Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы обнаружения и анализа

    Гравиметрией называют метод количественного анализа, заключающийся в точном измерении массы определяемого компонента пробы, выделенного в виде соединения известного состава или в форме элемента. (Классическое название — весовой анализ.) Гравиметрический анализ основан на законе сохранения массы веществ при химических превращениях. Это наиболее точный из химических методов анализа, его характеристики предел обнаружения — 0,10% правильность — 0,2 отн.% информативность— 17 бит. В гравиметрии используют реакции обмена, замещения, разложения и комплексообразования (табл. 7.6), а также электрохимические процессы. [c.139]


    Обычные методы анализа недостаточно чувствительны для обнаружения следовых количеств примесей в веществах. При проведении анализа этими методами часто сталкиваются с проблемой холостых определений (разд. 8.3). Для определения следовых количеств примесей в веществе целесообразно применять метод активационного анализа, обладающий высокой чувствительностью. Этот метод основан на превращении определяемых примесей при помощи ядерных реакций в радиоактивные нуклиды с последующим количественным определением их активности. Из множества ядерных реакций для проведения активационного анализа практически пригодны только реакции с участием нейтронов, протонов, дейтронов, тритонов, а-частиц й фотонов. Для объяснения сущности метода допустим, что речь идет об однородном веществе, содержащем реакционноспособные ядра и в течение определенного промежутка времени подвергающемся действию потока нейтронов или заряженных частиц. Число образовавшихся радиоактивных нуклидов М пропорционально потоку нейтронов Ф, числу реакционноспособных ядер N и эффективному сечению захвата о ядерной реакции [c.309]

    Методы обнаружения ионов можно разделить на химические и физические. Для их химического обнаружения используют высокочувствительные органические реагенты. Из физических способов обнаружения наиболее чувствительны радиометрические методы, которые прежде всего применяют при анализе радиоизотопов. Для определения положения ионов можно использовать, например, низко- или высокочастотную кондукто-метрию, полярографию и т. п. Наиболее употре-бима фотометрия обнаруженных окрашенных пятен в отраженном или проходящем свете. [c.241]

    Ионный обмен можно применять для проведения макро- и микроопределений. Для разделения небольших количеств веществ используют ионообменную бумагу или проводят ионный обмен в тонких слоях. Количество анализируемой пробы выбирают в зависимости от последующего метода обнаружения или определения ионов. Для определения ионов после ионного обмена применяют кондуктометрические, полярографические, потенциометрические и радиохимические методы анализа. При проведении ионообменных разделений исследование фракций элюата часто проводят классическими методами анализа. При помощи ионного обмена можно проводить определение различных электролитов. Едва ли можно назвать сочетание элементов, для разделения которых нельзя использовать какой-либо метод ионного обмена [43]. Метод ионного обмена можно применять и для разделения неионогенных веществ после перевода их в ионогенные соединения. В качестве примера можно назвать разделение фруктозы, глюкозы и других сахаров в виде боратных комплексов. [c.381]


    Для регистрации вещества в момент выхода из колонки существует несколько способов. Для веществ кислого характера можно использовать цветную реакцию с индикатором. Более эффективен и пе вызывает загрязнения элюата метод, при котором элюат по выходе из колонки направляют в микрокювету. Там его непрерывно анализируют потенциометрическим, рефрактометрическим, спектрофотометрическим или колориметрическим методами. Наиболее распространен метод обнаружения веществ анализом каждой из точно отмеренных фракций элюата. Чаще всего хроматографируют каждую фракцию элюата или используют химические превращения с последующим исследованием продуктов реакции. [c.74]

    Аммиачный метод. Ход анализа по аммиачному методу до п. 4 включительно полностью соответствует схеме пероксидного метода, приведенной в табл. 19. Изменение хода анализа начинается с дробного обнаружения ионов o + и Мп + (см. табл. 21) и вызывается следующими соображениями. [c.279]

    Рассмотренные нами случаи дают представление о тех математических подходах, которые используются при анализе многостадийных электрохимических реакций с известной последовательностью стадий. Для ее установления при анализе конкретных электрохимических систем большую роль играют различные экспериментальные методы обнаружения и аналитического определения промежуточных продуктов, а также установление кинетических порядков общей реакции по отношению к исходным и промежуточным веществам. [c.251]

    Пример 2. Какой из двух методов качественного анализа — капельный или систематический — пригоден для обнаружения иона Сц2+ в смеси РЬ +, Си +, С(12+, [c.21]

    В практике используются различные методы обнаружения и количественного анализа влаги в газах. Ранее использовался метод, основанный на определении температуры начала конденсации водяных паров (точка росы) при постепенном охлаждении исследуемого газа. Визуально улавливали момент появления тумана на зеркале и по показанию милливольтметра определяли точку росы, а следовательно, и содержание водяных паров. Видоизмененный вариант этого метода, заключающийся в установлении температуры, при которой исчезает муть в процессе нагревания охлажденной до — 70° С анали- [c.98]

    Реакции обнаружения молекул. Методы обнаружения неорганических и органических веществ различаются, поскольку в первом случае почти всегда используют ионные реакции, во втором — в основном молекулярные. Реакции между ионами протекают в большинстве случаев быстро и однозначно, реакции между молекулами часто идут медленно, не полностью и сопровождаются побочными реакциями (ср. стр. 46). Это обстоятельство, а также очень большое число соединений, с которыми имеют дело в органической химии, нередко мало отличающихся по свойствам (гомологические ряды), делают обнаружение и исследование органических веществ несравненно более трудной аналитической задачей, чем неорганических соединений. Задача качественного органического анализа чаще всего заключается в установлении идентичности неизвестного вещества с уже известным соединением или в выяснении природы нового неизвестного соединения. Несмотря на то что в случае органических веществ иногда и имеют дело с ионами, последние, за малыми исключениями, обладают сложной структурой, и поэтому такие простые ионные реакции, как в неорганическом анализе, для них становятся едва ли возможными. [c.56]

    Для определения качественного и количественного состава, а отсюда и микроструктуры полимера в принципе можно использовать любые физико-химические методы обнаружения и определения. С внедрения методов молекулярной спектроскопии, особенно с 1950 г., началось бурное развитие анализа полимерных соединений. [c.415]

    Пределы обнаружения ряда элементов в разных методах спектрального анализа [c.88]

    Метод спектрального анализа, разработанный во второй половине XIX в. Г. Кирхгофом и Р. Бунзеном, позволил изучить состав наружных оболочек звезд и открыть на Солнце элемент, названный гелием, не обнаруженный еще к тому времени (1868) на Земле. В настоящее время о химическом составе Вселенной известно больше, чем о составе глубинных слоев Земли. Самые распространенные в космосе элементы водород (75%) и гелий (24%). И лишь около 1% от общего числа атомов приходится на долю остальных всех известных нам элементов, среди которых чаще встречаются кислород (№ 8), неон (№ 10), азот (№ 7), углерод (№ 6), кремний (№ 14), магний (№ 12), железо (№ 26) и др. Элементов с четными порядковыми номерами распространено больше, чем с нечетными, так как ядра атомов, состоящие из четного числа протонов и нейтронов, обладают повышенной устойчивостью. [c.200]

    Метод спектрального анализа, разработанный во второй половине XIX в. Г. Кирхгофом и Р. Бунзеном, позволил изучить состав наружных оболочек звезд и открыть на Солнце элемент, названный гелием, не обнаруженный еще к тому времени (1868) на Земле. В настоящее время о химическом составе Вселенной известно больше, чем о составе глубинных слоев Земли. Самые распространенные в космосе элементы водород (75%) и гелий (24%). И лишь около 1% от общего числа ато- [c.265]


    Итак, методы идентификации позволяют ответить на вопрос Что это методы обнаружения — Есть ли это в объекте или нет методы количественного анализа — на вопрос Сколько этого в объекте . Между качественным и количественным анализом нет принципиального различия. Качественный анализ можно рассматривать как количественный с очень приближенными показаниями. [c.9]

    Капельный анализ на фильтровальной бумаге — это разновидность бумажной хроматографии (см. разд. 5.6). Образование пятна на бумаге — результат сложного взаимодействия капиллярного распределения, диффузии, разбухания, адсорбции и химической реакции. Поэтому предел обнаружения методом капельного анализа, проведенного в одних и тех же условиях, может различаться на порядок в зависимости от сорта используемой бумаги. [c.123]

    При проведении химического анализа используют химические, физико-химические и физические методы в сочетании с химическими, физико-химическими методами разделения и концентрирования элементов. Выбор метода обнаружения или количественного определения компонентов зависит от фазового состояния объекта анализа, его химико-аналитических свойств и способа проведения анализа (мокрым или сухим путем, с разрушением или без разрушения пробы и т.п.). При выборе метода учитывают также требуемую точность определения, чувствительность метода, необходимую скорость проведения анализа, оснащение лаборатории и другие факторы. [c.229]

    В табл. 14.1 приведен обзор химических методов обнаружения неорганических ионов. В лабораторном практикуме рекомендуется выполнение двух-трех работ следующего перечня изучение селективных реакций неорганических катионов систематический анализ заданной смеси катионов изучение селективных реакций анио- [c.254]

    Накопленный большой экспериментальный опыт решения аналитических задач по автоматической идентификации сложных смесей органических соединений методом ГХ-ЭВМ [54, 851 оказался весьма полезным при формировании универсальной системы анализа, в которой предусматривается разделение исследуемых веществ на классы с последующим использованием математических методов обнаружения каждого компонента. Анализируемые смеси могут содержать несколько сотен объектов. Классическая идентификация их (применение как минимум 3 колонок различной полярности с введением внутреннего стандарта) оказывается трудоемкой, а подчас и просто неприемлемой процедурой. Так, для анализа ароматических компонентов пищи необходимо введение более 1000 стандартов, многие из которых труднодоступны. Таким образом, структура и состав таких смесей должны быть установлены непосредственно в ходе газохроматографического анализа по изменению сорбционных характеристик анализируемых веществ. [c.252]

    Монография посвящена новому методу обнаружения, идентификации и изучения строения и реакционной способности короткоживущих радикалов в газовой, жидкой и твердой фазах — методу спиновых ловушек обсуждаются многочисленные данные по использованию этого метода в химической кинетике, радиационной и фотохимии, органической химии и химии полимеров, плазмохимии, биологии, медицине. Рассмотрены основы метода, возможности использования в различных условиях и особенности проведения ЭПР-эксперимента со спиновыми ловушками в системах, где протекают реакции с участием короткоживущих радикалов. Дан анализ химии спиновых ловушек и радикальных аддуктов. [c.136]

    Аналитическое применение люминесценции включает широкую область использования ее для идентификации веществ, для обнаружения малых концентраций веществ, для контроля изменений, претерпеваемых веществом, для определения степени чистоты веществ. Помимо использования люминесценции как метода химического анализа, измерения люминесценции применяются и в других областях науки и техники. [c.55]

    Рис. 2, б показывает также, что качественный и количественный анализ взаимосвязаны. Методами качественного анализа получают самую грубую количественную оценку — измерима или не измерима интенсивность аналитического сигнала (обнаруживается или нет сигнал). Другими словами, качественный анализ дает сведения о том, превзойден или непревзойден предел обнаружения. Количественный же анализ показывает, в какой степени предел обнаружения превзойден. [c.11]

    Реакция Лассеня иногда оказывается непригодной это бывает в тех случаях, когда азот в органическом соединении связан настолько слабо, что при нагревании улетучивается еще до сплавления вещества и поэтому не вступает в реакцию с натрием и углеродом. Недавно Файгль описал очень чувствительный и надежный метод обнаружения азота. При нагревании любого сухого азотсодержащего вещества с пиролюзитом (а также с МпгОз, РЬз04, С02О3) образуются пары азотистой кислоты, окрашивающие фильтровальную бумагу, смоченную реактивом Грисса (смесь 1 %-ного раствора сульфаниловой кислоты в 30%-ной уксусной кислоте с 0,1 %-ным раствором а-нафтиламина в 30%-ной уксусной кислоте), в красный цвет. Методами капельного анализа можно обнаружить 0,2 цг органически связанного азота [c.5]

    Практическому рассмотрению методов анализа каждой группы катионов предшествует изучение основных теоретических вопросов, с которыми сталкиваются учащиеся при знакомстве с практическими методами обнаружения ионов данной группы. Вот почему мы начнем с рассмотрения некоторых вопросов теории. [c.83]

    Следующий по времени открытия инертный газ — гелий ( солнечный ) был обнаружен на Солнце раньше, чем на Земле. Это оказалось возможным благодаря разработанному в 50-х годах прошлого века методу спектрального анализа. [c.36]

    К наиболее эффективным методам обнаружения и идентификации примесей принадлежат спектральные методы масс-спектры, инфракрасные, ультрафиолетовые спектры. Разработанный иедаино О Нилом [28] масс-спектральный метод анализа больших масс, иримеиимый для анализа масс порядка 700 и выше (СаоН-), оказался чрезвычайно ценным для обнарунгения примесей в высокомолекулярных углеводородах [31]. [c.504]

    В отлР1чие от других спектральных методов метод люминесцентного анализа можно использовать, не прибегая к разложению спектра на его составляющие и к количественной характеристике отдельных полос. Благодаря высокой чувствительности, быстроте и простоте выполнения люминесцентный анализ нашел широкое ирименение в нефтяной геологии для обнаружения битума в породах, а также для других аналитических исследований нефтепродуктов. [c.482]

    Распространенным методом обнаружения и идентификации фуллеренов остается масс-снектральный анализ. В совокупности с "двугорбым" спектром поглощения фуллеренов в ультрафиолетовой области масс-спектры экстракта фуллеренсодержащей сажи вошли в историю химии как сенсационные графики, сигна шзировавшие об открытии новой формы углерода (рис. 1.1). [c.10]

    Метод полярографического анализа и метод амперометрического обнаружения к.т.т. (метод АО к.т.т.) относятся к современным электрохимическим методам анализа. Они основаны на изучении так называемых полярографических вольтамперных кривых, которые можно получить при электролизе электровосстанавливающегося или электро-окисляющегося вещества в особых, специфичных для данного метода условиях. [c.153]

    По сложившейся традиции принято различать качественный и количественный анализы. С помощью качественного анализа устанавливают, какие элементы, молекулы или ионы входят в состав вещества. Количественный анализ позволяет определить содержание компонентов в веществе после идентификации их методами качественного анализа. Это различие межд качественным и количественным анализом, кажущееся таким простым, в действительности проблематично. При проведении анализа по существующим в настоящее время методикам в любом веществе возможно о.бнаружить большое количество элементов, в том числе и такик, присутствие которых не предполагалось. Содержание этих элементов может быть на несколько порядков меньше содержания основных компонентов. Поэтому, когда аналитик утверждает, что в веществе А содержится элемент В, то эта высказывание имеет смьгсл только в том случае, если указан порог чувствительности (см. прим. на с. 434) реакции обнаружения. Отсюда следует вывод, что к реакциям, применяемым в качественном анализе, также необходим количественный подход. [c.7]

    ГЛАВА XIII. ХРОМАТОГРАФИЧЕСКИЙ МЕТОД ОБНАРУЖЕНИЯ ИОНОВ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕННОМ АНАЛИЗЕ [c.194]

    При взаимодействии радиоактивного излучения с веществом происходят процессы ионизации и возбуждения атомов и молекул. Фотоны и частицы с достаточно высокой энергией могут вызвать ядерные реакции. Однако преобладающий процесс — взаимодействие излучения с электронами атомных оболочек и электрическим полем атомного ядра. При подобном взаимодействии частицы или фотоны теряют энергию или часть ее. Некоторые столкновения приводят к изменению направления движения частицы. Это значит, что радиоактивное излучение абсорбируется и рассеивается веществом. Указанные процессы взаимодействия положены в основу методов обнаружения а-, Р- и у-излучения. На этом же принципе основаны методы радиометрического анализа веществ без их разру шения [1,2, 6]. [c.304]

    В настоящее время спектральный анализ широко используется в науке и технике, и сейчас вряд ли можно найти область естествознания, в которой он не находил бы применения. Именно методы спектрального анализа наиболее полно удовлетворяют все возрастающим требованиям современного производства. Мпогоэле-ментность, экспрессность, низкие пределы обнаружения, возможность определения многих элементов в малых пробах и анализа на расстоянии, автоматизация — все это быстро превратило спектральные методы анализа в эффективные методы аналитической химии. [c.4]

    Особое место в развитии методов спектрального анализа занимает анализ веществ высокой чистоты, значение которого в различных областях техники и науки постоянно возрастает. Это радиоэлектроника, особенно полупроводниковая техника, квантовая электроника, космическая и квантовая техника, новые системы преобразования энергии, производство химических реактивов и др. Содержание п И1месей в ряде. материалов не должно превышать 10" —10 % и ниже. Для решения такой задачи привлекаются различные методы аналитического контроля, однако методы спектрального анализа обладают рядом преимуществ, например доступностью и простотой эксплуатации спектральных установок наряду с возможностью определения большого числа элементов одновременно, низкими пределами обнаружения н допустимой для этих объектов точностью анализа. [c.195]

    Р. Бунзен и Г. Кирхгоф установили, что каждый химический элемент имеет свой характерный спектр, являющийся как бы паспортом, по которому можно идентифицировать изучаемое вещество. Уже в 1861 г. они впервые использовали повый метод для спектрального химического анализа состава солнечной атмосферы и таким образом проложили дорогу к созданию спектроскопической астрономии. Первые практические результаты нового метода были получспы самими его изобретателями еще в 1860 и 1861 гг., когда им удалось открыть два новых э [емепта цезий и рубидий. Впоследствии метод спектрального анализа оказал неоценимую услугу при обнаружении и идентификации многих других, как простых, так и сложных, веществ. [c.283]

    Физико-химический анализ, детально разработанный русским химиком Н. С. Курпаковым и его учениками, представляет собой метод обнаружения химических и шенений в изучаемой системе путем исследования ее физических свойств. Физико-химический анализ основан на изучении зависимости между химическим составом и какими-либо физическими свойствами системы (плотность, вязкость, растворимость, температура плавления, температура кипения и др.) с применением геометрического метода изображения полученных результатов. Найденные опытным путем данные для нескольких состояний системы наносятся в виде точек на диаграмму состав — свойство , на оси абсцисс которой откладывается состав системы, на оси ординат — свойство. Линии, проведенные через эти точки, отражают зависимость свойства от состава системы и позволяют устанавливать соотношение любого произвольно взятого состава системы с исследуемым свойством. Плавный ход линий соответствует постепенному увеличению или уменьшению исследуемого фактора (состава, температуры, давления и т. п.), не влекущему за собой изменения качественного состава системы. Резкие перегибы и пересечения линий указывают на превращения и химические взаимодействия веществ. Анализ линий и геометрических фигур на диаграмме состав — свойство позволяет судить [c.295]

    В колоночной (в том числе газовой) хроматографии по достижении положения, показанного на рис. 61, б, подачу подвижной фазы не прегфащают. Хроматографирование продолжают до тех пор, пока подвижная фаза выносит из колонки разделяемые вещества. Этот процесс называют элюированием, а выходящую из колонки подвижную фазу, содержащую разделяемые вещества, — элюатом. Элюат обычно контролируют на содержание разделяемых веществ с помощью датчиков, которые называют детекторами. Сигналы детекторов принимаются измерительными приборами и передаются к самописцам. Получают хроматограммы, подобные той, которая показана на рис. 61, в. Если на оси абсцисс отложено время, по хроматограмме можно определять время удерживания вещества в колонке. Для 81 это 1, а для 83 — 2 (отсчет времени ведется с момента ввода смеси разделяемых веществ). Часто все же по оси абсцисс откладывают не время, а объем элюата. Нулевая точка тогда соответствует выходу той порции подвижной фазы, в которую была введена смесь разделяемых веществ. Потом в элюате меняются концентрации разделяемых веществ в соответствии с различными степенями их удерживания. По полученной хроматограмме определяют объем удерживания. Для 81 это v , а для 83 = а-Время (объем) удерживания при постоянных условиях хроматографирования представляет собой величину, характерную для данного вещества. Поэтому наряду с другими методами обнаружения для идентификации веществ можно использовать значения времени (объема) удерживания. Количества же разделенных веществ пропорциональны площадям их пиков. Это используют для проведения количественных определений. Можно также собрать отдельные порции элюата и определить содержание в них разделяемых веществ с помощью подходящих методов количественного анализа. [c.258]

    Современная масс-спектрометрия дает результаты с несрапненно болыией точностьвэ. Помимо решения своих первичных задач (анализа изотопного состава элементов и точного определения масс атомных ядер), она используется для ряда других целей, в том числе изучения состава и строения молекул. Следует также отметить, что масс-спектрометрия является одним из наиболее чувствительных методов обнаружения очень малых количеств веществ. [c.504]

    Методы идентификации. В качественном анализе реакциями окисления — восстановления обнаруживают ионы марганца, хрол а, ртути, олова, висмута и др. Так, для обнаружения ионов марганца (П) его окисляют бромом или хлором до марганца (VII) фиолетовая окраска образовавшегося перманганата свидетельствует о присутствии ионов марганца. Много других методов обнаружения ионов также основано на реакциях окисления — восстановления. [c.25]


Смотреть страницы где упоминается термин Методы обнаружения и анализа: [c.28]    [c.55]    [c.155]    [c.288]    [c.338]    [c.3]    [c.4]    [c.16]    [c.19]    [c.118]    [c.390]   
Смотреть главы в:

Органическая химия свободных радикалов -> Методы обнаружения и анализа




ПОИСК







© 2024 chem21.info Реклама на сайте