Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титриметрическое определение с перманганатом

    Титриметрическое определение перманганата [c.159]

    Обратное титрование. Например, при титриметрическом определении содержания хрома в хромовых рудах и концентратах, содержащих >0,05 %V (см. Хром ), содержание оксида хрома (Xi %) вычисляют по формуле X =(VK—V )T lOO/ G, в которой V—объем раствора соли Мора, взятый для анализа, мл К — поправочный коэффициент или соотношение объемов растворов перманганата калия и соли Мора Vi — объем раствора перманганата калия, израсходованный яа титрование избытка раствора соли Мора, мл Ti — титр 0,1 н. раствора перманганата калия, выраженный в граммах оксида хрома в 1 мл раствора G — навеска руды или концентрата, г. [c.32]


    Для титриметрического определения сульфитов предложены окислители перманганат калия, бихромат калия, сульфат церия (IV), хлорамин Т, хлорит натрия, перхлорат таллия(III) и гексацианоферрат(III) калия [25, 26]. Однако ни один из этих реагентов не имеет преимущества по сравнению с иодом. [c.584]

    Титриметрическое определение с перманганатом [c.157]

    Применение титриметрических методов иллюстрируется примером определения железа(И) титрованием перманганатом  [c.20]

    Подкисленный раствор перманганата калия используют в титриметрическом анализе при определении солей железа(И), пероксида водорода, оксалатов (разд. 3.11). Некоторые реакции марганца и его соединений приведены на рис. 24.5. [c.518]

    Титриметрический метод. Титрование раствором соли Мора. Четырехвалентный ванадий окисляют в сернокислой среде перманганатом калия до пятивалентного состояния. Затем титруют раствором соли Мора с применением индикатора — фенилантраниловой кислоты. Определению мешает вольфрам. [c.341]

    Титриметрический метод определения кальция основан на осаждении кальция в виде оксалата, обработке осадка разбавленной серной кислотой и титровании освободившейся щавелевой кислоты раствором перманганата калия  [c.236]

    В титриметрическом анализе широко используются не только кислотно-основные взаимодействия, но и другие типы аналитических реакций окислительно-восстановительные, реакции комплексообразования. Например, наше определение кальция в образце № 1 в виде оксалата можно завершить не взвешиванием, а окислительно-восстановительным титрованием оксалата перманганатом калия (перманганатометрия) по реакции [c.454]

    В титриметрическом анализе растворы солей гидразина применяют главным образом при потенциометрических определениях неорганических веществ [2—4]. Однако с сильными окислителями (перманганат, соли церия (IV)] сернокислый гидразин реагирует в нестехиометрических соотношениях. [c.261]

    При определении больших содержаний титана находят применение титриметрические методы, основанные обычно на восстановлении Ti (IV) в ТЛ (III) с последующим титрованием его окислителями. Низкое значение нормального окислительно-восстановительного потенциала системы Ti (III)/Ti (IV), равное 0,04 в [82], обусловливает применение сильных восстановителей металлического цинка, кадмия, алюминия, железа, амальгам металлов. Титрование Ti (III) проводят перманганатом калия [83], бихроматом калия [84], ванадатом аммония [85], сульфатом ванадила [86], сульфатом церия [87], сульфатом железа (III) [88] в присутствии роданида калия [89—94], дифениламина [95], вольфрамата натрия [90], фенилантраниловой кислоты и других индикаторов [71] или потенциометрическим способом [91]. Для предотвращения окисления Ti (III) кислородом воздуха восстановленный раствор титана титруют в атмосфере СО2 или в присутствии трехвалентного железа раствором окислителя [92, 96]. Введение в раствор комплексообразующих веществ (сульфаты, ацетаты, фториды) увеличивает потенциал системы Ti (III)/Ti (IV) до 0,1—0,4 в и позволяет проводить определение более точно и надежно без применения инертного газа [93]. [c.59]


    С водородо л азот образует несколько соединений, одним из них является азотистоводородная кислота, вещество крайне неустойчивое. Кислотные свойства ее выражены слабо. Такие окислители, как перманганат калия, соли церия, йод, нитриты и т.д. разлагают азотистоводородную кислоту с выделением свободного азота. Реакции окисления положены в основу газометрических и обратных титриметрических мегодов определения этого соединения. [c.7]

    Некоторые перекисные соединения гидролизуются в присутствии неорганических кислот до перекиси водорода, которую можно определять титриметрическими методами, окисляя щелочным раствором перманганата калия 2, гипохлоритом натрия 222 иди феррицианидом калия 223. Окисление ионами марганца (III) непригодно для количественного определения перекиси [c.195]

    Калий перманганат применяют в титриметрическом анализе для определения содержания различных восстановителей (перманганатометрия). [c.273]

    Предлагается провести титриметрическое определение пероксодисульфата калия K2S2O8 в растворе. Анализ основан на проведении реакции K2S2O8 с ионами Fe " ", взятыми в избытке, с последующим определением избыточного количества ионов Fe путем титрования стандартным раствором перманганата калия. [c.182]

    Кроме того, стандартные растворы NaAsOj применяют в качестве слабого восстановителя для титриметрического определения ряда веществ, особенно свободных галогенов, гипогалогенитов или перманганата. Д [c.192]

    На основе реакции гидролиза карбида кальция разработано несколько методик определения воды. В большинстве из них измеряется количество ацетилена манометрическим [106, 133, 163] или волюмоыетрическим методами [43, 71, 133, 209]. Другие методы, нашедшие ограниченное применение, основаны на сжигании ацетилена, в ходе которого из.меряют интенсивность пламени [36] или расход кислорода [132]. Ацетилен можно измерять и другими способами хроматографически гравиметрически в виде оксида меди(П) после сжигания ацетиленида меди титриметрически с перманганатом после восстановления сульфата железа(1Н) до сульфата железа(П) колориметрически. Эти способы описаны в других главах книги. Удобный, быстрый метод, основанный на измерении потери массы смеси карбида с образцом, описан в гл. 3. [c.565]

    НИИ цепи — Ме — О — Ме — или—Ме Ме совершенно естественно ожидать, что два различных металла могут войти в одну цепь полимерного иона оксо- или гидроксокомплекса, особенно если численные значения растворимости гидроокисей мало отличаются. Подобные явления хорошо известны в аналитической химии ниобия и тантала, которые в обычных (не комплексантах) кислотах находятся.в виде различных полимерных гидроксокомплексов. В связи с этими явлениями многие свойства ниобия и тантала в смеси отличаются от их свойств, когда они находятся в отдельности [55]. Например, ниобий -связывает в комплекс перекись водорода, образуя прочное соединение, имеющее характерную полосу поглощения в ультрафиолете и очень медленно реагирующее с перманганатом [75]. Тантал в солянокислых или сернокислых растворах находится в полимерной форме и при небольших концентрациях перекиси водорода почти не образует комплекса в обычных условиях перекисный комплекс образуется лишь из фторотантала, если прибавить к нему Н2О2 и А1С1з. Таким образом, в обычных условиях можно рассчитывать, что тантал не будет препятствовать фотометрическому или титриметрическому определению ниобия. Однако нри совместном присутствии тантал и ниобий образуют смешанные гидроксокомплексы и ниобий теряет те особые свойства и отличия от тантала, которые присущи ему в растворе, не содержащем тантала [76]. [c.361]

    В титриметрических окислительно-восстановительных методах используют индикаторы двух типов. Индикаторы первого типа образуют окрашенные соединения с определяемым веществом или титрантом. Точку эквивалентности с помощью индикаторов этого типа определяют по исчезновению окраски раствора, если окрашенное соединение было образовано определяемым веществом с индикатором, или по появлению окраски, если окрашенное соединение возникает при взаимодействии индикатора с титрантом. Например, при различных иодометрических определениях, когда в качестве титранта используют раствор иода, точку эквивалентности определяют по появлению синей окраски иодкрах-мала. Если иод титруют тиосульфатом натрия, то точку эквивалентности фиксируют по исчезновению синей окраски. К этому же типу индикаторов можно отнести и интенсивно окрашенные титранты, например КМПО4. В этом случае конец титрования определяют по неисчезающему красному окрашиванию раствора, вызванному добавлением избыточной капли перманганата. [c.272]

    В титриметрическом методе анализа реакции окисления — восстановления используют для количественного определения многих веществ. Так, ионы Ре окисляются перманганатом до ионов Ре +, что дает возможность определить их содержание в растворе, В качестве окислителей применяют кроме перманганата калия также бихромат калия, ванадат натрия, бромат калия и ряд других веществ. Известны и методы титрования восстановителями, например растворами 8пС12, Т СЬ, СгСЬ и др. [c.371]


    Для определения рения используются алкалиметрическое титрование рениевой кислоты, окислительно-восстановительное и комплексоиетрическое титрования, а также титриметрические методы, основанные на образовании труднорастворимых соединений. При окислительно-восстаповительном титровании в качестве восстановителей используют иодиды, сульфат железа(П), хлорид олова(П), в качестве окислителей — перманганат и бихромат калия, сульфат церия(1У). Использование метода спектрофотометрического титрования перренат-иона раствором Зп(П) в присутствии комплексообразующих лигандов позволяет повысить чувствительность и избирательность определения рения. Методы потенциометрического и амперометрического титрования рассмотрены на стр. 146 и 148. [c.81]

    Путем применения жидких амальгам кадмия и висмута удалось разработать дифференциальный титриметрический метод определения ванадия, и молибдена в железе и сталях титроваии-ем перманганатом калия и ванадатом аммония [1289]. [c.185]

    Титриметрические методы основаны на окислении до сульфата различными окислителями иодом [269, 526], монохлориодом [177], гипогалогенитами [287, 683, 1006], ванадатом натрия [836], перманганатом калия [952], солями Fe(III) и e(IV) [807], хлорамином Т [1123] и хлорамином Б [1301]. Наибольшее практическое значение имеют различные варианты иодометрического определения. [c.99]

    Проводится титриметрически персульфатно-серебряным методом. Марганец в сернокисло-фосфорнокислом растворе окисляют персульфатом аммония в присутствии нитрата серебра до перманганата. Раствор окрашивается в характерный фиолетовый цвет. Полученную марганцевую кислоту титруют стандартным раствором арсенита или арсенит-нитрита натрия. Ионы Ag+ удаляют из раствора добавлением хлорида натрия. Мешают определению марганца высокие содержания хрома (выше 2 %)  [c.333]

    Для анализа сталей, чугунов и сплавов наиболее широко применяют титриметрические [37, 160, 199, 210, 240, 311, 479, 483, 823, 842, 973] и спектрофотометрические [144, 260, 426, 445, 799, 902, 933] методы. Анализ стали методом кулонометрического титрования выполняют с применением электрогенерируеиых ионов Fell) [210, 240], u(I) [209] или внешнегенерированного иона У(П1) [3]. Ниже приведена метолика определения хромат-, ванадат-и перманганат-ионов методом кулонометрического титрования [210]. [c.167]

    Еще меньшее распространение получил титриметрический метод определения фосфора с применением уранилацетата. Осадок аммонийуранилфосфата растворяют в H2SO4, уранил восстанавливают цинковой амальгамой [1095] или алюминием [815] и титруют перманганатом. В работе [1114] растворение осадка проводят в НС1, восстановление — цинковой амальгамой. Титруют К2СГ2О7 в присутствии дифениламина. [c.43]

    Перманганат давно используют в анализе. Несмотря на применение других окислителей, перманганат до сих пор находит широкое аналитическое применение, например, для определения общей загрязненности воды по потреблению кислорода на окисление примесей. Результат анализа стандартным методом с применением перманганата выражают как химически потребляемый кислород. Методика основана на взаимодействии пробы с подкисленным раствором КМПО4, обычно при 27 °С. Затем титриметрически определяют избыток перманганата [1, 2]. [c.157]

    Тем не менее постепенно объемный анализ благодаря легкости и простоте овладения его методами стал все чаще использоваться в промышленности и в исследовательских лабораториях. Для титрования использовались растворы разнообразных соединений, таких, как нитрат серебра, нитрат свинца, мышьяковистая кислота, нитрат ртути(1), нитрат бария, иод. Иодометрию особенно часто использовал Р. Бунзен (59], а Ф. Маргеритт с 1846 г для определения железа стал применять растворы перманганата калия [60]. Но особенно широко методы объемного анализа стали применяться с середины XIX в. В это время титриметрические методы стали особенно необходимы для быстро развивающейся промышленности. Тогда же появились более разнообразные растворы для титрования, и в конце концов у химиков исчезло предубеждение против использования объемных методов анализа. Признанию способствовали также две книги, опубликованные в 1850 и 1855 гг. К. Шварцем и Ф. Мором. [c.126]

    Метод определения ионов железа косвенной кулонометрией так же как и классический титриметрический метод, основан на титровании Ре" электрогенерированными окислителями либо же Ре" соответствующими восстановителями. В качестве тит-рантов-окислителей для контроля содержания железа (И) в растворах гальванических ванн [526], смесях уран — железо, маг-незиовюстите [528, 529], растворах солей [527, 530], искусственных смесях [530, 532] рекомендованы марганец(П1), перманганат-ионы, церий(IV) и бром. Из титрантов-восстановителей для определения железа(III) в модельных растворах, искусственных смесях, латунях, сталях [473, 498, 533—535], ферритах [537, 538], дюрале [443, 484] нашли применение электрогенерированные TF", Си , V и Sn". [c.76]

    Мышьяка(1П) определение. Мышьяк(П1) определяют титриметрически, используя для установления конечной точки титрования комбинированные окислительно-восстановительные электроды 96-78 или 97-78 и раствор перманганата калия в качестве титранта. [c.71]

    Платину(1У) можно определить также восстановлением хло-ридом меди(1) и последующим титрованием платины(И) перманганатом до [Р1С1б] (избыток хлорида меди окисляют кислородом воздуха) [520]. В другой статье [489] описано применение этого метода для совместного определения платины и иридия. Точность метода около 1%. Для анализа растворов, содержащих железо (II), иридий (III) и платину (И), предложено два титриметрических метода [518, 521]. В первом методе на кривой титрования перманганатом возникают два скачка потенциа- 0В, ИЗ которых первый отвечает окислению Ре 11) и Р1(И), а [c.112]

    Очень старые титриметрические методы основаны на восстановлении солей золота(III) до металла стандартным раствором железа(II) и обратном титровании его избытка перманганатом калпя. Этот метод был применен в 1878 г. Джуптнером [559] для определения золота в сплавах после их растворения в царской водке и кипячения для удаления образующихся газообразных продуктов реакции. [c.129]

    В 1913 г. Френч [560] описал новые титриметрические методы, рекомендованные для анализа монет. Один из методов заключался в восстановлении золота в сернокислом растворе солью Мора и титровании избытка восстановителя перманганатом калия. Цобарь [561] применил этот метод для анализа сплавов золота с медью. Солянокислый раствор, свободный от окислов азота, нейтрализовали гидрокарбонатом натрия до появления аморфного осадка. ЗатС М слегка подкисляли серной кислотой, добавляли железо (И) и избыток его титровали перманганатом калия. Этот метод остается одним из лучших титриметрических методов определения золота. Он включен в новый учебник аналитической химии [304]. Прямое титрование железом (И) может быть осуществлено потенциометрически. Мюллер и Вайсброд [562] определяли этим методом золото в солянокислых и азотнокислых растворах. Для превращения всего золота в золото(III) использовали хлор. В этом случае восстановлению Au(III) отвечал только второй скачок потенциала. В присутствии азотной кислоты этот скачок потенциала не очень резок, но при добавлении этанола и сульфата калия он становится более четким. Платина и палладий мешают. [c.129]

    Фотометрические методы часто рекомендуются для определения общего железа. Однако получаемой при этом точности едва достаточно для основных пород и пород, богатых закисным или окнспым железом. Вместо фотометрических для этих пород можно использовать тнтриметрический метод с применением раствора бихромата калия, перманганата калия или сульфата церия (IV). Для пород, содержащих лишь небольшие количества железа, фотометрические методы с 2,2 -дипиридилом или 1,10-фенантролином предпочтительнее методов, в которых используются тиогликолевая кислота [13], соляная кислота [2], тайрон, салициловая кислота и другие реагенты. Для определения железа вместо фотометрического метода можно использовать атомпо-абсорбционную спектроскопию, хотя в случаях, когда железо присутствует в больших количествах, отдается еще предпочтение титриметрическому методу. Атомно-абсорбционную спектроскопию можно применять и для определения малых количеств марганца. [c.58]

    Комплексонометрическое определение сульфат-ионов находит npaKtH4e Koe применение в чрезвычайно большом числе случаев, что не удивительно, так как взамен медленного весового метода найден быстрый титриметрический метод определения. Например, содержание сульфата или серы определяют в водах [50 (10), 57(116)], каменной соли 158 (85)], в щелоках [54 (64)], нефтяных продуктах [56 (12)], цементе [61(150)], в ваннах для прядения [52 (44)], барите [62 (104)], гипсе [63 (2)], поташе [62 (107)], железе и стали [55 (106), 63 (33)], в угле [57 (93)], в вискозном волокне [56 (79)] и в марганцевых щелочных экстрактах [61 (11)]. Далее, комплексонометрический метод использован для определения SO3 в воздухе [59(51)] и для контроля, реакции сульфирования [61 (140)]. Описаны анализы бинарных смесей сульфата с пероксо-дисульфатом [61 (27)], сульфидом [61 (179)] или сульфитом [62 (106)]. Особенно многочисленны сообщения об определении серы в органических соединениях [54 (15), 59 (128), 60 (44), 62 (103)]. Очень хорошо оправдали себя комплексонометрические методы в комбинации с сожжением вещества по Шенигеру [56 (20), 59 (108), 53 (34)]. Изучено также определение серы, скомбинированное с сожжением в трубке Прегля Г59 (66)] и после выщелачивания пробки из серебряной вагты в трубке для сожжения [61 (178)]. Кэрбл и др. [56 (33)] сообщают об определении серы в органических веществах, которое не сопровождается осаждением серы барием или свшщом. Растворяют сульфат марганца, образовавшийся в количестве, эквивалентном по отношению к сере, в трубке для сожжения на наполнителе из перманганата серебра, и титруют комплексонометрически. [c.315]


Смотреть страницы где упоминается термин Титриметрическое определение с перманганатом: [c.126]    [c.492]    [c.256]    [c.224]    [c.142]    [c.8]    [c.475]   
Смотреть главы в:

Химические методы анализа горных пород -> Титриметрическое определение с перманганатом




ПОИСК





Смотрите так же термины и статьи:

Перманганаты

Перманганаты титриметрическое

Титриметрическое определение

Титриметрическое определение плутония перманганатом калия



© 2025 chem21.info Реклама на сайте