Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ксилолы структура

    В 1931 г. М. В. Поляков 55- 558 нашел, что удаление воды из осажденного геля кремнекислоты при низкой температуре приводит к большей пористости силикагеля, чем при нагревании. Повышенную пористость силикагеля можно сохранить, если сушку геля проводить в атмосфере паров бензола, толуола, ксилола, молекулы которых заменяют воду в скелете геля и препятствуют его стягиванию, способствуя тем самым стабилизации пор. Структура пор силикагеля при этом определяется размером и строением молекул вещества, в атмосфере которого производилась сушка геля. Силикагель, сформированный в присутствии паров бензола, лучше адсорбирует бензол и медленно адсорбирует толуол и ксилол, структура которых отлична от бензола. [c.170]


    Для выяснения структуры ксилолов, смесь их с т. кип. 137—144° окислялась по Ульману [20]. Для отделения образовавшихся кислот пользовались видоизмененным методом. А. Ф. Добрянского [21]. Идентифицировались фталевая, изо-фталевая н терефталевая кислоты. [c.18]

    Для выяснения структуры ксилолов смесь их с температурой кипения 136—145° окислялась по Ульману [8], 3%-ным раствором перманганата калия (в излишке от теории) в слабощелочной среде. Непрореагировавший перманганат калия раскислялся метиловым спиртом. Калиевые соли органических кислот отфильтровывались от осадка, который многократно промывался горячей водой. Фильтрат упаривался ка водяной бане, повторно фильтровался и добавлялся 10%-иый раствор соляной кислоты до слабокислой реакции и перегонялся. [c.26]

    Известна способность метильных групп переходить от одного ароматического кольца к другому, и поэтому, если какая-либо структура является относительно более стабильной, чом ее изомеры, то эта структура и будет образована в ходе пиролитической реакции. Так, Добрянский и Сапрыкин [9] нашли, что пара-ксилол легко изомеризуется до мета-изомера при пиролизе в интервале температур от 700 до 770° С, тогда как. иета-ксилол превращается в пара-изомер в несколько меньшей степени. Гринсфельдер и др. [14] пропускали пара-ксилол над алюмо-циркониево-кремниевым катализатором при 550° С, и при этом наряду с диспропорцио-нированием метильных групп наблюдалось образование ксилолов (47%), имеющих следующий состав (сравнительно с теоретическими данными рассчитанными Питцером и Скот [c.110]

    Дегидроциклизацией изооктана при 550° С над молибден-хромовым катализатором получают ксилолы [289], но над окисью хрома получаются олефины [264]. Необходимо отметить протекающую здесь промежуточную изомеризацию [291]. При дегидроциклизации диизобутил- и диизоамил- [279, 284, 285] -декана, пентакозана [276] и керосина [286] образуются ароматические углеводороды. Бутилбензол дает нафталин [279] смесь 1- и 2-ок-тена превращается в о-ксилол ароматические углеводороды получаются при дегидроциклизации компактных олефиновых структур, таких как 2-этил-1-бутен и З-метил-2-пентен. Во всех вышеприведенных превращениях углеводороды, кипящие ниже исходного сырья, не образуются до тех нор, пока преобладают мягкие условия процесса [279]. [c.103]

    Подтверждением этих выводов являются исследования взаимодействия АШгз с метилбензолами методом комбинационного рассеивания света, которые показали, что в бензоле, толуоле, /г-ксилоле в широком интервале температур изменений в спектрах не наблюдается. У других производных бензола при низких температурах снижается интенсивность линии 210 см и усиливается новая линия — 197 см , причем природа ароматического соединения определяет лишь температурный интервал изменения спектра. Слабая электрическая проводимость указывает на отсутствие ионных форм. На основании этих и ряда других данных сделан вывод о существовании л-комплексов следующих структур [(а)—симметричный неионизованный (б)—более прочный поляризованный комплексы]  [c.80]


    В табл. 2.11 приведены результаты эксперимента и расчетные значения степени десорбции п-ксилола на углях различной пористой структуры, полученные при времени десорбции 60 мин. [c.102]

    Данные о пористой структуре и геометрических размерах гранул угля приведены в работе [4]. Десорбция проводилась при скорости пара ш = = 0,1 м/с, насыщение —до равновесия при = 30°С и концентрации п-ксн-лола 9 мг/л. В табл. 2.12 представлены результаты эксперимента и расчета по выявлению влияния скорости пара и высоты слоя угля на степень десорбции п-ксилола из угля АР-3 при времени десорбции 60 мин и температуре 105 °С. [c.102]

    Потребность в отдельных углеводородах ароматического ряда не соответствует их ресурсам в основных источниках сырья. Так, ожидаемая в Западной Европе структура потребления ароматических углеводородов может быть выражена соотношением бензол толуол ксилолы, равным 75 10 15 [145], а в США — примерно 60 10 30. [c.192]

    Структура потребления бензола, толуола и ксилолов для нужд химической промышленности в США в период 1977—1990 гг. выражается следующими цифрами (в тыс. т) [6]  [c.192]

    Простая ректификация, однако, с успехом применена для выделения чистого толуола и ксилолов, свободных от парафинов. В США во время второй мировой войны ряд фирм, принадлежащих к группе Стандарт ойл оф Калифорния , производил пригодный для нитрования толуол из определенной фракции сырой нефти, используя гидроформинг для разложения или изменения структуры всех углеводородов, температуры кипения которых близки к температуре кипения толуола [6]. Сырьем служила калифорнийская нефть, от которой отбиралась фракция с таким расчетом, чтобы нижний предел ее температур кипения был ниже температур кипения диме-тилпентанов и чтобы она не содержала больших количеств неароматических углеводородов с температурой кипения, близкой к температуре кипения толуола. Эту фракцию, кипевшую при 83—110°, пропускали в смеси с водородом, который циркулировал в системе, над катализатором — трехокисью молибдена на окиси алюминия. Процесс вели при 540° и общем давлении 13 ата. Продукты реакции разделяли на фракцию, кипящую в пределах 83—107°, которую присоединяли к свежему сырью, и на фракцию, кипящую от 107 до 110°, содержащую 90% толуола. Последнюю фракцию вновь пропускали над катализатором, в результате чего содержание толуола в ней увеличивалось с 90 до 99%. После этого от толуола отгоняли легкие погоны, очищали его кислотой и подвергали ректификации. Полученный продукт был пригоден для нитрования. [c.245]

    В случае жидких веществ пользуются 1) переведением токсических веществ (сернистых) в нетоксические или 2) адсорбционными методами. Применяемые ароматические соединения, например бензол, толуол, ксилолы, фенол, нафталин, всегда содержат небольшие примеси тиофена и его гомологов—тиофенола, тионафтена, и др. При гидрировании таких ароматических соединений над платиновыми катализаторами с последующим окислением яды сперва гидрируются, а затем при окислении переходят в экранированные структуры , в которых атомы серы переведены в сульфоны. [c.74]

    Но ни одна структура не может дать все три фрагмента, следовательно о-ксилол должен находиться в обеих формах. При количественном воспроизведении этой реакции Вибо (1941) нашел, что перечисленные три карбонильные соединения образуются в таких соотношениях, которые по расчету дол ны получиться из смеси равных количеств обеих структур Кекуле. [c.124]

    Азулен является изомером нафталина, стабилизованным резонансом структур. Циклооктан превращается при 440 С в п-ксилол. Основным ароматическим соединением, получающимся при дегидрировании циклононана, является инден  [c.160]

    ПМС к ФС для м-ксилола. Структура фенилсиликона более благоприятна для разделения изомерных бензолов по стери-ческому фактору. Изомеры фтортолуола с различной электронной плотностью, но с приблизительно одинаковой формой молекулы обладают примерно одинаковой энтропией вращения на фенил сил иконе. Части молекулы ФС более плотно упакованы в жидкости, на что указывает отрицательная величина избыточной энтропии вращения четыреххлористого углерода по сравнению с аналогичной величиной у бензола. Плоские молекулы бензола тормозятся в меньшей степени, чем сферические молекулы четыреххлористого углерода. По-видимому, структура фенилсиликона больше близка к слоистой, чем структура полиметилсилоксана. Несколько меньшие молекулы хлороформа уже более свободно вращаются во фторсиликоне (в ПМС — наоборот). Слабее, чем в ПМС, тормозятся молекулы трихлорэтилена. То же касается и тетрахлорэтилена. Такие эффекты дополнительно указывают на меньшее торможение свободного вращения плоских молекул по сравнению со сферическими. [c.47]

    Пятая фракция (136—144°) представляла изомерную смесь ксилолов, для определения структуры которых была окислена в слабош,елочном растворе перманганата калия, а образовавшаяся смесь органических кислот была обработана по методу Тауш—Добрянского [10]. Этим иутемиа двухосное 1(ых органических кислот было выделено избыточное количество изофталевой кислоты, а также орто- и терефталевые К ислоты. [c.73]


    В противоположность этому стойкость комплексов с системой трехфтористый бор — фтористый водород в большой степени зависит от числа и положения алкильных заместителей. Так как <т-комплексы имеют структуру типа карбоний-ионов, то вся способность к гиперконъюгации может быть исцользована. Таким образом, влияние моноалкилзамещенных прямо пропорционально числу альфа-атомов водорода, которые пригодны для гиперконъюгации [I4]. Аналогично этому влияние полимстилзамеще-ния прямо пропорционально числу метильных групп, которые находятся в положении, необходимом для одновременного стабилизирующего действия на карбоний-ион. Из условий нахождения заместителя в о- или п-положении по отношению к атому углерода, с которым связан добавочный протон (XX VIII), следует, что заместители находятся в / -положении один к другому. Так, например, ж-ксилол имеет две метильные группы, расположенные в положении, максимально благоприятствующем стабилизации (Г-комплекса, в то время как о- и п-изомеры имеют только по одной, группе. Мезитилеы имеет три группы в оптимальном положении, другие два триметилбензола, а также оба дурола и пренитол имеют только по две метильные группы в таком благоприятном положении. Изодурол также имеет три метильные группы в и -положении, и поэтому все они способствуют стабилизации (Г-комнлекса. [c.405]

    Сополимер имеет аналогичную структуру, отличающуюся лишь тем, что в ной имеются периодически повторяющиеся поперечные связи, образовавшиеся в результате добавления сравнительно небольших количеств дивинилбензола во время полимеризации. Оба типа полимера легко сульфируются, напоминая такие неполимеризовапные и неалкилированные гомологи бензола, как толуол или ксилол. [c.538]

Рис. 44. Структура твердых смесей IV — кристаллы о-ксилола- --fэвтектика, Ь — эвтектика, V — крупные кристаллы м-ксилола+ Рис. 44. <a href="/info/17149">Структура твердых</a> смесей IV — кристаллы о-ксилола- --fэвтектика, Ь — эвтектика, V — <a href="/info/904390">крупные кристаллы</a> м-ксилола+
    Сырье и продукция. Сырьем для получения п- и о-ксилола служат ксилольные фракции, выделенные методами экстракции плтт ректификации из продуктов 1слтал1ггического риформинга пиролиза бензинов, диспропорционирования и трансалкилиро-вания толуола. Характеристика изомерного состава смесей ароматических углеводородов С в различных технических продуктах и структура мирового потребления отдельных изомеров приведена в табл. 2.61. В табл. 2.62 дана характеристика качества изомеров, получаемых в промышленности. [c.267]

    Интересно отметить, что структура группы, присоединяющейся к ароматическому ядру, может определяться стерическими затруднениями. Известно, что третичная алкильная группа не может присоединяться в орго-положение к метильному заместителю. Именно этим и объясняется тот факт, что грег-бутил-хлорид не взаимодействует с га-ксилолом. Если же использовать в качестве алкилирующего агента трет-пентилхлорид, то алкилирование протекает с образованием лишь одного продукта с выходом более 50%, что можно объяснить следующей схемой  [c.101]

    Исследование количественной оценки внутримолекулярного й межмолекулярного механизмов перемещения алкильной группы в зависимости от их структуры показывает, что превращение ксилолов протекает по внутримолекулярному механизму, для переноса этильной и изопропильной групп значительно возрастает роль межмолекулярной миграции алкила  [c.165]

    Реакция переалкилирования ароматических углеводородов в настоящее время получила самостоятельное оформление в виде процессов для получения низших ароматических углеводородов—процессы Таторей (Япония) и Ксилолы плюс (США). В связи с отсутствием изомеризационных превращений при межмолекулярной миграции алкильных групп [201] был сделан вывод, что при переалкилировании межмолекулярный перенос заместителя не может протекать в виде карбениевых ионов, которые претерпели бы изомеризацию в более стабильные вторичные или третичные структуры. Мак-Коли и А. Лина впервые высказали предположение о том, что в выбранных условиях (каталитическая система ВРз-НР, температура 20°С) межмолекулярная миграция протекает по бимолекулярному механизму. При этом вторая стадия реакции — взаимодействие с-комплек-са с нейтральной ароматической молекулой — является лимитирующей. [c.171]

    Поскольку асфальтены образовывали не иетинный раствор, а скорее всего давали коллоидную дисперсию, тонкая структура ИК-сиектра в области поглощения ароматических соединений могла быть потеряна. Для тяжелого масла соотношение алифатических протонов к ароматическим в спектрах ЯМР равнялось 4,01 1, а соотношение метиленовых и метильных протонов было равно 1 1,75, Для асфальтенов эти значения равнялись соответственно 3,49 1 и 1 1,1. Температура плавления асфальтенов равна 146°С. Молекулярная масса, найденная методом осмометрии в парах (с о-ксилолом в качестве растворителя), составила 407. для тяжелого масла и 638 для асфальтенов. Относительные выходы тяжелого масла и асфальтенов из исходных углей и пз деиолиме-ризованного продукта различались незначительно. [c.324]

    Важным источником стирола в ближайшем будущем, по-видимому, станет пирокондепсат, из которого стирол может быть выделен экстрактивной ректификацией с использованием селективных растворителей, повышающих коэффициенты относительной летучести близкокипящих компонентов — изомеров ксилола. При этом возможно существенное изменение структуры потребления бензола. [c.156]

    Алкилирование пропиленом о-ксилола при невысоких температурах и малом времени контакта приводит к преимущественному (на 95—98%) образованию 1-изопроп1ил-3,4-диметилбензола, а алкилирование м-ксилола дает в основном 1-изопропил-2,5-ди-метилбензол [16]. Изомерный состав продуктов алкилирования в известной мере определяется и влиянием стерических препятствий, которые делают термодинамически менее выгодным образование орто-замещенных в случае заместителей с разветвленной структурой. Так, при алкилировании толуола пропиленом и эта- [c.24]

    Дегидроциклизация парафинов с образованием ароматических углеводородов стала одной из важнейших реакций каталитического риформинга. Ёе осуществление наряду с другими реакциями позволило превращать значительное количество низкооктановых бензинов в ароматические углеводороды-, среднее октановое число которых достигает 100 (по ИМ без ТЭС). Эта реакция протекает с предпочтительным образованием гомологов бензола с максимальным числом метильных заместителей в ядре, возможным для данного исходного углеводорода. На хромовом катализаторе при температуре около 465 °С из 2,3-диметилгексана с хорошим выхо-. дом получается о-ксилол. В тех же условиях дегидроциклизация 2,2-диметилгексана проходит труднее образуется лг-ксилол и много олефинов (дегидроциклизация в этом случае осложняется изомеризацией и крекингом). Углеводороды, не способные к образованию циклов, например н-пентан и 2,4,4-триметилпентан, дают в этих условиях мало ароматических углеводородов, но при температурах выше 510 °С выход ароматических углеводородов из таких парафинов увеличивается вследствие реакций более глубокого изменения структуры. При увеличении молекулярной массы парафиновых углеводородов реакция дегидроцйклизации протекает легче. [c.132]

    Другие известные способы переработки ОПС предполагают разрущение их структуры с выделением опдельных компонентов и их последующим повторным использованием. Предложен способ разрушения отработанной литиевой смазки, обеспечивающей эффективное и быстрое разделение ее на исходные компоненты. Способ предполагает обработку смазки в автоклаве при температуре 100°С и перемешивании в присутствии воды и специального вещества, способствующего разрушению смазки. Другой процесс предусматривает экстрагирование масла из ОПС с помощью комбинированного растворителя, состоящего из ацетона (10—90%) и как минимум еще одного из компонентов петролейного эфира, бензола, толуола, ксилола, хлорированных углеводородов. [c.320]

    Чтобы уменьшить вероятность вторичных превращений, мы заменили бензол более реакционноспособным я-ксилолом. Как и в предыдущем случае, получена сложная смесь соединений, в которой преобладает 1,3-диметил-4-изопропилбензол. Как явствует из его структуры, алкилирование и-ксилола сопровождается миграцией ме-тильной группы. [c.46]

    Очень важно применение в качестве высокоселективной неподвижной фазы бентона-34, который представляет собой продукт замещения катионов природной глины ионами диметилдиокта-дециламмония. Этот продукт далее смешивают с эфиром фталевой кислоты или же с силиконовым маслом и в таком виде наносят на твердый носитель. На бентоне-34 удается разделить смеси о-, м-и п-изомеров ксилола, диэтилбензола, этилтолуола и дихлорбензола. По-видимому, природа селективного действия бентона-34 может быть связана с его слоистой структурой. Различие в величинах удерживания зависит от геометрической формы молекул анализируемых веществ. [c.63]

    В целях улучшения структуры покрытий и повышения выхода по току рекомендуется введение в электролит добавок тио-мочевины, нафталина, ос- и р-нафтола, антрацена, салициловой кислоты, фурфурола, парафина, иодида тетраэтиламмония и др. Для приготовления электролита могут быть использованы смеси ароматических углеводородов этилбензол с ксилолом или толуолом с основным компонентом А1Вгз (50 %-й раствор). [c.111]

    Замечательным противовоспалительным действием обладают также пиразол иди ндионы, включающие в свою структуру фрагмент диарилгидразина. Так, фенилбутазон (бутадион 112), который ранее применялся как анальгетик и антипиретик, последние десятилетия используют в качестве эффективного противо-артритного средства. Его получают конденсацией гидразобензо-ла (109) с производными малоновой кислоты (ПО) или (111) н присутствии основания (этилата натрия) мри нагревании в ксилоле. Гидразобензол легко получают димеризацией аминофе-пильных радикалов, образующихся при восстановлении нитробензола (108) на металлических катализаторах (Pd/ или Fe). [c.104]


Смотреть страницы где упоминается термин Ксилолы структура: [c.322]    [c.482]    [c.139]    [c.142]    [c.147]    [c.241]    [c.212]    [c.261]    [c.25]    [c.76]    [c.29]    [c.281]    [c.86]    [c.124]    [c.160]    [c.199]   
Общая органическая химия Т.1 (1981) -- [ c.315 ]




ПОИСК







© 2024 chem21.info Реклама на сайте