Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические реакции под действием излучений большой энергии

    Рентгеновские лучи, гамма-лучи, поток нейтронов и другие излучения большой энергии также вызывают в веществе глубокие физикохимические изменения и инициируют разнообразные реакции. Так, при действии ионизирующих излучений кислород образует озон алмаз превращается в графит оксиды марганца выделяют кислород из смеси азота и кислорода или воздуха образуются оксиды азота в присутствии кислорода ЗОг переходит в 50з происходит разложение радиолиз) воды, в результате которого образуются молекулярные водород, кислород и перекись водорода. Возникающие при радиолизе свободные радикалы (-Н, -ОН, -НОз) и молекулярные ионы ( НзО , -НзО ) способны вызывать различные химические превращения растворенных в воде веществ. [c.203]


    Рентгеновские лучи, альфа-частицы, гамма-лучи, нейтроны и др. излучения большой энергии также вызывают в веществе глубокие физико-химические изменения и инициируют разнообразные реакции. Так, прн действии ионизирующих излучений на кислород образуется озон, алмаз превращается в графит, оксиды марганца выделяют кислород и т. д. При облучении смеси азота и кислорода или воздуха образуются оксиды азота, в присутствии кислорода ЗОз переходит в 50з и т. д. При действии ионизирующих излучений на воду происходит ее радиолиз. [c.221]

    Раздел физической химии, посвященный изучению химических реакций под действием излучений большой энергии, называют радиационной химией. К числу частиц, вызывающих химические реакции, относятся нейтроны, электроны, положительно и отрицательно заряженные ионы и кванты энергии более 50 эв (рентгеновские и улучи) . Химические реакции, протекающие под действием излучений большой энергии, получили название радиолиза. [c.257]

    Под действием излучений большой энергии из молекул газа тоже могут образовываться различные частицы — атомы, радикалу, ионы и возбужденные молекулы. Образование радикалов и ионов обычно приводит к вторичным химическим превращениям. Возбуждение же молекул может приводить к вторичным реакциям только при условии, что энергия возбуждения выше энергетического барьера реакции. [c.553]

    Раздел физической химии, посвященный изучению химических реакций, протекающих под действием излучений большой энергии, получил название радиационной химии. К числу излучений, вызывающих химические реакции, относятся все виды радиоактивных лучей, нейтроны, а также электроны, положительно и отрицательно заряженные ионы и лучи с энергией более 50 эВ (рентгеновские и у-лучи). В радиационной химии не рассматривается действие света, энергия квантов которого не превышает 12 эВ. Химические реакции, протекающие под действием излучений большой энергии, получили название радиолиза. [c.315]

    Таким образом, процессы ионизации, протекающие под действием излучений большой энергии, не достаточно эффективны для процесса образования озона. Необходимое возбуждение молекул Ог до определенных энергетических уровней, осуществляется вторичными электронами. Однако значительное число вторичных электронов вызывает возбуждение молекул Ог до энергетических уровней, которые еще не активны в химической реакции образования озона. При фотохимической же реакции почти вся энергия монохроматического света с частотой, соответствующей возбуждению молекул данного типа, переходит в энергию возбуждения, которая оказывается достаточной для того, чтобы молекулы вступили в реакцию. [c.318]


    Радиохимия. Радиохимия — один из молодых, быстро развивающихся разделов физической химии. В этом разделе изучаются закономерности протекания химических реакций под действием излучений большой энергии. [c.7]

    К ионным реакциям относятся также радиационно-химические процессы, вызываемые действием рентгеновских а- и р-излучений. Возникновение таких реакций обусловливается способностью излучений ионизировать и возбуждать молекулы вещества, т. е. приводить к образованию активных частиц. Радиационно-химические реакции имеют небольшую величину энергии активации и протекают сравнительно легко даже при очень низких температурах (ниже 373 К).-В отличие от обычных реакций их скорость мало зависит от температуры, но зависит от агрегатного состояния вещества. Обычно в газе эти реакции происходят с большим выходом, чем в жидком и твердом состояниях, что связано с более быстрым рассеиванием энергии в конденсированной среде. [c.199]

    Первым шагом изучения радиационно-химической реакции является установление природы общих изменений, вызываемых излучением. Для большого числа систем это уже сделано, а для многих еще не исследованных можно предсказать результаты действия излучения по аналогии. Может показаться удивительным, что реакции, вызываемые излучением высокой энергии, в такой же степени специфичны, как и большинство других химических реакций. Это объясняется тем, что высокая начальная энергия излучения быстро теряется при прохождении его через вещество и химическое изменение, вызываемое этим излучением, представляет в основном результат действия электронов с энергией ниже приблизительно 100 эв. Кроме того, образуемые такими электронами короткоживущие промежуточные соединения не дают конечных продуктов немедленно, а участвуют в различных процессах переходного характера. Поэтому конечное изменение, которое претерпевают молекулы облучаемого вещества, не обязательно будет совпадать с изменением в начальный момент действия излучения. Изучение таких переходных процессов встречает большие трудности, и для многих целей оказывается достаточным изучение суммарных реакций, встречающихся в радиационной химии. [c.12]

    Либби В. Ф. Химия атомов с большой энергией, возникающих при ядерных реакциях. — В кн. Химическое действие излучений большой энергии. Пер. с англ. М., 1949, с. 207—229. [c.161]

    Так как энергия частиц, применяемых в радиационной химии, во много раз превосходит энергию квантовых уровней валентных электронов веществ — участников химической реакции, то, в отличие от фотохимических процессов, первичный акт взаимодействия излучений большой энергии с веществом не носит избирательного характера. Этот первичный акт взаимодействия, излучений большой энергии с веществом приводит обычно к ионизации вещества и возникновению свободных радикалов. Поглощение ионизирующих излучений зависит от порядкового номера поглощающего элемента. Первичные продукты взаимодействия образуются вдоль путей ионизирующих частиц, причем ионизация возрастает к концу пути частиц и зависит от их природы и массы. В фотохимических реакциях вторичные процессы являются в большинстве случаев чисто химическими (ре- акциями радикалов). В отличие от фотохимических реакций, вещества, возникающие под действием радиации большой энергии, подвержены дальнейшему воздействию излучений. Вторич- [c.258]

    Радиационно-химические реакции протекают под действием излучений высокой энергии — высокочастотных электромагнитных колебаний( рентгеновских лучей и у-лучей) и частиц большой энергии (электронов, протонов, нейтронов, а-лу-чей). В качестве источников излучения применяются ядерные реакторы, ускорители частиц, радиоактивные изотопы (долгоживущие) и т. д. [c.195]

    Еще более глубокие физико-химические изменения в веществах и инициирование разнообразных реакций способно вызывать излучение большой энергии (рентгеновские лучи, альфа-частицы, гамма-лучи, нейтроны и т. д.). Так, при действии ионизирующих излучений на кислород образуется озон, алмаз превращается в графит, оксиды марганца выделяют кислород и т. д. При облучении смеси азота и кислорода или воздуха образуются окислы азота, в присутствии кислорода ЗОг переходит в ЗОд и т. д. При действии ионизирующих излучений на воду происходит ее радиолиз. Радиолиз воды состоит из следующих стадий. Вначале молекулы воды возбуждаются и некоторые из них ионизируются [c.180]

    За короткое время, которое молекулы реагирующих веществ находятся под влиянием катализатора, силы, действующие между атомами или молекулами, быстро изменяются, приобретая большую активность. Предполагают, что это изменение активности индуцируется адсорбированной катализатором энергией. Эта энергия может быть мала в сравнении с количеством вещества, превращенного им в активное состояние. Теорию Планка, выдвигающую необходимость получения энергии в форме квант поглощаемого типа, считают применимой к термическим, а также к каталитическим реакциям. Действие излучения радиоактивных элементов, способствующее химическим реакциям, сравнивали вначале с катализом, но позже стали различать эти типы реакций. Было отмечено [161], что в каталитических реакциях не существует определенного соотношения между количеством затрачиваемой электрической или кинетической энергии и получаемым в реакции выходом, как это бывает в обычных химических реакциях при действии излучения радиоактивных элементов. Катализаторы в растворах обычно действуют до некоторой степени пропорционально их концентрации, между тем как радиоактивные вещества так не действуют. [c.77]


    За последнее время большое значение приобрело изучение деструкции под действием излучений высокой энергии (рентгеновские лучи, а-, р- и у-излучение). При поглощении р- или у-излучения происходит возбуждение молекулы полимера и диссоциация ее либо на свободные радикалы, либо на радикал и ион. Продолжительность жизни образующихся ионов чрезвычайно мала, поэтому в разнообразные химические реакции (радиохимические превращения) вступают в основном свободные радикалы. При этом конечными продуктами деструкции могут быть полимеры линейного, разветвленного и пространственного строения. [c.65]

    Исследование радиационной химии ароматических углеводородов совпадает, с одной стороны, с появлением чувствительных и богатых информацией аналитических методов, например газовой хроматографии, масс-спектрометрии, ЭПР и кинетической спектроскопии, и, с другой — с лучшим пониманием механизмов гемолитических реакций и реакций передачи энергии. Возможности анализировать продукты реакции с достаточной точностью, даже если реакция прошла на незначительную глубину, и сравнивать результаты с данными, относящимися к реакциям с изученной кинетикой, характеризуют прогресс в этой области за последние годы. Действие излучения высокой энергии вызывает, однако, большое разнообразие физических и химических процессов, пока еще трудно объяснимых. Поэтому необходимо периодически повторять обзоры большого числа экспериментальных результатов. [c.68]

    Так как энергия частиц, применяемых в радиационной химии, во много раз превосходит энергию квантовых уровней валентных электронов веществ — участников химической реакции, то в отличие от фотохимических процессов первичный акт взаимодействия излучений большой энергии с веществом не носит избирательного характера. Этот первичный акт взаимодействия излучений большой энергии с веществом приводит обычно к ионизации вещества и возникновению свободных радикалов. Поглощение ионизирующих излучений зависит от порядкового номера поглощающего элемента. Первичные продукты взаимодействия образуются вдоль путей ионизирующих частиц, причем ионизация возрастает к концу пути частиц и зависит от их природы и массы. В фотохимических реакциях вторичные процессы являются в большинстве случаев чисто химическими (реакциями радикалов). В отличие от веществ, получающихся в результате фотохимических реакций, вещества, возникающие под действием радиации большой энергии, подвержены дальнейшему воздействию излучений. Вторичные процессы в радиационно-химических процессах могут быть процессами взаимодействия возникающих в первичном акте электронов, ядер отдачи или квантов меньшей энергии с веществом. [c.243]

    Таким образом, на первой, физической , стадии радиационного процесса происходит перераспределение поглощенной энергии первичного излучения между большим числом вторичных заряженных частиц, которые взаимодействуют с электронами атомов и приводят к возбуждению и ионизации молекул вещества. Затем наступает вторая - физико-химическая—стадия процесса. Образовавшиеся под действием излучения осколки молекул (ионы, атомы, радикалы) имеют большую химическую активность и реагируют как между собой, так и с другими молекулами с большой скоростью. Результатом этих вторичных реакций является образование новых активных частиц (свободных радикалов, вторичных ионов), причем в системе достигается тепловое равновесие. [c.108]

    Хотя впервые действие излучений обнаружили в 1896 г. (Беккерель отметил почернение фотографической пластинки под действием излучения калийуранилсульфата), псс 1едовапия действия излучений на химические реакции проводились в ограниченных масштабах нз-за отсутствия достаточно интенсивных источников таких излучений. Только в последние годы в связи с развитием атомной энергетики начали широко проводить исследования действия излучений большой энергии на вещество созданы первые промышленные процессы с использованием этих излучений. [c.257]

    В последнее время получают развитие количественные исследования кинетики радиационных химических реакций. В качестве примера рассмотрим упоминавшуюся уже выше реакцию разложения пе рекиси водорода при действии излучений большой энергии в жидких средах. Изучению ее посвящен ряд работ разных авторов. В. Я. Черных, С. Я. Пшежецкий и Г. С. Тюриков исследовали кинетику разложения перекиси водорода в водных растворах под действием у-излучения. [c.555]

    Глава VII Цепные реакции дополнена рассмотрением роли возбужденных молекул в цепных реакциях, толуольного метода определения энергии связи в органических молекулах, количественных зависимостей от концентрации и температуры нижнего и верхнего пределов самовоспламенения написан новый 3 Обрыв цепи . Большим изменениям подверглась глава VIII Фотохимия , которая дополнена кинетическими расчетами квантовых выходов и 4—7. Глава IX Химическое действие излучений большой энергии включает новый дополнительный материал по принципам дозиметрии, радиолизу воды, новый текст 6. Сильно изменена глава X Каталитические реакции . Особенно большие изменения и дополнения сделаны в разделе Гомогенные каталитические реакции , расширен параграф, посвященный разложению перекиси водорода, кислотноосновным реакциям и их классификации. В разделе Гетерогенные каталитические реакции более подробно рассмотрены переходы реакций из кинетических областей протекания в диффузионные области, дополнен 16. В главе XI Теория активных центров в катализе написаны новые 4, 11, расширено изложение электронного механизма адсорбции и химических реакций на полупроводниках. В главе XIV Применение меченых атомов в химической кинетике написан новый 4 Изотопные кинетические эффекты . [c.13]

    Химическая реакция, протекающая под действием излучения большой энергии, называется радиолизом. Изучением радиолиза занимается радиохимия — один из разделов физической химии. Радиохимические реакции вызываются действием а-частиц, протонов, нейтронов, электронов, ионов, излучений, квант эегргии которых более 50 за. Как и в фотохимических процессах, радиолиз состоит из первичных и вторичных процессов. Первичный акт взаимодействия излучений большой энергии с веществом обычно приводит к ионизации вещества и возникновению свободных радикалов, но он не носит избирательного характера, как в фотохимических реакциях, которые протекают под действием излучений меньшей энергии. [c.122]

    Из всего сказанного ясно, что предлагаемая вниманию советского читателя книга С. Рида как нельзя более актуальна и своевременна. Первые пять глав этой книги носят в основном физикохимический характер и дают вполне доступное и вместе с тем достаточно глубокое и соответствующее современному состоянию науки представление об электронных уровнях энергии, триплетных возбужденных состояниях, спектрах сложных молекул и механизмах их возбуждения. Весь излагаемый материал широко иллюстрируется примерами применения этих представлений к отдельным молекулам и реакциям, что можно считать вполне достаточным в качестве физического введения в проблему. В гл. VI сжато, но вполне ясно и полно рассмотрены основные механизмы передачи энергии электронного возбуждения как внутри молекулы, так и между молекулами. Наконец, в последних трех главах рассмотрены три фундаментальных биологических явления—биолюминесценция, зрение и явления, возникающие при действии излучения большой энергии на живой организм при этом учитывается главным образом участие в них возбуждсипых электронных состояний. Выбор именно этих трех биологических явлений носит, конечно, субъективный характер, и можно пожалеть, что автор не включил в их число явление фотосинтеза, где результаты изучения вопроса о роли возбужденных состояний, в частности триплетных, оказались в последние годы особенно плодотворными. Однако никто не может объять необъятного , и мы смело рекомендуем книгу Рида вниманию всех лиц, интересующихся вопросами современной физико-химической биологии и особенно вопросами биоэнергетики. Мы глубоко убеждены в том, что она будет весьма полезна очень широким кругам советских биологов, биохимиков и биофизиков. [c.7]

    Это химические реакции, протекающие под действием излучения высокой энергии (рентгеновское и 7-излучение, поток электронов, протонов и т.п.). Такие излучения имеют значительно большую энергию, чем энергия световых квантов, и поэтому их действие сильно отличается от действия света. Например, для возбуждения фотохимической реакции требуется свет определенной частоты. Лучи света, вызывающие одну фотохимическук) реакцию, могут быть совершенно неактивными для другой реакции. Излучения же высокой энергии не обладают такой специфичностью. [c.316]

    Химические процессы, происходящие под действием ионизирующих излучений высокой энергии (рентгеновы лучи, ал фа-ча-стицы, гамма-лучи и т. д.). Излучения большой энергии вызывают в веществе глубокие изменения и инициируют различные реакции. Так, например, при действии ионизирующих излучений на кислород образуется озон, алмаз превращается в графит, а оксиды марганца выделяют кислород. [c.150]

    При действии излучений высоких энергий на водные среды, содержащие различные органические вещества, возникает большое количество окислительных частиц, обуславливающих процессы окисления. Радиационно химические превращения протекают не за счет радиолиза загрязняющих воду веществ, а за счет реакции этих веществ с продуктами радиолиза воды ОН , НО, (в присутствии кислорода), Н2О2, Н и еп,лр (гидратированный электрон), первые три из которых являются окислителями. В качестве источников излучения могут быть использованы радиоактивные кобальт и цезий, тепловыделяющие элементы, радиационные контуры, ускорители электронов. [c.69]

    Химические превращения, протекающие в полимерах при действии на них лучистой энергии, уже давно интересовали человека. До последнего времени из различных видов излучений внимание исследователей привлекал главным образом свет. Та роль, которую играет свет в биохимических превращениях полимеров, а также в процессах их деструкции или старения, определяет необходимость того, что в будущем, как это было и в прошлом, большое число исследований в области полимерной химии будет по-прежнему посвящено исследованию фотохимических проблем. Преобладающее значение при этом приобретают работы по использованию световых воздействий в определенных контролируемых условиях для модификации свойств полимеров. Однако в последнее десятилетие еще более интенсивно, чем фотохимические превращения полимеров, исследовались вопросы взаимодействия полимерных веществ с ионизирующими излучениями (излучениями высокой энергии). Развитие исследований в этой области в большой степени связано с созданием промышленной ядерной технологии и новых более совершенных электронных и ионных ускорителей. Но оно было вызвано также и тем ожидаемым многообразием химических реакций, протекание которых должно стать возможным под действием излучений высокой энергии. Одновременное присутствие электронов, ионов, свободных радикалов и молекул в возбужденных и термолизованных состояниях явилось причиной появления многочисленных гипотез, имеющих целью объяснение наблюдаемых радиационно-химических превращений. Все более сложные экспериментальные исследования обеспечили получение данных, которые позволяли проверять и изменять эти гипотезы. Как будет видно из дальнейшего рассмотрения, ни один из предложенных механизмов нельзя считать однозначно доказанным. [c.95]

    Исслодовапие закономерностей гетерогенных радиационно-химических реакций представляет большой интерес, так как на границе раздела фал твердое тело (металл, нолупроводннк) — раствор возбуждение химических реакций излучением происходит значительно эффективнее. Полупроводник, находящийся в растворе, не только увеличивает поглощен]1с излучения, но и выполняет роль трансформатора -[-квантов высокой э]1е )-гии в энергию электронного возбуждения. В результате к зоне реакции (поверхность раздела фаз) подводятся возбунеденные электроны полупроводника с энергией порядка нескольких электронвольт. Сенсибилизирующее действие полупроводников в радиационно-химических процессах представляет существенный интерес, как путь повышепия эффективности химического и электрохимического действия излучений высоких энерги . [c.50]

    Одной из первцх наблюдаемых радиационно-химических реакций было действие излучения радия на воду. В 1901 г. Кюри и Дебьерн нашли, что из солей радия, содержащих кристаллизационную воду, постоянно выделяется газ, а Гизель (1902 г.) наблюдал выделение газа из водяного раствора бромида радия. Затем Рамзай и Содди (1903 г.) показали, что испускаемый газ является смесью водорода и кислорода. Это привело Камерона и Рамзая (1907 г.) к гипотезе, что действие излучения может быть подобно электрическому разложению воды. Однако в других случаях такая аналогия не имела места, например, попытка выделить медь из сернокислого раствора действием а-частиц, испускаемых радоном, была безуспешной. Количественные данные о разложении воды, опубликованные Рамзаем и Содди, были использованы Брэггом (1907 г.) для первого сравнения между химическим и ионизирующим действием а-частиц. Брэгг подсчитал, что число разложенных молекул воды приблизительно равно числу ионов, создаваемых излучением в воздухе. Три года спустя Мария Кюри предположила, что первичное действие ионизирующего излучения большой энергии на любые вещества заключается в образовании ионов, которое предшествует химическому превращению. [c.9]

    Вторичные процессы в фотохимических реакциях большей частью являются чисто химическими (реакции радикалов), между тем как в радиохимических реакциях вещества, возникающие под действием радиации большой энергии, претерпевают под воздействием излучений и последукщие превращения. [c.122]


Смотреть страницы где упоминается термин Химические реакции под действием излучений большой энергии: [c.64]    [c.64]    [c.64]   
Смотреть главы в:

Физическая и коллоидная химия Учебное пособие для вузов -> Химические реакции под действием излучений большой энергии




ПОИСК





Смотрите так же термины и статьи:

Действие химическое

Реакции энергия реакций

Химическая энергия

Энергия излучения



© 2024 chem21.info Реклама на сайте