влажность 5%). К сожалению, имеются данные только при одном значении относительной влажности, для которой характерны близкие значения поверхностной энергии. Полученные результаты согласуются с данными ИК-спектров у- и Т1-А12О3 "хроматографические" полосы ОН занимают в спектре одно и то же положение. Более того, было найдено, что величина а для высокотемпературных а -А12О3 (удельная поверхность 32 мУг) практически постоянна во всем интервале изменения относительной влажности. Значение а для низкотемпературного ]-АЬОз (удельная поверхность 240 лУг) уменьшается при увеличении покрытия поверхности молекулами [c.376]

    Ион ОН воды связывается с катионом (акцептируется непо-деленная пара кислорода), а протон — легко отдается аниону (кислотный центр Бренстеда). Если протон притягивается сильнее к иону кислорода, чем ОН к катиону, то вещество будет проявлять основные свойства. При дегибридизации поверхности незанятые орбитали катионов будут акцептироваться поверхностными состояниями (кислые центры Льюиса), а орбитали ионов [c.43]

    Поверхностные гидроксильные группы окиси алюминия ведут себя как очень слабые бренстедовские кислотные центры, в водной среде более слабые, чем гидроксильные группы на поверхности двуокиси кремния [51]. При адсорбции аммиака на у-окиси алюминия, прокаленной при 1070 К, ионы NH фактически не образуются [50]. Однако кислотные центры, по-видимому, участвуют в дегидратации третичных спиртов [52] — реакции, которая сопровождается перегруппировкой углеродного скелета, протекающей, как полагают, через стадию образования иона карбония. Пока не ясно, могут ли эти бренстедовские кислотные центры, обусловленные остаточной гидратацией поверхности, отдавать протон в реакциях изомеризации углеводородов по карбоииевому механизму. Финч и Кларк [53] пришли к выводу, что такую возможность полностью исключить нельзя. Из работы Мак-Айвера и др. [51, 188] определенно следует, что такие реакции, как изомеризация олефинов и крекинг углеводородов, могут протекать и на бренстедовских, и на льюисовских центрах эти исследователи установили, что с увеличением температуры дегидратации окиси алюминия выше 770 К роль льюисовских центров возрастает. Содержание гидроксильных групп может быть особенно низким при значительной концентрации галогена так, Финч и Кларк [53] сообщили, что содержание ОН-групп на поверхности окиси алюминия с 3—7% F после дегидратации при [c.59]

    Изучение ультрафиолетовых спектров молекул ароматических аминов (являющихся типичными каталитическими ядами), с одной стороны, в состоянии физической адсорбции и, с другой стороны, В состоянии прочной квазихимической связи с поверхностными активными центрами, представляет интерес в связи с исследованиями природы активных центров алюмосиликатных катализаторов. Сопоставляя изменения, наблюдаемые в спектрах адсорбированных молекул, с известными изменениями, которые испытывают спектры ароматических аминов в активных растворителях типа протонных и апротонных кислот, можно надеяться получить сведения о характере взаимодействия амина с активными центрами и о природе последних. Особый интерес представляет сравнение спектров ароматических аминов, адсорбированных на поверхности алюмосиликагеля и бентонита, яв/яюшихся катализаторами в реакциях крекинга, и на поверхности силикагеля, не являющегося таким катализатором. [c.56]

    С целью дальнейшего изучения природы специфических активных центров алюмосиликатных катализаторов нами были получены спектры поглощения молекул анилина, адсорбированных на образцах алюмосиликагеля, синтезированного и отравленного ионами Na+ и Li+ И. Ф. Московской в лаборатории К- В. Топчиевой . Отравление произв одилось в растворах солей Na СН3СОО и Li СН3СОО в результате замены поверхностных протонов на ионы Na+ и Li+. По данньгм К. В. Топчиевой и И. Ф. Московской, каталитическая активность (а) исходного алюмосиликагеля, отравленного Na+ и отравленного Li+, составляла соответственно 0,41 0,01 0,04. [c.58]

    Что касается природы активных центров поверхности катализатора, то ответственными за ионный крекинг предполагаются льюисовские кислотные центры и пассивные кислотные центры Бренстеда [48] последние, по-видимому, возникают благодаря присоединению протонов к поверхностным катионным вакансиям. Свободнорадикальный процесс дегидрирования, по предложению авторов [46], вероятно, инициируется особыми дегидрирующими центрами, которыми, очевидно, могут служить катионы на поверхности окисных катализаторов. Исходя из этой точки зрения, можно заключить, что на поверхности А12О3 высокой чистоты существуют оба вида центров, вызывающих соответственно ионный и радикальный крекинг, в то время как для 2пО характерны активные центры только последнего типа. [c.155]

    Изучая инфракрасные спектры адсорбированных аминов, можно отличить центры типа (35) и типа (36) или близкие к ним. В первом случае должны образовываться ионы типа аммония из МНз, пириди-ния из пиридина и т. д. Если же возникает водородная связь, например, по схеме (30), в спектрах должны сохраниться смещенные полосы поглощения исходных аминов и возмущенных поверхностных ОН-групп, причем возмущение ОН-группы тем больше, чем более кислыми свойствами она обладает. Согласно Теренину [230, 231], свободных протонов на поверхности алюмосиликатных катализаторов, освобожденных от адсорбированной воды, не наблюдается, а адсорбированные амины образуют с поверхностными ОН-группами водородную связь (см. также [232—234]). Изучение состояния атомов водорода методами ядерного магнитного резонанса [235, 236] также показало, что большинство протонов в алюмосиликате находится на поверхностных 81—ОН-группах, которые по свойствам почти не отличаются от этих же групп силикагеля. [c.69]

    Центральным моментом обзора является обсуждение двухцентрового приближения для расчета формы потенциальных кривых в промежуточных комплексах каталитических реакций. Оно проделано на примере элементарной стадии переноса протона в гетерогенном кислотном катализе, где активными центрами служат поверхностные гидроксильные группы, обладающие высокохарактеристическими валентными колебаниями. Вследствие малой массы протона и угловой структуры группировок М—О—Н их потенциальные кривые хорошо описываются простейшей моделью ангармонического осциллятора. [c.9]

    Естественно, что отмеченная пониженная тенденция к переносу протона сказывается и на механизме гетерогенно-каталитических реакций с участием поверхностных гидроксильных групп. В частности, многие из реакций, например реакция ге-тероизотопного обмена с молекулами дейтерия, тяжелой воды, ацетилена и др., протекают не через промежуточное образование протонированных соединений, а по синхронным механизмам [31, 32]. В последнем случае происходит одновременный перенос двух протонов навстречу друг другу — от поверхности твердого тела к адсорбированной молекуле и в обратном направлении. Это заключение основано на сопоставлении рассчитанных из спектральных данных энергий активации переноса протона с измеренными кинетически. Оно подтверждается и квантовохимическими расчетами, выполненными с помощью кластерных моделей бренстедовских кислых центров на поверхности кремнезема и цеолитов [40—42]. Возможно, что синхронные, или концертные, механизмы распространены в гетерогенном кислотном катализе гораздо шире, чем это принято думать, и реализуются также для реакций с участием многих других молекул, обладающих умеренным сродством к протону (дегидратация спиртов, изомеризация олефинов, крекинг олефинов и парафинов и др.) [43]. Более детальное обсуждение особенностей механизма гетерогенного кислотного катализа по сравнению с гомогенным выходит за рамки настоящего обзора. [c.29]

    Каталитическая активность окиси алюминия, обработанной соляной кислотой, обусловлена главным образом наличием на ее поверхности химически связанного хлора. Как уже отмечалось, последний может появиться только в результате взаимодействия поверхностных гидроксильных групп с Р1С1. Однако не каждый поглощенный ион хлора способствует появлению активного центра. Атомы алюминия в окиси алюминия в зависимости от своего положения в кристаллической решетке могут быть связаны с одной или с двумя гидроксильными группами. Мы считаем, что окись алюминия приобретает каталитические свойства только в том случае, когда ионом хлора замещается одна из парных гидроксильных групп, причем атом водорода другой гидроксильной группы благодаря соседству электроотрицательного хлора становится подвижным и способным к диссоциации с образованием протона. [c.72]

    Поверхностная концентрация гидроксильных групп у кремнеземов составляет около 5 ОН-групп на 1 нм (8—9 мкмоль/м ) [44]. В том случае, когда в состав силикагеля включено небольшое количество алюминия, последний образует координационно-не-насьщенпый апротонный центр, способствующий протонизации соседнего гидроксила [45]. В результате на поверхности алюмосиликагеля соседствуют апротонный (льюисовский) и протонный (бренстендовский) кислотные центры, что существенно увеличивает специфическую адсорбционную активность силикагеля. Подобный же льюисовский адсорбционный центр находится па поверхности пористых стекал (за счет атомов бора, неполностью удаленных при выщелачивании стекла). [c.73]

    Аминирование поверхности кремнеземов обычно проводится путем обработки аммиаком хлор- и фторсодержащих поверхностных соединений. Фолман [96] приписал полосы поглощения 3520 и 3445 см , возникающие после обработки аммиаком хлорированного хлористым тионилом пористого стекла, поверхностным группам типа NH2, а полосы поглощения 3150, 3050 и. 2805 см — образующемуся в процессе реакции NH4 I. Другая интерпретация возникающих при такой поверхностной реакции полос поглощения дана в работе [51]. Появляющиеся при адсорбции аммиака на частично фторированном пористом стекле полосы поглощения 3365 и 3280 см приписываются аммиаку, адсорбированному на апротонных кислотных центрах поверхности, которыми в случае пористого стекла являются атомы бора (см. главу VI). Полоса поглощения 3450 см относит- ся к валентным колебаниям NH в ионе NH4+, образующемся при вазимодействии аммиака с сильно кислыми протонными центрами фторированной поверхности. [c.128]


Смотреть страницы где упоминается термин Поверхностные центры протонные: [c.351]    [c.138]    [c.50]    [c.257]    [c.44]    [c.44]    [c.179]    [c.66]    [c.14]    [c.76]    [c.200]    [c.221]    [c.22]    [c.269]   
Химия привитых поверхностных соединений (2003) -- [ c.28 , c.29 , c.56 , c.75 ]




ПОИСК







© 2025 chem21.info Реклама на сайте