Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

панкреатическая синтез

    Поскольку обработка реакционной смеси после образования каждой последующей пептидной связи (удлинения полипептида) очень упростилась, стало возможным автоматизировать процесс синтеза, что, таким образом, привело к ускорению полипептидного синтеза. Таким методом был проведен первый химический синтез фермента (панкреатическая рибонуклеаза быка, 124 аминокислотных остатка). [c.90]


    Итак, благодаря избирательности бифуркационных флуктуаций и их строгой согласованности структурная самоорганизация белковой молекулы приобретает детерминистические черты (случайность порождает необходимость). Из конформационно жестких и взаимодействующих с ними лабильных фрагментов возникают нуклеации, которые через ряд чисто случайных, но тем не менее неизбежных и строго последовательных событий входят в домены или в нативную трехмерную структуру белка. Весь процесс самосборки пространственной структуры не требует времени больше, чем затрачивается на рибосомный синтез белковой цепи. Уникальность бифуркаций, порядок их возникновения и устойчивый конструктивный характер обусловлены конкретной, отобранной в ходе эволюции аминокислотной последовательностью. В то же время рассматриваемая модель свертывания не исключает образование "неправильных" промежуточных состояний, содержащих структурные элементы, отсутствующие в конечной конформации. Более того, поскольку в основу модели положен беспорядочно-поисковый механизм, осуществляющий сборку белка методом "проб и ошибок", то возникновение непродуктивных состояний белковой цепи становится неизбежным. Однако они нестабильны, так как продуктивные состояния, появляющиеся в результате бифуркационных флуктуаций, всегда более предпочтительны по энергии. К обсуждению этого вопроса вернемся в главе 17 при количественном описании механизма ренатурации панкреатического трипсинового ингибитора. [c.98]

    Отличается этот гормон от двух предыдущих, помимо циклической структуры, тем, что не содержит на М-конце пироглутаминовой кислоты дисульфидная связь образуется между двумя остатками цистеина в 3-м и 14-м положениях. Следует отметить, что синтетический линейный аналог соматостатина также наделен аналогичной биологической активностью, что свидетельствует о несущественности дисульфидного мостика природного гормона. Помимо гипоталамуса, соматостатин продуцируется нейронами центральной и периферической нервных систем, а также синтезируется в 8-клетках панкреатических островков (островков Лангерганса) в поджелудочной железе и клетках кишечника. Он оказывает широкий спектр биологического действия в частности, показано ингибирующее действие на синтез гормона роста в аденогипофизе, а также прямое тормозящее действие его на биосинтез инсулина и глюкагона в 3- и а-клетках островков Лангерганса. [c.254]

    Поджелудочная железа относится к железам со смешанной секрецией. Внешнесекреторная функция ее заключается в синтезе ряда ключевых ферментов пищеварения, в частности амилазы, липазы, трипсина, химотрипсина, карбоксипептидазы и др., поступающих в кишечник с соком поджелудочной железы. Внутрисекреторную функцию выполняют, как было установлено в 1902 г. Л.В. Соболевым, панкреатические островки (островки Лангерганса), состоящие из клеток разного типа и вырабатывающие гормоны, как правило, противоположного действия. Так, а- (или А-) клетки продуцируют глюкагон, 3- (или В-) клетки синтезируют инсулин, б-(или В-) клетки вырабатывают соматостатин и Р-клетки —малоизученный панкреатический полипептид. Далее будут рассмотрены инсулин и глюкагон как гормоны, имеющие исключительно важное значение для жизнедеятельности организма .  [c.267]


    Следует подчеркнуть, что в этом небольшом, казалось бы, химическом процессе - отщепление гексапептида от предшественника-заключено важное биологическое значение, поскольку при этом происходят формирование активного центра и образование трехмерной структуры трипсина, а известно (см. главы 1 и 4), что и белки биологически активны только в своей нативной трехмерной конформации. В том, что трипсин, как и другие протеиназы, вырабатывается в поджелудочной железе в неактивной форме, также имеется определенный физиологический смысл, поскольку в противном случае трипсин мог бы оказывать разрушающее протеолитическое действие не только на клетки самой железы, но и на другие ферменты, синтезируемые в ней (амилаза, липаза и др.). В то же время поджелудочная железа защищает себя еще одним механизмом-синтезом специфического белка ингибитора панкреатического трипсина. Этот ингибитор оказался [c.420]

    Гормоны панкреатической (поджелудочной) железы. Панкреатическая железа — железа и внешней и внутренней секреции. В ткани поджелудочной железы имеются группы клеток в виде маленьких островков, которые не связаны с протоками железы. Эти островки получили название островков Лангерганса в них вырабатывается гормон панкреатической железы — инсулин. Островки Лангерганса обильно снабжены кровеносными сосудами, поэтому инсулин легко проникает в кровяное русло. Инсулин оказывает сильное влияние на углеводный обмен понижает содержание сахара в крови, активирует синтез гликогена из глюкозы, увеличивает клеточную проницаемость по отношению к глюкозе кроме того, инсулин активирует синтез белков из аминокислот и тормозит образование углеводов из белков и жиров. [c.146]

    Такие продукты, как интерферон, моноклональные антитела, антигены, вирусы и гормоны, могут извлекаться как непрерывным, так и периодическим способом. Были исследованы процессы с применением мембранных реакторов, в которых использовались панкреатические клетки для синтеза инсулина, а также для получения других белковых гормонов и энзимов. Периодический способ давно применялся для выращивания бактерий и дрожжевых клеток ферментацией. Основной стадией непрерывной ферментации является выделение токсичных продуктов. Легче всего эта операция осуществляется путем рециркуляции клеток через блок полых волокон [26]. [c.96]

    К числу гидролаз относятся ацетилхолинэстераза нервных клеток (дополнение 7-Б) и большое число пищеварительных фермеитов. Среди последних наиболее изучены протеиназы и пептидазы. Пепсин, трипсин, химотрипсин и карбоксипептидаза являются высокоэффективными катализаторами расщепления белков. Все оии секретируются в виде неактивных проферментов (гл. 6, разд. Ж,2), или иначе, зимогенов [26]. После синтеза на рибосомах эндоплазматического ретикулума особых секреторных клеток проферменты упаковываются в виде зимогеновых гранул, которые затем мигрируют к поверхности клетки и секретируются в окружающую среду. Пепсиноген является компонентом желудочного сока, в то время как химотрипсиноген, трипсиноген и другие панкреатические проферменты через проток поджелудочной железы попадают в тонкую кишку. Достигнув места своего действия, зимогены превращаются в активные ферменты под действием молекулы другого фермента, отсекающей от предшественника фрагмент (иногда довольно большой) полипептидной цепи [25]. [c.104]

    Ингибиторы протеиназ, блокирующие действие трипсина найдены также во многих растениях. Обычно наиболее высокая антипротеиназная активность обнаруживается в семенах и клубнях, но синтез ингибиторов протеиназ может быть индуцирован и в других частях растений повреждением поверхности. Возможно, эти ингибиторы защищают растения от насекомых . Была изучена структура соевого ингибитора трипсина и его комплекса с трипсином. Этот комплекс сходен с комплексом, включающим панкреатический ингибитор трипсина. Однако соевый ингибитор медленно расщепляется, и исследования дифракции рентгеновских лучей показали, что-комплекс существует в виде тетраэдрически связанного ад-дукта, как показано в уравнении (7-13). [c.114]

    Свертывание может происходить значительно быстрее, чем синтез цепи. Свертывание in vitro осуществляется чрезвычайно быстро, по крайней мере для малых белков, не содержащих дисульфидных мостиков. Нуклеаза стафилококка повторно свертывается в течение 1 с [438], а метмиоглобин — в течение 10 с [439]. Если эти величины применимы также и к условиям in vivo, свертывание цепи может происходить по крайней мере в 10 раз быстрее, чем биосинтез аминокислотной последовательности. Дисульфидсодержащие белки, например панкреатическая рибонуклеаза, повторно свертываются за время от 1 до 10 с, если дисульфидные связи не были разорваны в процессе предшеств ющей денатурации [440]. Однако если такие белки развернуты и восстановлены, последующее свертывание цепи (которое включает образование правильной системы дн-сульфидных связей) продолжается при оптимальных условиях в течение многих минут. [c.182]


    Путь через 1-0-бензилглицерин (схема 13) пригоден для синтеза насыщенных соединений. В альтернативных схемах синтеза используют тетрагидропиранильный эфир глицерина, получаемый из аллилового спирта (схема 14) или глицеро-1,2-карбопата (схема 15). При этом обычно образуются однокислотные диэфнры, однако ацильная группа в положении 1 может быть удалена обработкой панкреатической липазой и вместо нее может быть введен остаток требуемой кислоты (см. схему 15). Другие методы получения 1,2-ди-О-ацилглицеринов приведены ниже [см. разд. 25.2.3.1 (8)]. [c.92]

    Инсулин, получивший свое название от наименования панкреатических островков (лат. insula—островок), был первым белком, первичная структура которого была раскрыта в 1954 г. Ф. Сэнджером (см. главу 1). В чистом виде инсулин был получен в 1922 г. после его обнаружения в экстрактах панкреатических островков Ф. Бантингом и Ч. Бестом. Молекула инсулина, содержащая 51 аминокислотный остаток, состоит из двух полипептидных цепей, соединенных между собой в двух точках дисульфидными мостиками. Строение инсулина и его предшественника проинсулина приведено в главе 1 (см. рис. 1.14). В настоящее время принято обозначать цепью А инсулина 21-членный пептид и цепью В—пептид, содержащий 30 остатков аминокислот. Во многих лабораториях осуществлен, кроме того, химический синтез инсулина. Наиболее близким по своей структуре к инсулину человека является инсулин свиньи, у которого в цепи В вместо треонина в положении 30 содержится аланин. [c.268]

    Согласно современным представлениям, биосинтез инсулина осуществляется в 3-клетках панкреатических островков из своего предшественника проинсулина, впервые выделенного Д. Стайнером в 1966 г. В настоящее время не только выяснена первичная структура проинсулина, но и осуществлен его химический сгштез (см. рис. 1.14). Проинсулин представлен одной полипептидной цепью, содержащей 84 аминокислотных остатка он лишен биологической, т.е. гормональной, активности. Местом синтеза проинсулина считается фракция микросом 3-клеток панкреатических островков превращение неактивного проинсулина в активный инсулин (наиболее существенная часть синтеза) происходит при перемещен проинсулина от рибосом к секреторным гранулам путем частичного протеолиза (отщепление с С-конца полипептидной цепи пептида, содержащего 33 аминокислотных остатка и получившего наименование соединяющего пептида, или С-пепти-да). Длина и первичная структура С-пептида подвержена большим изменениям у разных видов животных, чем последовательность цепей А и В инсулина. Установлено, что исходным предшественником инсулина является препроинсулин, содержащий, помимо проинсулина, его так называемую лидерную, или сигнальную, последовательность на N-конце, состоящую из 23 остатков аминокислот при образовании молекулы проинсулина этот сигнальный пептид отщепляется специальной пептидазой. Далее молекула проинсулина также подвергается частичному протеолизу, и под действием трипсиноподобной протеиназы отщепляются по две основные аминокислоты с N- и С-конца пептида С—соответственно дипептиды Apr—Apr и Лиз— —Apr (см. рис. 1.14). Однако природа ферментов и тонкие механизмы этого важного биологического процесса—образование активной молекулы инсулина окончательно не выяснены. [c.268]

    В физиологической регуляции синтеза инсулина доминирующую роль играет концентрация глюкозы в крови. Так, повышение содержания глюкозы в крови вызывает увеличение секреции инсулина в панкреатических островках, а снижение ее содержания, наоборот,— замедление секреции инсулина. Этот феномен контроля по типу обратной связи рассматривается как один из важнейших механизмов регуляции содержания глюкозы в крови. На секрецию инсулина оказывают влияние, кроме того, электролиты (особенно ионы кальция), аминокислоты, глюкагон и секретин. Приводятся доказательства роли циклазной системы в секреции инсулина. Предполагают, что глюкоза действует в качестве сигнала для активирования аденилатциклазы, а образовавшийся в этой системе цАМФ —в качестве сигнала для секреции инсулина. [c.269]

    Гипергликемический эффект глюкагона обусловлен, однако, не только распадом гликогена. Имеются бесспорные доказательства существования глюконеогенетического механизма гипергликемии, вызванной глюкагоном. Установлено, что глюкагон способствует образованию глюкозы из промежуточных продуктов обмена белков и жиров. Глюкагон стимулирует образование глюкозы из аминокислот путем индукции синтеза ферментов глюконеогенеза при участии цАМФ, в частности фосфоенолпируваткарбок-сикиназы —ключевого фермента этого процесса. Глюкагон в отличие от адреналина тормозит гликолитический распад глюкозы до молочной кислоты, способствуя тем самым гипергликемии. Он активирует опосредованно через цАМФ липазу тканей, оказывая мощный липолитический эффект. Существуют и различия в физиологическом действии в отличие от адреналина глюкагон не повышает кровяного давления и не увеличивает частоту сердечных сокращений. Следует отметить, что, помимо панкреатического глюкагона, в последнее время доказано существование кишечного глюкагона, синтезирующегося по всему пищеварительному тракту и поступающего в кровь. Первичная структура кишечного глюкагона пока точно не расшифрована, однако в его молекуле открыты идентичные М-концевому и среднему участкам панкреатического глюкагона аминокислотные последовательности, но разная С-концевая последовательность аминокислот. [c.272]

    При белковой недостаточности, помимо нарушений общих процессов аминокислотного обмена, отмечены специфические изменения обмена отдельных аминокислот. Так, нарушения обмена триптофана выражаются как в снижении синтеза никотинамида, так и в накоплении в организме 3-оксиантраниловой и ксантуреновой кислот. Последняя, по некоторым данным, оказывает токсическое действие на 3-клетки панкреатических островков, являясь тем самым одним из патогенетических факторов диабета. Нарушения в обмене гистидина сводятся к снижению активности гистидин-аммиак-лиазы и гистаминазы и, напротив, к повышению активности гистидиндекарбоксилазы. Все это способствует накоплению гистамина в тканях со всеми вытекающими отсюда отрицательными последствиями. При белковой недостаточности обмен метионина практически не нарушен. Все эти данные свидетельствуют о дискоординации ферментных систем обмена аминокислот, что в значительной степени затрудняет терапевтические подходы к устранению последствий белковой недостаточности. [c.466]

    Использование этих методов привело к значительным успехам в синтезе сложных полипептидов. Начиная с 1954 г., осуществлен синтез ряда гормонов, представлящщих собой сложные полипептиды. Так, например,, синтезированы один из гормонов гипофиза — окситоцин (8 остатков аминокислот) гормон инсулин, построенный из нескольких полипептидных фрагментов, самый большой из которых содержит 30 аминокислотных остатков, фермент панкреатическая нуклеаза и ряд других. [c.323]

    С помощью химического и ферментативного гидролиза было показано, что синтетические полинуклеотиды, как и РНК, состоят из нуклеозид-5 -монофосфатных единиц, связанных между собой 3, 5 -фосфодиэфирными связями (стр. 46). Анализ концевых групп показал, что на конце полипептидной цепи находится фосфатная группа, этерифицированная по С-5 концевого нуклеозида. При гидролизе щелочью, фосфодиэстеразой змеиного яда, фосфодиэстеразой из селезенки или панкреатической рибонуклеазой эти полимеры дают точно такие же продукты, как и РНК. Очоа и его сотрудники воспользовались перечисленными свойствами, чтобы выяснить природу межнуклеотидных связей, образуемых с помощью фермента. Они синтезировали (А, Г, У, Ц)-полимер из смеси нуклеотидов, содержавшей АДФ, меченный по фосфору, и затем гидролизовали его фосфодиэстеразой змеиного яда (фиг. 87). Из полученных после гидролиза четырех нуклеозид-5 -фосфатов меченым оказался только АМФ, и его удельная радиоактивность соответствовала удельной радиоактивности первоначально включенного АМФ. Следовательно, во время синтеза фосфоэфирпая связь АМФ не затрагивалась. Если же синтезированный полимер гидролизовали щелочью или фосфодиэстеразой селезенки, то метку включал каждый из четырех пуклеозид-З -монофосфатов. Значит, в ходе синтеза полинуклеотидфосфорилаза формирует связи А—ф—А, Ц—ф—А, У—ф—А и Г—ф—А. Аналогичные результаты были получены с Р -УДФ. [c.253]

    Панкреатическая РНК аза — высокоспецифичная эндонуклеаза, гидролизующая связи между фосфатом, присоединенным к атому С-З -пиримидинового нуклеотида, и С-5 -кислородом следующего нуклеотида в полинуклеотидной цепи РНК. Фермент представляет собой белок с мол. массой 13 700. Он термостабилен в кислой среде, хотя очень легко инактивируется в щелочной. Панкреатическая РНК-аза достаточно устойчива в широком диапазоне значений pH. В настоящее время ус ( ановлеяа химическая структура панкреатической РНК-азы. Эту структуру подтверждает и искусственный синтез. Атакуя фосфодиэфирную связь, фермент в качестве обязательного промежуточного продукта производит 2 -3 -циклофосфаты, которые затем гидролизуются и превращаются в пиримидин-3 -фосфаты в свободном виде либо в виде концевого нуклеотидного остатка в структуре олигонуклеотида. [c.65]

    Рибонуклеаза панкреатическая — фермент осуществляющий гидролиз дрожжевой РНК. Обнаружен Джонсом в панкреатической железе. Это термостабильный белок небольшого размера с мол. массой 13 700, устойчив при кислых значениях pH, но в щелочной среде очень легко инактивируется. Панкреатическая РНК-аза расщепляет РНК с образованием З -монофосфатов или же олигонуклеотидов с З -фос тным нуклеотидом на конце. Оптимальную активность фермент проявляет при pH 7,0— 8,2. При температурах выше 65° С панкреатическая рибонуклеаза инактивируется. В результате структурных исследований волностью расшифровано первичное строение этого белка-фермента и осуществлен его полный химический синтез. Панкреатическая РНК-аза расщепляет связь между фосфатом, присоединенным к атому С-З -пиримидинового нуклеотвда, и С-5 -кислородом соседствующего с ним нуклеотида. Внутримолекулярная атака фермента на фосфодиэфирную связь происходит при участии 2 -гидроксильной группы. При этом обязательно образуется промежуточный 2 -3 -циклофосфат, который затем гидролизуется тем же ферментом с образованием свободного пиримидин-З -фосфата или же Олигонуклеотида с пиримидин-З -фосфатным нуклеотидом на конце. Нельзя считать абсолютной специфичность панкреатической РНК-азы по отношению к пиримидиновым нуклеотидам, поскольку диэфирные связи в полинуклеотиде, возникающие при наличии Аф, также расщепляются ферментом, хотя и в значительно меньшей степени, чем фосфодиэфирные, образующиеся пирими-динами. [c.75]

    При гипофункции поджелудочной железы и недостаточном синтезе гормона инсулина развивается панкреатическая глюкозурия. Она сопровождается также повышенной гликолитической активностью жировой ткани и увеличени< 1 содержания иеэстерефицированных жирных кислот в крови. Эти процессы выподйяют, по-видимому, компенсаторную функцию путем использования неэстереф юванных жирных кислот в качестве энергетического материала и при нарушения утилизации глюкозы. [c.180]

    Поскольку расщепление рацематов выгодно производить на возможно более ранней стадии синтеза, то как химическим, так и микробиологическим методом были получены оптические изомеры трициклических полупродуктов, описанных на схеме 71. Химическое расщепление было осуществлено на стадии кислоты (191) путем кристаллизации ее солей с оптически активными основаниями хлорамфеникола L- - -)-треоЛ-п нитрофенил-2-аминопропандиол-1,3) [61, 776—778]. Ферментативное расщепление проводится либо с помощью дрожжей Sa liaromy es erevisiae, восстанавливающих 17-кетогруппу только у природного энантиомера (185), либо гидролизом ацетата соединения (188) панкреатическим ферментом (протаминаза), селективно гидролизующим неприродный энантиомер [779, 780]. [c.205]

    Впервые синтез одного из представителей фосфорсодержащих плазмалогенов— фосфатидальхолина — был осуществлен фосфорилированием рацемического 1-0-(алкен-1-ил)-2-ацилглицерина дихлорангидри-дом р-бромэтилфосфорной кислоты с последующей обработкой триметиламином [177]. 1-0-(Алкен-1-ил)-2-ацилглицерин был получен лишь с помощью ферментативного гидролиза нейтрального плазмалогена панкреатической липазой, осуществляющей избирательное отщепление [c.296]

    Выберите из предложенных вариантов основные причины нарущения переваривания и всасывания жиров а) нарушение синтеза панкреатической липазы б) отсутствие колипазы в) нарушение поступления желчи в кишечник г) затруднение поступления панкреатического сока в кишечник д) недостаточная продукция секретина е) недостаточная продукция холецистокинина. [c.214]

    Никотинамид стимулирует секрецию лселудочного сока, возбуждает деятельность панкреатической железы, усиливает действие инсулина. Недостаток никотиновой кислоты нарушает синтез дегидрогеназ, что ведет к прекращению окислительных процессов в организме. [c.34]

    Б. Предшественники других гормонов островко-вых клеток. Синтез других гормонов островковых клеток также требует ферментативного превращения молекул-предшественников с большей молекулярной массой. Строение молекул панкреатического полипептида, глюкагона и соматостатина в сравнении со строением инсулина схематически показано на рис. 51.6. В образовании этих гормонов участвуют различные комбинации эндопротеолитиче-ских (трипсиноподобных) и экзопротеолитических (подобных карбоксипептидазе-В) ферментов, поскольку обладающие гормональной активностью по- [c.250]

    Основным местом синтеза глюкагона служат А-клетки островкового аппарата поджелудочной железы. Однако довольно большие количества этого гормона могут вырабатываться и в других местах желудочно-кишечного тракта. Глюкагон синтезируется в виде значительно более крупного предшественника— проглюкагона (мол. масса около 9000). Обнаружены и более крупные молекулы, однако не ясно, являются ли они предшественниками глюкагона или близкородственными пептидами. Лишь 30— 40% иммунореактивного глюкагона в плазме приходится на долю панкреатического глюкагона. Остальная часть—это более крупные молекулы, лишенные биологической активности. [c.264]


Смотреть страницы где упоминается термин панкреатическая синтез: [c.679]    [c.74]    [c.83]    [c.231]    [c.221]    [c.368]    [c.665]    [c.408]    [c.155]    [c.174]    [c.683]    [c.70]    [c.440]    [c.77]    [c.113]    [c.207]    [c.69]    [c.64]   
Общая органическая химия Т.10 (1986) -- [ c.408 , c.409 ]




ПОИСК





Смотрите так же термины и статьи:

панкреатическая



© 2025 chem21.info Реклама на сайте