Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбционная теория органических

    В связи с преобладающим адсорбционным эффектом органических ингибиторов кислотной коррозии особое значение для понимания механизма их действия и для рационального подхода к созданию новых ингибиторов приобретает заряд поверхности корродирующего металла, т. е. его ф-потенциал. Применение приведенной шкалы потенциалов иозволяет использовать данные электрокапиллярных измерений на ртути в растворах, содержащих органические соединения, для оценки их эффективности в качестве ингибиторов при кислотной коррозии железа и других металлов. Значение ф-потенциала корродирующего металла иозволяет не только предсказать, какие вещества могут быть ингибиторами, но и рассчитать коэффициенты торможения. Л. И. Антропов в разработанной им формальной теории ингибиторов показал, что наблюдаемый в области малых и средних заполнений коэффициент ингибирования у представляет собой произведение ряда частных коэффициентов ингибирования  [c.508]


    Обобщение экспериментального материала подтвердило предположение о связи действия органических добавок на электродный процесс с их адсорбцией на электродах. Адсорбционная теория действия добавок при электролизе нашла развитие в работах ведущих советских электрохимиков, в первую очередь А.Н.Фрумкина и его школы [272, 328 - ЗЗ ], Непосредственной основой, на базе которой рассматривается влияние органических добавок на электролиз, является теория замедленного разряда [200]. [c.86]

    Наиболее обоснованными теориями, объясняющими механизм действия органических ингибиторов, являются адсорбционная и пленочная (рис. 25). [c.43]

    Одной из них является возникновение и быстрое развитие новых теоретических представлений в органической химии. Оказалось, что именно углеводороды, состоящие из атомов всего двух элементов, являются нередко наилучшими объектами для экспериментальной и теоретической проверки новых представлений с целью дальнейшего развития теории органической химии. Другая причина — возникновение принципиально новых и очень информативных методов исследования течения реакции и строения катализаторов (спектральные, адсорбционные, рентгеновские, хроматографические, магнитные методы, использование изотопов в катализе, приме- [c.5]

    Суммируя сказанное, можно утверждать, что адсорбционная теория объясняет большую часть характерных особенностей КРН металлов, а также некоторые виды неэлектрохимического растрескивания, например растрескивание стекла в воде, пластмасс в органических растворителях, металлов в органических средах, в жидких металлах, в атмосфере водорода. Справедливость этой модели подтверждается тем, что основной механизм влияния разрушающей среды одинаков для всех материалов. [c.142]

    При частичном отравлении катализаторов контактными ядами происходит очень значительное уменьшение каталитической активности или полная потеря ее, в то время как адсорбционная способность уменьшается в гораздо меньшей степени. При объяснении этого явления в 1926 г. было сделано предположение, что каталитическая реакция, в отличие от адсорбции, может происходить только на активных центрах, имеющихся на поверхности катализатора. Идея качественно неоднородной поверхности развита в работах советских ученых во всесторонне обоснованную теорию каталитической активности реальных контактов. Вопрос о структуре активных центров подробно рассмотрен в работах по теории органического катализа и в теории ((ансамблей . Теория органического катализа для интерпретации механизма гетерогенно-каталитических реакций широко применяет модельные построения, в которых учитываются форма и размеры подвергаемых превращению молекул, а также тип и параметры кристаллических решеток применяемых в реакции катализаторов. С разработкой различных вопросов теории органического катализа связано большое число экспериментальных работ советских ученых. Подробней эта теория будет изложена несколько ниже, здесь лишь укажем, что вскоре после возникновения теории органического катализа ее положения были подтверждены квантово-механи- [c.6]


    Известно, что адсорбционная способность органических веществ определенного гомологического ряда увеличивается с увеличением молекулярного веса соединений. В связи с этим в качестве аргумента в пользу теории адсорбционного механизма действия ингибиторов приводилось наблюдаемое увеличение защитного действия алифатических аминов с удлинением их углеродной цепи  [c.56]

    Теория перенапряжения, или катодного действия, как следует из работ последних лет, опровергнута экспериментально. После того как было обнаружено, что все без исключения органические ингибиторы действуют как поляризаторы анодного процесса в большей степени, чем катодного, и в течение 30 лет не удалось найти прямой зависимости между эффективностью ингибиторов и ростом перенапряжения водорода, сторонники теории катодного действия ингибиторов постепенно перешли на позиции адсорбционной теории. [c.58]

    Основные методы изучения адсорбции органических соединений на жидких электродах основаны на измерениях пограничного натяжения или дифференциальной емкости двойного слоя в зависимости от потенциала электрода. Количественная теория полярографических максимумов второго рода [1—3] позволяет использовать для исследования адсорбции органических соединений на жидких металлах также данные по торможению органическими молекулами тангенциальных движений капельного электрода, работающего в условиях, благоприятствующих появлению максимумов 2-го рода. Поскольку ток заряжения, текущий на капельный электрод, прямо пропорционален поверхностной плотности заряда, то адсорбционные характеристики органического вещества в случае жидких электродов могут быть определены, кроме того, из полярографических токов заряжения [4—6]. Последние два метода не получили, однако, широкого распространения при изучении адсорбции органических веществ. В связи с этим мы ограничимся рассмотрением методов измерения пограничного натяжения, а также методов измерения дифференциальной емкости последние могут быть использованы как для жидких, так и для твердых металлов. [c.5]

    Центральная роль в теории НДС отводится представлениям о существовании дисперсных частиц, или структурных единиц, различного типа. Особенностью последних, в отличие от дисперсных частиц классических дисперсных систем, является то, что они формируются в нефтяных системах, состоящих из большого числа компонентов, в том числе гомологов, относящихся к различным классам органических соединений с мало различающимися потенциалами межмолеку-лярного взаимодействия. Поэтому существование совокупности молекул с близкими потенциалами меж-молекулярного взаимодействия как единого целого в виде структурных единиц находится в сильной зависимости от внешних условий (температуры, давления, изменения состава дисперсионной среды и т. д.). Внутреннее строение структурных единиц, состоящих из ядра и примыкающего к нему адсорбционно-сольватного слоя, также имеет свои особенности, заключающиеся в условности границ раздела между ядром, адсорбционно-сольватным слоем и дисперсионной средой. Под влиянием внешних условий происходит экстремальное изменение размеров ядра и адсорбционно-сольватного слоя структурных единиц НДС, что проявляется через соответствующее экстремальное изменение макросвойств НДС и, несомненно, влияет на результаты их технологической переработки. Отметим, что в отличие от принятой в настоящее время технологии предлагаемая физико-химическая технология, обеспечивающая интенсификацию как недеструктивных, так и деструктивных технологичес- [c.7]

    Как следует из теории, изложенной во второй главе, чем уже и выше пики адсорбции — десорбции на С, -кривых, тем сильнее аттракционное взаимодействие между молекулами в адсорбционном слое. При очень сильном аттракционном взаимодействии, когда на поверхности электрода образуется конденсированный слой из молекул органического вещества, лики на С, -кривых вырождаются в вертикальные линии, как это показано на рис. 1.12,0. Ряд свойств адсорбированных на электроде конденсированных слоев будет рассмотрен во второй и четвертой главах. [c.25]

    Согласно теории комплексообразования, коллоидные соединения образуют комплексы с катионами металлов. Вследствие прочной адсорбционной связи между органическими коллоидами и катионами металлов процесс разряда комплексных ионов замедляется, поэтому разряд металла на катоде в присутствии коллоидной добавки протекает при повышенной поляризации. Поверхностноактивные вещества могут адсорбироваться либо всей поверхностью катода, либо отдельными участками его поверхности. В первом случае разряд катионов осуществляется через сплошную пленку адсорбированного вещества, во втором — разряд катионов и осаждение металла происходят только на свободных участках поверхности катода. [c.132]


    Осветление воды гидролизующимися коагулянтами ранее связывали с нейтрализацией, как правило, отрицательно заряженных частиц природных вод катионами А13+ и Ре +. Такой подход представляется естественным и с позиций современной теории, так как многовалентные ионы интенсивно адсорбируются, способны даже перезарядить частицу и в соответствии с правилом Шульце — Гарди их критические концентрации значительно ниже, чем для одно- и двувалентных ионов. Однако его упрощенность ясна, если учесть, что удаляются также и органические загрязнения, а стабильность дисперсных загрязнений обусловлена не только 3(арядом, но и защитными адсорбционными слоями, [c.340]

    Одним из наиболее важных моментов теории адсорбционной поляризации следует считать положение о том, что торможение при переносе заряда, если 0 i= 1, не может быть сведено только к блокировке поверхности и к изменению г з1-потенциала в результате адсорбции органических веществ на электроде. В этих условиях на первый план выступает взаимодействие участников электродной реакции (прежде всего ионов металлов) с адсорбированными [c.39]

    Адсорбционная хроматография используется главным образом для разделения веществ липофильного характера. Хроматографическое разделение гидрофильных соединений, прежде всего аминокислот, стало возможным после открытия Мартином и Синджем [15] в 1941 г. распределительной хроматографии. Эти авторы использовали в своей работе столбик силикагеля, насыщенного водой. На верхний конец столбика наносили смесь веществ, предназначенную для разделения, и промывали соответствующими органическими растворителями. Подвижной фазой, таким образом, служил органический растворитель, а неподвижной — вода, удерживаемая силикагелем. Разделение аминокислот в этих условиях было возможно лишь после их ацетилирования.. Кроме того, получить силикагель со стандартными свойствами было очень трудно. В связи с этим в качестве материала, способного удерживать на своей поверхности воду, авторы предложили использовать целлюлозу [16]. Целлюлоза оказалась пригодной для разделения свободных аминокислот. От использования целлюлозы как носителя неподвижной фазы оставался всего один шаг к замене порошкообразного носителя полосками бумаги. Так была открыта хроматография на бумаге. В 1944 г. английские авторы опубликовали сообщение [3] об использовании в качестве носителя водной фазы целлюлозы в виде фильтровальной бумаги, в качестве подвижной фазы был испробован ряд растворителей. В 1952 г. Мартин и Синдж были удостоены Нобелевской премии за открытие распределительной хроматографии типа жидкость — жидкость. В том же году Джеймс и Мартин [10], исходя из теоретических положений адсорбционной хроматографии [6], разработали теорию распределительной хроматографии типа жидкость — газ. [c.12]

    Теория адсорбции полимеров так тесно связана с собственно химией полимеров и настолько специфична, что мы ограничимся лишь самыми общими представлениями. Прежде всего следует отметить, что, поскольку нелинейные полимеры малорастворимы, исследования адсорбции из растворов проводятся в основном на линейных макромолекулах, например синтетических каучуках, различных видах целлюлозы, метакрилате, поливиниле, полистиролах и т. д, [17, 34, 35]. Чаще всего в качестве растворителей используют сильнополярные органические растворители, а в качестве адсорбента — уголь (что, по-видимому, обусловлено спецификой резиновой промышленности). Далее, полимеры, получаемые обычными способами, представляют собой полидисперсную смесь, и их адсорбцию следует рассматривать как адсорбцию многокомпонентной системы, в которой важную роль могут играть эффекты фракционирования. Авторы более поздних работ пытаются изучать адсорбцию полимеров одного молекулярного веса или хотя бы фракций с узким распределением молекул по весу. Кроме того, как и на поверхности раздела вода—воздух (разд. П1-12), на поверхности раздела твердое тело — раствор возможно большое число конфигураций макромолекул. Вероятно, поэтому адсорбционное равновесие может устанавливаться крайне медленно уровень адсорбции, как будто установившийся после одно- или двухчасовой выдержки, может медленно смещаться вверх в течение многих дней или месяцев (см. [36]). Для медленной адсорбции полимеров Геллер [37] дает уравнение [c.317]

    Проблема эмульсионного травления является, по сути, ответвлением общей проблемы ингибирования органическими ПАВ процесса растворения металлов в кислотах, осложненной к тому же наличием углеводорода и потребностью ингибировать боковые грани печатающих элементов при свободном растворении пробелов. Известно, что для ингибирования кислотной коррозии металлов, где в отличие от эмульсионного травления требуется ингибирование всей поверхности, что существенно упрощает процесс, до настоящего времени нет еще общей теории, связывающей строение молекулы органических ПАВ с адсорбционной и ингибирующей способностью, что свидетельствует о значительной сложности процесса. [c.109]

    В связи с этим большой интерес представляют работы, в которых пытаются связать ингибирующие свойства органических соединений с их структурными особенностями. В этой области об-ш ирные исследования были проведены Хаккерманом [82], который сформулировал основные положения адсорбционной теории органических ингибиторов. По этой теории ингибирующие свойства многих соединений определяются электронной плотностью на атоме, являющемся основным реакционным центром. С увеличением электронной плотности у реакционного центра хемосорбци онные связи между ингибитором и металлом л силиваются. Иссле дуя ингибирующие свойства пиридина и его производных, Хак керман установил, что защитные свойства этих соединений, т. е способность уменьшать коррозию, действительно увеличиваются по мере увеличения электронной плотности на атоме азота в ряду пиридин< 3-пиколин<2-пиколин<4-пиколин. [c.146]

    В основу адсорбционной теории коагуляции был положен следующий экспериментальный факт. Коагуляция отрицательного золя АзгЗ ) при добавлении хлористого бария сопровождается увлечением в коагулят (осадок) ионов бария, концентрация ионов хлора в растворе при этом остается неизменной. Позднее было установлено, что при коагуляции АзгЗз различные катионы поглощаются в эквивалентных количествах и что увлеченные в осадок ионы могут быть замещены ионами других металлов при обработке коагулята солями этих металлов. По данным Фрейндлиха, количество ионов, увлекаемых коагулятом, зависит от концентрации электролита в растворе, и эта зависимость может быть выражена изотермой адсорбции. Отсюда был сделан вывод, что должна существовать тесная связь между коагуляцией и адсорбцией ионов. Согласно таким представлениям, ионы, которые обладают большей адсорбируемостью (например, органические ионы), проявляют себя и как более эффективные коагуляторы при этом предполагается, что снижение -потенциала частиц связано с уменьшением числа зарядов частиц вследствие нейтрализации их адсорбирующимися ионами-коагуляторами. [c.339]

    Последние десятилетия в развитии отечественной агрохимии внесли много нового в учение 4 питании культур микроэлементами, частичном усвоении растениями органических соединений (начиная с И. С. Шулова, 1913) чрезвычайно важн1 1м явилось открытие синтетической деятельности корней, исследованное преимущественно с помощью меченых атомов, но выявленное еще до этого Д. А. Сабининым (1928) и А. А. Шмуком (1945). Все большее иризнашф находит адсорбционная теория поступления веществ в корневую систеи 1у, базирующаяся на ионном обмене между корневыми волосками и окру>к(ающим их раствором в почве. Значительно усовершенствована методика опытов с растениями и анализа почв для обоснования применения удобрений (в том числе и анализа почв с помощью растений).  [c.15]

    Адсорбционная теория блескообразования на современном ее этапе удовлетворительно объясняет только возникновение катодных пленок и явления катодной пассивации, т. е. повышенное перенапряжение при электроосаждепии металлов из простых электролитов. Она учитывает только общее влияние тех или иных добавок, не вникая во внутренний механизм действия самих блескообразователей. Однако известно, что не все адсорбируемые на катоде органические и неорганические добавки вызывают блеск гальваноосадков. Также установлено, что в ряде случаев настоящими блескообразователями являются не первичные добавки, а продукты их электрохимического превращения на катоде. [c.195]

    Адсорбционная теория действия ингибиторов впервые была изложена в 1923 г. Сивертсом и Люгом , изучавшими защитное действие органических веществ (алкалоидов, ароматических аминов, синильной кислоты и др.) в растворах серной и соляной кислот. [c.48]

    Из органических веществ наибольшим защитным действием в растворах соляной кислоты обладают амины и альдегиды. Ингибирующее действие аминов в соляной кислоте обычно несколько эффективнее, чем в растворах H2SO4. Сторонники адсорбционной теории действия ингибиторШ объясняли эту особенность тем, что в растворах соляной кислоты поверхность металла покрыта адсорбированными ионами хлора 1 , которые способствуют притяжению сложных катионов производных аммония к поверхности . Защитное действие аминов возрастает с увеличением их молекулярного веса. [c.85]

    Вопрос о взаимодействии между катализатором и реагирующими веществами теоретически был рассмотрен Д. И. Менделеевым, впервые указавшим, что при каталитических явлениях можно улавливать промежуточную форму взаимодействия . Классифицируя химические процессы, Менделеев разбирает три класса превращений а) поглощение одного вещества другим (в современной терминологии —сорбция) б) взаимное превращение двух веществ — некатали--тическая химическая реакция в) превращение одного вещества в результате воздействия на него другого, остающегося в конце процесса неизменным, — катализ. По Менделееву, сущность гетерогенного (контактного) процесса заключается в следующем. Во-первых, в обязательном соприкосновении реагирующих веществ с катализатором, в результате чего может происходить реакция или распадения, или соединения, или замещения, или тот и другой вид реакций... во-вторых, в том, что при касании > изменяется характер внутриатомных движений в реагирующих молекулах, приводящий к переходу их в состояние, реанционноспособное в определенном направлении. Таким образом, во взглядах Менделеева содержатся идеи, которые легли в дальнейшем в основу двух, долгое время обособленно развивающихся теоретических концепций химической теории, получившей название теории промежуточных соединений, развитие которой х вя-зано с именами Сабатье и Сандерана (основное положение этой теории заключается в определяющей роли промежуточного нестойкого соединения между катализатором и реагирующими веществами) физической теории — различных вариантов адсорбционной теории и так называемой теории деформации, согласно которой при адсорбции происходит разрыхление (в пределе — разрыв) связей в молекулах, приводящее затем к их перераспределению. Эти взгляды получили подтверждения в работах школы Н. Д. Зелинского в области органического катализа, на основании которых в конечном счете были разработаны конкретные модели мультиплетной теории. [c.279]

    В силу описанных осложнений, не учитываемых теорией и усугубляемых высокими абсолютными значениями токов заряжения, резко возрастающими с увеличением скорости изменения потенциала электрода, имеющиеся в литературе оценки возможностей нестационарных методов с точки зрения количественного исследования кинетики электродных процессов с участием органических соединений оказываются существенно завышенными. Разумеется, это справедливо и в отношении тех вариантов методов, которые позволяют изучать поведение промежуточных продуктов электродных реакций. Поэтому к результатам, получаемым с помощью коммутаторной и циклической вольтамперметрии, хронопотенциометрии с реверсом тока, необходимо подходить достаточно осторожно, используя их главным образом для качественной трактовки механизма процесса. Вероятно, более оптимистично следует отнестись к проведению подобных исследований в органических растворителях, где адсорбционные процессы могут играть незначительную роль, что, однако, в каждом конкретном случае требует специальной проверки. [c.207]

    В развитие теории воздействия органических веншств на электроосаждение металлов большой вклад внесен М. А. Лошкаревым 1821. Независимо от механизма действия органических ве[цеств на электроосаждение металлов первопричино является их адсорбция на электроде. В дальнейшем механизм их воздействия следует рассматривать с позиций теории замед-лешюго разряда. Решение проблемы улучшения качества катодных осадков металлов возможно за счет существенного торможения разряда ионов адсорбционным слоем органических веществ с последующим преодолением возникшего барьера при помощи электрического поля. При этом оказалось, что процессы разряда таких 1ЮН0В, как 8п" , [c.61]

    Из приближенной теории следует, что адсорбционное торможение тангенциальных движений растет пропорционально квадрату адсорбируемости органического вещества и, следовательно, в гомологическом ряду — пропорционально квадрату коэффициента Траубе. Высокая чувствительность максимумов 2-го рода к адсорбции ПАОВ послужила основой для разработки адсорбционного полярографического анализа, который используется при определении суммарного количества органических загрязнений в воде (см. 1.2) и в растворах солей, а также при изучении миграции ПАОВ в водные растворы из различных полимерных материалов, ионообменных смол и др. Калибровка осуществляется по какому-либо известному ПАОВ (см. рис. 4.14, б). Адсорбционный полярографический анализ позволяет определить наличие примесей ПАОВ в водном растворе при концентрации порядка 10- М в пересчете на [(С4Нд)4Ы1Вг. [c.233]

    Основную трудность при сопоставлении модели трех параллельных конденсаторов с экспериментальными данными представляет определение двенадцати адсорбционных параметров mi Ш2 Воь Во2, йи U22] O12 Гв Сь Сг фл/i и фл/2- Эта задача остается нерешенной до настоящего времени, хотя основные уравнения модели трех параллельных конденсаторов были получены еще в 1969 г. (Б. Б. Дамаскин). Поэтому количественное сопоставление теории и опыта ие проводилось. Однако качественные закономерности, вытекающие из модели трех параллельных конденсаторов при ряде упрощающих допущений (mi = l тг = 2 0 12 = 0 22 = = 0), находятся в согласии с экспериментальными данными. Например, при фллт фл г модель описывает переход от одного адсорбционного состояния к другому при изменении потенциала электрода. Если при этом аттракционная постоянная ап не слишком мала, то в согласии с опытом такой переход сопровождается появлением на С, -кривых третьего промежуточного максимума — пика переориентации. При условии i< q и Сг<Со десорбция органического вещества происходит при достаточно больших как отрицательных, так и положительных зарядах электрода. Если же i< q 2, то десорбции плоско адсорбированных молекул при положительных зарядах не происходит. В этих условиях на теоретической С, -кривой имеются только два пика, из юторых анодный является пиком переориентации. Аноднее этого пика С, -кривая сливается с Со,. Ё-кривой фона, хотя это не означает десорбции органического вещества с поверхности электрода. Экспериментально такие результаты были получены на ртутном электроде в растворах анилина на фоне 1 М КС1. [c.73]

    Вывоя,ы термодинамической теории адсорбции органических веществ не могут быть прямо использованы для трактовки необратимой адсорбции органических веществ на электродах из металлов группы платины, однако, учитывая допустимость применения термодинамических представлений к процессу образования промежуточного активированного адсорбционного ко1мплекса, следовало ожидать, что они качественно правильно будут отражать характер влияния адсорбции водорода и кислорода на процессы адсорбции органических веществ на платиновых металлах. [c.109]

    Осуществленное А. Н. Фрумкиным с сотрудниками измерение скачка потенциала в адсорбционном слое в сочетании с другими методами исследования позволило выяснить характер расположения молекул на поверхности, а также закономерности взаимодействия между ионами двойного слоя и диполями адсорбированных органических молекул. М. А. Проскурнин, Б. В. Эрщлер, Б. Б. Дамаскин и др. детально рассмотрели и усовер-щенствовали методику измерения емкости двойного электрического слоя на границе металл — раствор, в результате чего удалось опытным путем определить абсолютное значение емкости и подтвердить теорию диффузионного строения двойного слоя. Эти исследования выяснили причины перезарядки коллоидов и привели к новому методу определения потенциалов нулевого заряда металлов. [c.10]

    Несмотря на то что адсорбция из растворов используется в технологии у ке давно, теория адсорбции растворенных веществ разработана значительно слабее, чем теория адсорбции газов и паров. Одна из основных причин заключается в том, что до сих нор мало разработана теория строения жидкостей, особенно теория строения жидкой воды. Физическая теория водных растворов органических веществ находится в самой начальной стадии развития. Это, естествепно, затрудняет создание строго физической теории адсорбции из растворов. Однако возрастающее значение адсорбции для технологии очистки промышленных сточных вод заставляет уделять особое внимание теории адсорбции органических веществ из водных растворов и особенно анализу условий, определяющих адсорбционное равновесие при адсорбции нескольких компонентов смеси растворенных веществ. [c.3]

    В ряде случаев при полярографировании растворов органических веществ, образующих обратимые окислительно-восстановительные системы, на полярограммах наблюдаете,я появление небольшой дополнительной ступени, которой, если судить по потенциометрическим данным, не должно было бы быть. Впервые подобная волна была отмечена Р. Брдичкой и Е. Кноблохом [351] па полярограммах восстановления лактофлавина. Независимо от указанных исследователей такую же по характеру волну на полярограммах а-оксифеназина наблюдал О. Мюллер [352], который специальными опытами показал, что эта волна не может быть приписана восстановлению каких-либо примесей в растворе, и объяснил ее появление существованием неизвестной модификации (или таутомерной формы) изучаемого соединения. Брдичка, наблюдавший подобную волну также на полярограммах метиленовой голубой [353], предположил, что появление подобных волн обусловлено адсорбционными явлениями, и на основании этого предположения развил теорию адсорбционных волн [278]. [c.77]

    Специфическое поведение катализатора, осажденного на носителе, объясняется с помощью теорий адсорбции [269]. Если суммарные адсорбционные силы у массы катализатор —носитель для насыщенных реагирующ 1х соединений больше, чем для ненасыщенных, то катализатор годится для дегидрогениза-ционных процессов в противнем случае вследствие адсорбции ненасыщенных соединений система будет вести себя как катализатор гидрогенизации. Если применяется смешанный адсорбент, который имеет адсорбционные центры, состоящие из различных молекул или агрегатов, то силовые поля адсорбента определятся комбинированием действия обоих компонентов [370]. Например активированный уголь, смешанный с гелем кремневой кислоты, легко адсорбирует газы и пары (аммиак, водяной пар и органические вещества), тогда как чистый уголь легче адсорбирует вещества кислого характера, например-хлор. [c.476]

    В отличие от гидрогенизации сложных органических соединений удельная активность металлов при окислении СО резко возрастает в области малых степеней заполнения платиновых и палладиевых катализаторов на окиси алюминия, для которых характерно резкое возрастание удельной адсорбции водорода и окиси углерода с преобладанием форм с высокой энергией связи [1, 11, 12, 13]. Анализ реакционной способности платиновых и палладиевых катализаторов окисления окиси углерода методом теории активных ансамблей показал, что активным цеьггром является одноатомный ансамбль, который формируется, как и в гидрогенизационных процессах, на особо активных местах носителя, образуя с ним смешанный ансамбль, состояи ий из атомов металла и особо активных мест у-АХгОз. Адсорбционными центрами у-АЬОз, гранецентрированная решетка которой представляет дефектную шпинель с недостатком катионов в окта- и тетраэдрических междоузлиях, являются атомы алюминия. [c.56]

    Кг.... Выражение (4) следует из общих представлений, аналогичных развитым в мультиплетной теории катализа для оценки адсорбционного потенциала смешанного катализатора и при рассмотрении избирательности действия катализаторов. Действительно, чем прочнее комплекс [К—М], тем больше инкременты Ялк.... Следовательно, величины АЯак характеризуют прочность связи модификатора с катализатором. Увеличение этой величины снижает д и увеличивает энергетический барьер Ед (по абсолютной величине). Это взаимодействие, которое можно характеризовать константой устойчивости соответствующего комплекса. К[км] в согласии с принципом энергетического соответствия мультиплетной теории должно отвечать некоторому оптимальному значению для получения максимального эффекта. Здесь, по-видимому, определенный интерес могут представлять корреляции между каталитической активностью модифицированных катализаторов и константами устойчивости соответствующих комплексов металл — органическое соединение. [c.73]


Смотреть страницы где упоминается термин Адсорбционная теория органических: [c.12]    [c.245]    [c.380]    [c.171]    [c.2]    [c.158]    [c.171]   
Ингибиторы коррозии (1977) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте