Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение органических веществ по функциональным группам

    Выявление в молекуле определенных атомных группировок (функциональных групп и фрагментов углеродного скелета). Таким образом осуществляется отнесение исследуемого вещества к той или иной группе (классу) органических соединений классификация или групповая идентификация). В зависимости от возможностей метода и природы исследуемого объекта групповая идентификация осуществляется на разных уровнях а) отнесение к классу веществ с очень общей и неполной характеристикой структуры (циклоалкан, олефин, спирт, простой эфир, амин и т. д.) б) определение принадлежности к тому или иному гомологическому ряду (например, ряд бензола, предель- [c.5]


    Теория типов пыталась свести все многообразие органических соединений к немногим простейшим типам, выводя из них все вещества путем замещения. Относя спирты к типу воды, амины к типу аммиака, теория типов подчеркивала и выдвигала на первый план то общее, что присуще гомологическому ряду, — функциональную группу (в приведенных примерах гидроксил, аминогруппа). Тем самым теория типов подчеркивала новую, не замечавшуюся сторонниками теории радикалов особенность органических соединений наличие определенных группировок атомов— функциональных групп, оказывающих решающее влияние на химический характер соединения. [c.21]

    Одной из важнейших методических задач в аналитической химии является идентификация вещества, присутствующего в анализируемой пробе в чистом виде или в смеси, и его количественное определение. В аналитической химии органических соединений для решения этих задач широко применяются методы функционального анализа, цель которого — количественное и качественное определение содержания различных функциональных групп в анализируемой пробе или в отдельных компонентах пробы. [c.5]

    Ввиду сложной природы растворенных органических веществ и наличия одинаковых функциональных групп в соединениях различной химической природы определение отдельных классов без их разделения затруднено и сопряжено с большими ошибками. Методы определения органических веществ природных вод непрерывно совершенствуются, но так как каждый метод характеризует изучаемые вещества с какой-то одной стороны, без проведения систематического анализа трудно всесторонне и полно оценить их истинное содержание. Иногда трудно сопоставить данные, полученные различными методами, что связано не столько с несовершенством методов, сколько с недостаточной изученностью органических веществ природных вод [4]. Следовательно, чтобы иметь представление о балансе отдельных классов органических веществ в природных водах, о реальном состоянии исследуемых веществ, необходимо разрабатывать схемы систематического анализа. [c.197]

    ОПРЕДЕЛЕНИЕ ОРГАНИЧЕСКИХ ВЕЩЕСТВ ПО ФУНКЦИОНАЛЬНЫМ ГРУППАМ [c.64]

    В большинстве органических молекул помимо углерода и водорода содержатся атомы других элементов. Именно от них в первую очередь зависят химические свойства органических веществ. Эти атомы (кислород, азот, сера и др.) входят в состав особых группировок, называемых функциональными группами. Присутствие той или иной функциональной группы определяет принадлежность органических соединений к определенным классам. Главные функциональные группы и отвечающие им классы органических соединений приведены в табл. 3. [c.39]


    Книга делится на два тома. В первом томе рассматриваются прямые методы титрования органических веществ второй том посвящен косвенным методам титрования их. Каждый том состоит из трех частей. Общие вопросы, относящиеся к методам титрования (прямым или косвенным), рассматриваются в первых разделах каждого тома. Во втором и третьем разделах содержатся сведения более чем о 100 различных титрантах и методах определений около 100 функциональных групп и классов органических соединений, определяемых методами титрования. Эти сведения приведены в виде таблиц, снабженных подробными списками соответствующей литературы. Описание тех методов титрования, цель применения которых состоит в определении неорганических веществ, например, анионов или катионов отдельных химических элементов, как правило, не включено в содержание книги, если даже анализируемое вещество содержит один компонент органического происхождения. Такие методы достаточно полно рассмотрены в учебной литературе и в обзорах по методам анализа неорганических веществ. [c.14]

    Качественный анализ по хроматограммам не вызывает затруднений, если определяемые вещества сами образуют характерно окрашенное пятно на хроматограмме или же окрашивание появляется в результате взаимодействия с каким-либо реагентом. Однако такими свойствами обладает весьма ограниченное число соединений, особенно органических. Если и удается получить характерную окраску для органических соединений в результате опрыскивания пластинки соответствующим реагентом, то только для того или иного класса соединений в целом, тогда как разные соединения, относящиеся к одному классу, дают одинаковое окрашивание, обусловленное наличием определенной функциональной группы. [c.147]

    Известно, что подвижность Rf достаточно чувствительна к изменениям структуры, наличию функциональных групп в органических соединениях, к изменениям заряда и радиуса ионов неорганических соединений. Казалось бы, что по значениям Rf, измеренным в определенных условиях, можно достаточно однозначно проводить идентификацию исследуемых соединений, тем более, что современные сорбенты, используемые в ТСХ, позволяют четко разделять смеси веществ, значения Rf которых различаются лишь на 0,1. [c.148]

    Наряду с детекторами, принцип действия которых был рассмотрен в I гл., в газо-жидкостной хроматографии применяется ряд детекторов, специфически реагирующих на любые органические вещества или же на органические вещества с определенной функциональной группой. К их числу относятся ионизационные детекторы, детекторы электронного захвата, термоионные, спектрофотометрические и некоторые другие детекторы. [c.186]

    В данной главе мы кратко ознакомимся с элементарными основами органической химии. В рамках настоящего курса мы имеем возможность дать лишь общее представление о том, насколько обширна эта тема. По существующим оценкам в настоящее время известно более миллиона органических соединений. Ежегодно химики открывают в природе или синтезируют в лабораториях тысячи новых органических веществ. Это может привести к мысли, что изучение органической химии представляет собой безнадежно трудную задачу. Однако на самом деле все органические вещества содержат те или иные функциональные группы - определенным образом расположенные атомы или группы атомов. Эти группировки атомов обусловливают определенные химические свойства, в той или иной мере присущие всем соединениям с одинаковыми функциональными группами. Таким образом, изучив характерные химические свойства различных функциональных групп, можно понять химические свойства многих органических веществ. [c.407]

    Определение органических соединений. В гравиметрическом анализе органических соединений используется способность некоторых реагентов вступать во взаимодействие с функциональными группами (карбонильной, азо-, сульфо- и т. д.). Таким образом становится возможным анализировать целый класс веществ, имеющих данную атомную группу. Например, соединения, содержащие метоксигруппу, определяются по схеме  [c.166]

    Очень важным этапом в определении строения вещества является определение принадлежности вещества к определенному ряду органических веществ и установление строения его углеродного скелета (гетероциклического ядра) и положения функциональных групп. [c.249]

    В настоящей главе описаны наиболее часто применяемые качественные пробы на функциональные группы, приведены примеры получения производных, а также физические методы функционального анализа и определения строения органических веществ.  [c.249]


    В большинстве курсов органической химии для сельскохозяйственных и некоторых биологических специальностей (обш,им объемом около 100 ч), как правило, половина времени отводится на лекции, четверть — на семинары и четверть — на практикумы. При таких объемах курсов очень трудно, да и нецелесообразно вводить в практикум синтетические задачи. Поэтому в настоящем практикуме наряду с приемами работ по органической химпи (перегонка, кристаллизация, различные виды хроматографии, определение физико-химических констант и т. д.) предусмотрены лишь качественные реакции на элементы, входяш,ие в состав органических веществ, и на основные функциональные группы. Такая аналитическая направленность кажется разумной и в связи с тем, что студенты упомянутых специальностей в последующей работе будут, как правило, сталкиваться в основном больше всего с идентификацией органических веществ. [c.3]

    Полярографический метод особенно удобен для анализа руд, минералов, оп-ределения металлов в сплавах. Ошибка определения веществ при их концентрации в пробе 10- —10 5 кмоль/м не превышает 2—5%. В некоторых случаях с подобной точностью можно определить содержание вещества с концентрацией, не превышающей 10 кмоль/м -(например, соли платины, органические соединения, содержащие функциональные группы —5Н, — ЫНг и др.). По —2 полярограммам судят о том, в каком ви- де присутствуют восстанавливающиеся ионы в растворах, определяют состав и прочность комплексных ионов, число электронов, принимающих участие в акте химического восстановления, исследуют кинетику электрохимических превращений, в частности устанавливают стадийность процесса и т. д. [c.110]

    В качестве лигандов выступают вещества, содержащие определенные функциональные группы, обычно расположенные в молекуле рядом. Многие из лнгандов обладают избирательным действием по отношению к определенным ионам или группе ионов. Например, на никель, висмут и кобальт специфическими группировками в органических веществах являются  [c.64]

    В огромном большинстве реакций затрагивается определенная часть молекулы (чаще всего ее функциональная группа), в то время как строение остальной части (и прежде всего углеродного скелета) остается неизменным. Эта особенность органических веществ сильно облегчает понимание превращений даже очень сложных органических молекул, поэтому важно донести эту закономерность до учащихся. [c.87]

    Некоторые наиболее распространенные типы химической трансформации функциональных групп молекул органических веществ представлены в табл. II1.1. Достаточно широко используются химические методы подготовки проб и неорганических материалов. Помимо получения летучих хелатов металлов и органических производных некоторых анионов [33, 34 1 отметим перспективный метод реакционной газовой экстракции, включающий химическую реакцию с образованием газообразного соединения определяемого элемента, выделение этого соединения в газовую фазу и последующую его идентификацию и определение [351. [c.161]

    Номенклатура. Для того чтобы упростить название огромного числа органических соединений, была предложена систематическая номенклатура, в которой название вещества образуется из слогов, указывающих на присутствие определенных функциональных групп в молекуле. Все насыщенные углеводороды име- ют суффикс ан , и в неразветвленных ( нормальных ) алка-нах предыдущий слог указывает на число атомов углерода в молекуле (табл. 3.1). Первые четыре члена ряда насыщенных углеводородов имеют старые несистематические (тривиальные) названия. Далее мы увидим, что и в других классах соединений простые вещества иногда сохраняют свои старые тривиальные названия, в то время как более сложные молекулы называют по систематической номенклатуре. [c.32]

    Небольшие органические молекулы, находящиеся в живых тканях, можно разделить на две большие группы. Одна из них включает водорастворимые вещества, такие, как аминокислоты и сахара, нерастворимые в апротонных растворителях (хлороформе или эфире). Другая группа охватывает жирорастворимые вещества, которые растворяются в хлороформе, эфире или других органических растворителях, но обычно не растворяются в воде. Эти соединения носят общее название липиды. Ясно, что такое грубое разделение, основанное на способности к растворению в определенных типах растворителей, не учитывает общие специфические структурные особенности соединений. Внутри каждой обширной группы веществ можно выделить ряды соединений с общими функциональными группами и характерными структурными особенностями. Низкая растворимость в воде предполагает, что в липидах преобладают неполярные (т. е. углеводородные) фрагменты, а высокополярные группы и группы, обладающие способностью образовывать водородные связи, или вообще отсутствуют, или составляют незначительную часть молекулы. Среди соединений, входящих в класс липидов, встречается немало таких, которые имеют чрезвычайно большое значение для биологии. К ним относятся витамины А и О (разд. 22.2) и стероидные гормоны (разд. 22.2), находящиеся в следовых количествах и все вместе составляющие лишь очень малую часть от общего содержания липидов в любой живой системе. [c.329]

    Объект химического анализа — состав различных веществ, материалов и вообще предметов окружающего нас мира. При этом в зависимости от поставленной задачи в роли составных частей (компонентов) могут выступать как химические соединения (вещества), так и элементы. На уровне микромира составным частям соответствуют вполне определенные элементарные объекты. Так, химические соединения (вещества) состоят из молекул или формульных е д ин и ц. В молекулах иногда целесообразно выделить определенные совокупности атомов, например функциональные группы в молекулах органических соединений. Если составная часть — элемент, в микромире имеем дело с атомами этого элемента. [c.5]

    В качественном анализе органических веществ применяют реактивы, которые дают возможность идентифицировать определенные функциональные группы или получать производные изучаемых веществ с хорошо изученными свойствами. Особый интерес представляют цветные реакции, дающие возможность достаточно быстро идентифицировать вещество, а измерив оптическую плотность раствора продукта реакции, и определить его количество. Для идентификации и особенно проверки чистоты органического вещества обязательно определение физических констант— температуры плавления (или разложения, если вещество неустойчиво при нагревании) или при идентификации жидких веществ — плотности, температур кипения и замерзания, показателя преломления. При исследовании органических веществ особое значение приобрели хроматографические методы. [c.805]

    Другая цель качественного органического анализа состоит в открытии определенного органического вещества в какой-либо смеси продуктов. Эта задача, по причине чрезвычайного разнообразия и большой изменяемости органических соединений, сопряжена со значительными трудностями, и здесь нет возможности установить точных общих правил, как в анализе неорганическом [4, с. 139]. Происходило это потому, что методы неорганического анализа для разделения или осаждения ионов практически не могли найти применения в органическом анализе. Правда, существует, казалось бы, некоторая аналогия между качественными реакциями на неорганические ионы и реакциями на определенные функциональные группы в органических соединениях. Но, во-первых, органические реакции вообще менее специфичны и избирательны во-вторых, идентификация какой-либо функциональной группы редко дает представление вообще о соединении, скорее она может быть использована для группового анализа, для установления, к какому классу соединений можно отнести испытуемое вещество. Присутствие некоторых функциональных групп с трудом можно было установить химическими методами исследования, а физические методы еще не были в достаточной степени разработаны. Тем не менее в конце аналитического периода истории органической химии, как это видно из цитированного руководства Жерара и Шанселя, имелась уже некоторая система в вещественном качественном анализе, позволяющем идентифицировать определенные органические соединения, особенно имеющие практическое значение, и в первую очередь для медицины. В этом руководстве указаны, например, способы идентификации органических оснований, или алкалоидов (анилина, никотина), большой группы собственно алкалоидов (морфина, наркотина, стрихнина, хинина и др.), органических кислот (синильной, уксусной, муравьиной, бензойной, щавелевой, виннокаменной, лимонной и яблочной), а также группы углеводов, белковых веществ, мочевой кислоты, карбамида (мочевины), креатина, цистина, ксантина и т. д. [c.290]

    Необходимость микроанализа органических соединений в настоящее время все чаще и чаще возникает в научно-исследовательских институтах самого различного профиля. Между тем по скоростным методам микроопределения элементов в органических веществах издана лишь одна монография рассчитанная на аналитиков, уже знакомых с основными приемами микроэлементарного анализа. В других сзгществующих руководствах описаны устаревшие методики определения элементов и функциональных групп. В оригинальных работах недостаточно подробно освещены все детали и приемы работы. В результате аналитик, начинающий освоение микрометодов, часто сталкивается с рядом методических трудностей. [c.4]

    В химии анализ является совершенно необходимым звеном как исследовательской, так и прикладной работы. В органический анализ входят методы качественного и количественного определения органических веществ. Цель качественного органического анализа — идентификация одного или нескольких органических соединений, присутствующих в неизвестном образце. Термин идентифицировать означает приписать чистому веществу спе-" фическое молекулярное или ионное строение, чтобы охаракте-эизовать его как индивидуальную сущность, всегда одну и ту же и 1ичающуюся от других химических веществ . Цель количествен- го органического анализа — определение либо элементного со- става чистого органического соединения, либо доли, в которой ( шределенная реакционноспособная, или функциональная, группа присутствует в данном веществе или смеси. [c.17]

    Вопросы представления и кодирования в ЭВМ структурной информации в гетерогенном катализе имеют ряд особенностей. В предложенной А. А. Баландиным мультиилетной теории катализа одно из центральных мест занимает теория строения вещества [73, 74]. Важное значение в ней придается понятию индексной группы — определенного элемента структуры, являющегося аналогом структуры функциональной группы в органической химии [75]. [c.92]

    Проблема установления взаимосвязи энтропии и свойств веществ важна с точки зрения получения обобщенных уравнений состояния для гомологических рядов органических и неорганических соединений В гомологических рядах каждый последующий член получается добавлением определенной функциональной группы к предыдущему. Например, в ряду парафинов С Н ь+з таким структурообразующим элементом является СН группа. Иными словами в гомологических рядах существует геометрическое, топологическое и масштабное подобие структур, и как следствие, подобие химических свойств. Ниже описан вывод уравнения связи критической энтропии с молекулярной массой в го.мологическом ряду молекул, полученный совместно с С.А. Ахметовым.  [c.29]

    Классификация органических соединений, разработанная многими поколениями химиков, систематизировала великое множество органических веществ и теперь позволяет распознавать их и относить к определенным классам и группам (ч. 1, рис, 1,1), с учетом особенностей струк-нуры углеводородного скелета, щпслов, характера ковалентных связей и функциональных групп, а также наличия гетероатомов в >тлеводо-]юдных цепях или циклах. Ориенти]эованию в органических веществах способствует и классификащш типов их изомеров (ч. , рис.8.4). [c.277]

    Исследование ИК спектров болыиого числа органических соединений показало, что одни и те же функциональные группы, входящие в их состав, имеют практически одни и те же частоты колебаний. Такие группы отличаются определенной автономностью и ведут себя независимо от остальной части молекулы. Соответствующие им частоты колебания называют характеристическими (см. Приложение, табл. 1) и используют для индентификации функциональных групп. К таким колебаниям относятся, иапример, валентные колебания связей С=0 (1740—1720 см ), С=С (1680—1620 см- ), С-Н (3100—2850 см ). О—Н (3600— 3200 см ) и др. Сравнение полос поглощения (частот колебаний) исследуемого веи1,ества с полосами поглощения соединений, строение которых установлено ранее, позволяет определить структуру нового вещества. Особый интерес представляет область 1500—700 см в которой содержится большое число полос, отвечающих, в основном, деформационным и некоторым валентным колебаниям. Характер спектра в этом интервале частот существенно изменяется даже при небольших изме[1ениях в структуре соединений. Эта область называется областью отпечатков пальцев . [c.139]

    Дж. Нидерль, В. Нидерль. Микрометоды количественного органического анализа. Госхимиздат, 1949, (276 стр.). В книге описаиы основные микроаналитические методы количественного определения отдельных элементов и функциональных групп в органических веществах и методы определения молекулярного веса. Значительное внимание уделено описанию техники работы. [c.492]

    В тех случаях, когда нет определенных сведений о присутствии в исследуемом веществе каких-либо функциональных групп и брутто-формула неизвестна, интерпретацию ИК-спектра целесообразно начинать с его коротковолновой части (X < 7 мкм), где располагается большинство важных характеристических полос поглощения, а нехаоакте-ристические колебания скелета проявляются лишь в виде слабых обертонов и составных частот. В качестве весьма полезного репера (опорного знака) для первоначальной ориентировки следует использовать имеющеюся в спектрах подавляющего большинства органических веществ на участке от 2800 до ЗООР см группу интенсивных полос [c.17]

    Существует и другое определение органическая химия — это химия углеводородов и нх производных. Углеводородами называют простейщие органические вещества, в состав которых входят атомы только двух элементов — углерода и водорода. Производные угле водородов — это сложные вещества, которые можно рассматривать как продукты замещени.я атомов водорода в углеводородах на атомы других элементов (гетероатомы) или группы нз нескольких атомов (функциональные группы). [c.218]

    Следовательно, по определению, критическое поверхностное натяжение смачивания равно поверхностному натяжению жидкости, при котором происходит переход от ограниченного смачивания к полному. Поскольку значение критического поверхностного натяжения смачивания не зависит от свойств жидкостей, а определяется только природой твердой поверхности, Цисман предложил использовать величину Якр для характеристики поверхностных свойств твердого тела. В частности, критическое поверхностное натяжение смачивания полимеров и адсорбционных пленок органических веществ весьма чувствительно к составу функциональных групп, выходящих на наружную поверхность, и плотности упаковки молекул твердой фазы в поверхностном слое. [c.99]


Смотреть страницы где упоминается термин Определение органических веществ по функциональным группам: [c.95]    [c.39]    [c.40]    [c.6]    [c.47]    [c.165]    [c.2]    [c.9]    [c.442]    [c.6]   
Смотреть главы в:

Аналитический контроль в основной химической промышленности -> Определение органических веществ по функциональным группам




ПОИСК





Смотрите так же термины и статьи:

Функциональные группы



© 2025 chem21.info Реклама на сайте