Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стабильность молекулы

    Нафтены при термолизе более стабильны, чем соответствующие алканы. Наиболее устойчивыми среди нафтенов являются цик — лопентан и циклогексан. Реакции термолиза незамещенных цикло — алканов протекают по нецепному механизму посредством разрыва одной из С —С —связей и образования бирадикала, который далее распадается на стабильные молекулы  [c.33]

    В на активный промежуточный продукт С, и реакция (3) — реакция обрыва, так как в ней исчезает активный промежуточный продукт С и образуется стабильная молекула В, [c.52]


    Д. Парамагнитные свойства. Все свободные радикалы химически не насыщены и содержат нечетное количество электронов. Вследствие этого они парамагнитны. Любой метод, способный обнаруживать парамагнетизм, является, таким образом, средством определения свободных радикалов, если только в смеси не присутствуют такие парамагнитные стабильные молекулы, как О2, N0 и N02- [c.98]

    Хотя проблема механической стабильности молекул может быть решена в принципе с помощью уравнения Шредингера, точные решения получены только для молекул Нз и Н+. Ниже будет рассмотрено несколько приближенных методов. [c.197]

    Некоторые мономолекулярные реакции распада разложение на стабильные молекулы [c.229]

    Мономолекулярные реакции распада, в которых продукты являются стабильными молекулами, приведены в табл. XI.4. Как видно из таблицы, значения всех частотных факторов лежат в пределах между 3-10 и 10 сек , причем большинство из них очень близки к величине 10 сек .  [c.229]

    В табл. XI.5 приведены данные по скоростям мономолекулярного разложения стабильных молекул на свободные радикалы эти данные, по-видимому, количественно наименее надежны из всех данных по мономолекуляр-ным реакциям. Причина этого состоит в том, что полученные константы скорости были выведены из суммарной наблюдаемой скорости для сложных реакций. Это — неизбежная трудность с реакциями, включающими образование свободных радикалов, которые, будучи активными промежуточными частицами, должны исчезать в результате вторичных реакций. [c.232]

    Можно показать, что при этих температурах реакция радикалов (СНз)зСО с СНд НЛП стабильными молекулами будет протекать миого медленнее, чем их разложение, которое дает СПд и ацетон ею можно, таким образом, пренебречь при рассмотрении вторичных реакций. [c.323]

    Здесь М — радикал полимера, — стабильные молекулы мономера индекс в каждом случае указывает число единиц мономера в цепи.  [c.515]

    Современный взгляд на механизм действия противоокислителей исходит из представления об окислении углеводородов как о цепном процессе, в котором зарождение цепей и их развитие идут с участием свободных радикалов (см. раздел 2.1). Все, что может способствовать превращению радикалов в стабильные молекулы и таким образом мешает регенерации радикалов или затрудняет их образование и накопление в продукте, должно тормозить окисление. Чтобы противоокислитель мог предохранять топливо или масло от окисления, его действие должно быть направлено на обрыв реакционной цепи путем уменьшения количества образующихся радикалов. Предполагают, что такой ингибитор (1пН), будучи веществом активным, легко отдает свой водород радикалам основного окисляющегося вещества, переводя их таким образом в неактивное состояние и заменяя их радикалами 1п, не способными в силу своей относительно малой активности регенерировать радикалы и продолжать цепь  [c.80]


    На стадии инициирования цепи, которое происходит, вероятно, на стенке, образуется атом брома (уравнение 18). Последний, реагируя с молекулой третичного углеводорода при относительно низких температурах, атакует исключительно третичный атом водорода, образуя бромистый водород и третичный алкильный радикал (19). Последний может в силу возможной обратимости предыдущей реакции ассоциироваться с кислородом (20) полученный при этом радикал перекиси стабилизируется так же, как молекула гидроперекиси, путем обменной реакции с бромистым водородом (21), подобной реакции (2). Таким образом происходит регенерация атома брома, и далее реакции снова могут повторяться в том же порядке. Реакция (21) отличает окисление в присутствии бромистого водорода от прочих окислительных процессов, так как в отсутствии такого хорошего донора водорода перекисный радикал не может быстро образовать стабильную молекулу, и поэтому разрушается в той или иной степени с разрывом углерод-углеродной связи. Другое и важное отличие заключается в специфике атаки атома брома на углерод. [c.275]

    Стабильная молекула может образоваться в результате столкновения двух атомов или радикалов только в том случае, если некоторое количество энергии, не меньшее, чем суммарная кинетическая энергия сталкивающихся частиц, теряется в результате излучения или при столкновении с третьей частицей (роль которой может играть и поверхность твердого тела). Если потери энергии не будет, то молекула, возникшая в результате столкновения, после одного колебания разрушится, так как выделяющаяся при образовании связи энергия останется в возникшей молекуле, а ее достаточно, чтобы разорвать возникшую связь. Кроме того, возникающая молекула будет обладать и кинетической энергией сталкивающихся частиц, которая после разрыва связи вновь перейдет в кинетическую энергию поступательного движения образовавшихся осколков (атомов или радикалов). [c.85]

    Возбужденная молекула А может распадаться на свободные атомы или радикалы R и X либо расщепляться на более мелкие стабильные молекулы В и С [c.263]

    В жидкой фазе более вероятен второй процесс перестройки возбужденной молекулы, который приводит к расщеплению ее на две стабильные молекулы. Возникший ион А+ может непосредственно расщепляться двумя способами  [c.263]

    Наряду с хлорированием нитрование представляет значительный интерес, так как позволяет сравнительно легко превратить стабильные молекулы низших парафиновых углеводородов в реакционноспособные соединения. [c.126]

    Волновая функция разрыхляющей молекулярной орбитали в области перекрывания представляет собой разностную комбинацию исходных атомных орбиталей, такая орбиталь не концентрирует электронную плотность в межъядерной области. Наоборот, она выталкивает электронную плотность за пределы этой области. Разрыхляющая орбиталь имеет узловую плоскость, на которой молекулярная волновая функция (и электронная плотность) всюду равна нулю. Эта плоскость проходит между ядрами перпендикулярно к межъядерной оси. Энергия электрона на разрыхляющей орбитали больше, чем у электрона на каждой из составляющих ее атомных орбиталей зависимость энергии разрыхляющей орбитали от межъядерного расстояния не имеет минимума, а монотонно возрастает по мере уменьшения межъядерного расстояния. Помещение электрона на разрыхляющую орбиталь уменьшает прочность связи и стабильность молекулы..  [c.543]

    Формально эту реакцию, так же как и две предыдущие, можпо отнести к реакциям объемного зарождения, поскольку диссоциация одной стабильной молекулы НаО приводит к появлению двух активных центров. Однако в исходных продуктах чистых смесей Нз—Оз воды нет совершенно, и в самых начальных фазах процесса реакция 8 вообще не имеет места. По мере развития процесса и накопления радикалов Н и ОН реакция 8 начинает становиться заметной, однако ее равновесие, как правило, сильно сдвинуто вправо, т. е. рекомбинация преобладает над диссоциацией. Следовательно, ее надо квалифицировать как гомогенный квадратичный обрыв, который, с одной стороны, сильно тормозит процесс, а с другой — является основным каналом образования воды. Ситуация, однако, существенно меняется, если исходная смесь уже слабо балластирована водой (Н + О НзО ) и процесс проводится в области высоких температур. Механизм процесса в такой системе подробно обсуждается в разд. 4.3, здесь лишь укажем, что в этом случае в самые начальные моменты процесса нри выполнении некоторых условий реакция 8 может оказаться сдвинутой влево, т. е. оказаться настоящей реакцией зарождения. [c.269]

    Молекула Ве . Конфигурация Ве [/С/С(<т25) (а 25) ]. Здесь, как и в Неа, одинаковое число электронов на связывающих и разрыхляющих орбиталях. Связь не должна образовываться. Действительно, стабильная молекула Вва не наблюдалась.  [c.79]

    На основе представления о ионах в молекуле можно построить модель для расчета ее свойств. Наиболее простая модель сферических ионов исходит из следующего. При сближении атомов Ме и X происходит переход электрона от Ме к X с образованием сферически симметричных ионов Ме+ и X (с внешней оболочкой з р ). Такой переход всегда требует затраты энергии, равной ПИ(Ме) — СЭ(Х). Последняя компенсируется энергией электростатического притяжения ионов, значительно превышающей затрату на ионизацию атомов, и это обеспечивает стабильность молекулы. Электростатические силы притяжения между ионами Ме+ и X" не приводят к их слиянию, как было бы, будь ионы точечными зарядами. От слияния их удерживает отталкивание закрытых оболочек ионов (см. 28). Энергию взаимодействия однозарядных ионов рассчитывают по формуле [c.90]


    Рассмотрим молекулу метана — простейшего органического соединения. Атом С находится в центре тетраэдра, атомы Н — в вершинах последнего. Все расстояния С—Н одинаковы, углы НСН равны 109 28. Для метана, как и для воды, молекулярные орбитали многоцентровые. Если записать их как линейные комбинации атомных орбиталей, надо учесть четыре 15-АО водородных атомов д, 5в, 5с и о и четыре внешние орбитали атома углерода 2 , 2р , 2ру и 2р , всего восемь АО (1 -электроны углерода сохраняют атомный характер). Молекулярных орбиталей образуется также восемь четыре связывающих, на которых в основном состоянии молекулы разместятся восемь валентных электронов и четыре разрыхляющие, свободные от электронов. Это обеспечивает высокую стабильность молекулы СН4. Все восемь молекулярных орбиталей метана можно изобразить одной формулой (для упрощения опустим коэффициенты при АО)  [c.99]

    Предположим, что разложение углеводорода А протекает следующим образом — стабильные молекулы продуктов реакции, а Х , Х , — [c.56]

    Особенности физических и химических свойств ароматических углеводородов определяются наличием в них сопряженной структуры, я-электроны которой образуют замкнутую электронную систему. В молекуле бензола в результате делокализации орбиталей происходит выравнивание всех связей, в цикле отсутствует напряженность — и это способствует стабильности молекулы. Оценку энергии делокализации проводят сравнением энергий реакции гидрирования бензола и циклогексена. При гидрировании циклогексена выделяется 120 кДж/моль. Если бензол считать циклогексатриеном, то при гидрировании его тепловой эффект должен быть равен 360 кДж/моль, а фактически эта величина достигает лишь 209 кДж/моль. Следовательно, энергия делокализации составляет 151 кДж/моль. Для нафталина, антрацена и фенантрена значение этого показателя равно 255, 349 и 382 кДж/моль соответственно. [c.8]

    Элементарная реакция, при которой радикалы образуются из молекулы (при мономолекулярном распаде) или молекул (при бимолекулярном диспропорционировании молекул на радикалы), называется реакцией инициирования цепи. Реакции превращения одних радикалов в другие, при которых расходуется исходное вещество, называются реакциями продолжения цепи. Реакции, при которых радикалы гибнут, превращаясь в стабильные молекулы в результате рекомбинации или диспропорционирования, называются реакциями обрыва цепи. Если реакция радикала с молекулой приводит к образованию малоактивного радикала, который практически вступает только в реакции диспропорционирования и рекомбинации, то реакцией обрыва цепи является реакция образования этого радикала. При рекомбинации и диспропорционировании радикалов скорость реакции обрыва цепи пропорциональна квадрату концентрации радикалов, и такой обрыв цепей называется квадратичным. При обрыве цепей в результате образования малоактивных радикалов, не способных к реакциям продолжения цепи, скорость пропорциональна концентрации радикалов в первой степени, и такой обрыв называется линейным. [c.50]

    Образование радикалов при распаде незамещенных циклопарафинов возможно при распаде связи С—Н, значительно более прочной, чем связь С—С. Распад же связи С—С в кольце приводит к образованию бирадикалов, которые при распаде стабилизируются в стабильные молекулы  [c.68]

    Будем рассматривать колебание молекулы как движение точки в конфигурационном пространстве. Путь этой точки из области стабильной молекулы в область продуктов реакции с наименьшей энергией называется координатой реакции. [c.72]

    Моделировался распад активированного комплекса СНР, на молекулу НР и бирадикал Ср2. Акт возбуждения стабильной молекулы и ее эволюция в активированный комплекс не рассматривались. Счет начинался из конфигурации активированного комплекса, так что почти все траектории оказались распадными. Часть траектории, соответствующая максимальному времени спонтанного распада, не рассчитывалась. При этом все траектории оказывались "короткими", что позволило рассчитывать пучки траекторий, используя производные по начальным условиям. [c.120]

    Уравнения химической кинетики, как правило, описывают процессы, в которых образуются быстрореагирующие активные частицы (радикалы, ионы, возбужденные молекулы и т.п.) и стабильные молекулы. Наличие таких разных частиц в системе обусловливает и различные временные характеристики протекающих в системе процессов. В математическом смысле это связано с наличием малого параметра е при ряде производных [c.132]

    Бирадикал распадается на стабильные молекулы  [c.229]

    Как мы уже видели, для реакции синтеза благоприятны низкая температура и высокое давление. Однако реакция практически не протекает без катализатора вследствие очень большой стабильности молекулы азота, что обусловлено высокой энергией разрыва связи N—N. Функции катализатора заключаются в образовании на каталитической поверхности нитридного соединения, которое затем гидрируется в аммиак. Связь азота с металлом достаточно слаба, тем не менее она дает возможность адсорбироваться молекулам синтезируемого аммиака. Связь азота с металлом слишком сильна для таких элементов, как литий, кальций и алюминий, которые образуют с азотом нитриды непосредственно в массе вещества. В первой серии переходных металлов оптимум между образованием поверхностного нитрида и десорбцией аммиака с поверхности получён для железа, которое, не образует нитрида непосредственно из азота, исключая случай очень высоких давлений (на порядок выше давлений синтеза), но легко образует его в реакции с аммиаком. Тем не менее железо быстро хемосорбирует азот и это и есть та адсорбция, которую обычно считают стадией, лимитирующей скорость всего процесса синтеза. Рутений и осмий, находящиеся в более высоких сериях переходных элементов, не образуют нитридов в массе и являются эффективными катализаторами синтеза. [c.158]

    Выше, говоря о изомеризации свободных радикалов, мы имели в виду реакции, в которых исходным веществом и конечным продуктом являются изомерные радикалы. Однако возможны также реакции изомеризации, продуктом которых являются стабильные молекулы. Например, при реакции разложения горячего изопропильного радикала, образующегося в результате реакции присоединения атомов Н к пропилену, изомеризация сочетается с распадом [347]  [c.203]

    В обзорной работе [146] отмечается, что ни один из предложенных индексов ароматичности не избегает противоречия с химическим понятием об ароматичности, как склонности к реакциям замещения, а не присоединения. Эти противоречия связаны с определением индексов ароматичности из свойств основного состояния молекул. Поэтому предложено разделить понятия ароматичности и стабильности молекул и определять ароматичность, основываясь на разности в энергиях исходных молекул и продуктов реакции. [c.236]

    Первичная элементарная реакция с образованием первичного радикала из молекул сырья называется реакцией инициирования цопи. Реакции превращения одних радикалов в другие, при которых расходуется сырье, называются реакциями продолжения цепи. Реакции, при которых радикалы гибнут, превращаясь в стабильные молекулы в результате рекомбинации, диспропорционирования или образования малоактивного радикала, называются реакциями обрыва цепи. Обрыв цепи может произойти также при добавлении или присутствии в сырье веществ — ингибиторов, которые приводят к замене активных радикалов на малоактивные, не способные к продолжению цепи. [c.26]

    Статистическая. сумма состояния активного комплекса в отличие от статистической суммы состояний стабильной молекулы содержит в виде множителя степень свободы поступательного движения вдоль пути реакции Споот., т. е. <Эав = <Зав <Зпост.. Для статистической суммы поступательного движения статистическая механика дает следующее выражение  [c.147]

    Реакции атомов с стабильными молекулами (олефинами) или с радикалами, а также реакции стабильных молекул между собой, в последнее время детально бы.ли изучены Рабиновичем с сотр. [ИЗ]. [c.128]

    Механизм действия сернистых ингибиторов, не содержащих аминных и фенольных группировок, объясняется их разрушающим действием на гидропероксиды, когда образуются стабильные молекулы. Например, сульфиды при взаимодействии с гидропероксидами образуют сульфоксиды, которые в дальнейшем окисляются до сульфонов  [c.63]

    Для поиска точки перевала воспользуемся геометрическими соображениями. Структура ППЭ, перевал которой мы ищем, характеризуется наличием двух локальных минимумов, соответствующих конфигурации стабильной молекулы и продуктам реакции. Перевал разделяет эти два минимума. Надо найти такую точку на поверхности и ц), которая лежит в области притяжения минимума функционала (3.124), определяющего перевал поверхности и ц). Проведем луч, соединяющий области двух минимумов. Точку на луче, в которой поверхность достигает максимума, выбираем в качестве начальной точки спуска, если квадратичная форма, аппроксимирующая (У(д) в этой точке, знакопеременная. Знакоперемен-ность квадратичной формы, по-видимому, должна указывать на то, что точка находится в области притяжения перевала. [c.86]

    Возбуждение нормальных колебаний, связанных с вращением системы в цёлом, тоже приводит к акту диссоциации. Однако удалось показать, что нормальные колебания не являются координатами реакции, а лишь сильнее прочих взаимодействуют с координатами реакции через члены более высокого порядка малости, опущенные при замене ППЭ на квадратичную форму. Для этого начальные условия в конфигурационном пространстве выбиралисы так, что молекула СНРз находилась не в точке активированного комплекса, а оказывалась сдвинутой в область стабильной молекулы, ее кинетической энергии хватило для преодоления барьера. Когда начальная кинетическая энергия шла на возбуждение нормальных колебаний, связанных с координатами реакции, то происходил распад СНР,. Если же начальная кинетическая энергия задавалась так, что молекула СНР, обладала ненулевым моментом импульса, т.е. Г°= О, Ф О, распада СНР, не происходило. [c.122]

    В работе [78] предлагается учесть влияние изменения реак-циокной способности сырья на скорость крекинга, поскольку по мере протекания процесса крекинга реакционная смесь обогащается более термостойкими стабильными молекулами и, следо- [c.90]

    Механизм действия сульфидов и алкилфосфитов (продуктов, не содержащих аминных и фенольных групп) заключается в разрушении гидроперекисей с последующим образованием стабильных молекул. Более сложным представляется действие диалкил-дптиофосфатов металлов, которые на начальной стадии окисления углеводородов (как сами, так и продукты их термического превращения) тормозят процесс, деактивируя образующиеся радикалы (в основном ROO"), а в дальнейшем — разлагая гидроперекиси. В связи с этим ингибиторы окисления иногда подразделяют на деактиваторы свободных перекисных радикалов (амины, фенолы) и разлагатели гидроперекисей (сульфиды, дисульфиды). [c.303]

    В большинстве случаев химический процесс происходит не путем прямого перехода молекул исходных веществ в молекулы продуктов реакции, а состоит из нескольких стадий. Каждую из этих стадий можно рассматривать как самостоятельную химическую реакцию со своими исходными веществами и продуктами. Однако в качестве исходных веществ и продуктов реакции в этом случае могут фигурировать не только стабильные молекулы, но и лабильные промежуточные частицы — свободные р 5дикалы, комплексы, ионы. Химические реакции, состоящие из одной стадии, т. е. осуществляющиеся путем прямого перехода реагирующих частиц в продукты реакции, называются элементарными реакциями. [c.54]

    В то же время вырожденное разветвление цепей, которое представляет собой распад стабильных молекул промежуточных продуктов на радикалы, является неизмеримо более медленным процессом, и нарастание скорости реакции в области автоускоренного ее протекания может происходить медленно. [c.346]


Смотреть страницы где упоминается термин Стабильность молекулы: [c.52]    [c.52]    [c.104]    [c.122]    [c.577]    [c.14]    [c.244]    [c.341]    [c.197]   
Курс современной органической химии (1999) -- [ c.78 , c.398 ]




ПОИСК





Смотрите так же термины и статьи:

Введение плазмид и фрагментов Стабильность гибридных молекул ДНК в культивируемых клетках млекопитающих

Ж д а н о в, К. А. Андрианов (СССР). О гидролитической стабильности обрамляющих групп в полимерах с неорганическими цепями молекул

Ионы электронно-стабильные фрагменты молекулы

Молекулы стабильные

Молекулы стабильные

Некоторые мономолекулярные реакции распада разложение на стабильные молекулы

Реакции радикалов органических молекул, ведущие к образованию стабильных продуктов

Стабильность гибридных молекул ДНК в клетках

Стабильность иона молекулы, механическая

Теплоты сгорания, теплоты образования и стабильность органических молекул



© 2024 chem21.info Реклама на сайте