Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ультрафиолетовая спектроскопи

    УФС — ультрафиолетовая спектроскопия ХБ — хлороформный битумоид [c.5]

    Как и следует ожидать из данных ультрафиолетовой поглотительной спектроскопии (см. выше), парафины и нафтены в основном лишь слабо флуоресцируют. Ароматические соединения, начиная от бензола, обладают слегка видимой флуоресценцией (полосы поглощения видны в коротких длинах волн обыкновенного ультрафиолета), но флуоресценция увеличивается по мере усложнения структуры кольца, полосы поглощения близки к видимой области или в самой видимой области [202]. Использование флуоресцирующего спектра при решении аналитических проблем было ограничено, хотя некоторые ароматические соединения, находящиеся в более тяжелых нефтяных фракциях, дают характерные картины [203—204]. Но так как флуоресценция очень чувствительна к следам инородных веществ [205 ], то другой метод, ультрафиолетовая спектроскопия поглощения, должен быть использован в качестве дополнения к этим анализам. [c.190]


    При помощи ультрафиолетовой спектроскопии можно получить данные по содержанию одно-, двух- и многокольчатых ароматических углеводородов. [c.34]

    При помощи ультрафиолетовой спектроскопии в первой фракции было обнаружено присутствие перилена (0,003—0,12%), во второй — антрацена (0,08—0,12%) и в третьей — пирена (0,15—0,35%). [c.295]

    Для исследований состава и строения углеводородов определяются их спектры поглощения в ультрафиолетовой и инфракрасной областях. Наибольшее значение ультрафиолетовая спектроскопия имеет для анализов ароматических соединений. Таким путем можно определять бензол, толуол, парафины, нафтены и олефины. Ксилол [c.228]

    Узкие ароматические фракции (л о =1,49—1,50 1,50—1,51 и 1,51 —1,52), выкипающие в пределах 200—300°С, подвергали дегидрированию в три ступени. Затем из дегидрогенизата на окиси алюминия были выделены вторичные бициклические ароматические углеводороды 1,2 и 3, которые исследовали методом газожидкостной хроматографии и ультрафиолетовой спектроскопии (табл. 7). Хроматограммы фракций № 1, 2 и 3 представлены на рис. 4—6. [c.27]

    Рассмотрим основные схемы анализа нефтяных сернистых соединений. В них приняты следующие сокращения ЛМ — ламповый метод ПМТ — потенциометрическое титрование ПВ — полярографическое восстановление ИТ — индикаторное титрование ПМ — пиролитический метод УФС — ультрафиолетовая спектроскопия AMT — амперометрическое титрование. [c.85]

    Оптические свойства полимеров прежде всего связаны с их химическим составом и молекулярным строением. В соответствии с этим оптические методы находят применение как при установлении особенностей строения полимеров (инфракрасная и ультрафиолетовая спектроскопия), так и при изучении механизмов их молекулярной подвижности (поляризованная люминесценция, радиотермолюминесценция). [c.253]

    При оценке интегральных кривых необходимо учитывать спин-спиновое расщепление с тем, чтобы уловить все линии, относящиеся к определенному сигналу. Как на особое преимущество количественного анализа при помощи ЯМР-спектроскопии высокого разрешения можно указать на тот факт, что определение можно проводить по одному-единственному спектру, при условии что каждый компонент смеси дает сигнал в спектре. Тогда в противоположность методам инфракрасной и ультрафиолетовой спектроскопии здесь не требуется съемка спектров эталонов. Абсолютное количество исследуемого компонента можно определить, примешивая к пробе точно взвешенное количество чистого вещества, с заведомо известным содержанием протонов, играющего роль внутреннего стандарта. Этот прием часто применяют, например, при определении степени дейтерирования частично дейтерирован-ных соединений 1831. [c.258]


    Внедрение после второй мировой войны современных физических методов исследования структуры радикально изменило ситуацию. В первую очередь это так называемые спектроскопические методы, основанные на взаимодействии электромагнитного излучения с исследуемым веществом. К этим методам прежде всего относятся инфракрасная и ультрафиолетовая спектроскопия, а также спектроскопия ядерного магнитного ре- [c.22]

    В последние годы для изучения химической кинетики стали широко применяться радиоспектроскопические методы и. в первую очередь, электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР). Усовершенствована аппаратура и получили дальнейшее развитие такие классические методы исследования, как инфракрасная ультрафиолетовая спектроскопия, спектрополяриметрия. Все шире во многих исследовательских лабораториях начинают использовать различные флуоресцентные и хемилюминесцентные методы анализа короткоживущих частиц, импульсный фотолиз, метод остановленной струи, радиотермолюминесценции и т. п. Важную информацию о механизме химических превращений можно получить при изучении воздействия на процесс света, квантовых генераторов и ультразвука. Много информации позволяет получить комбинированное применение потенциометрических и оптических методов. [c.3]

    Масс-спектральный метод позволяет проводить анализ химического состава смесей и элементный анализ. Возможен качественный и количественный анализ. Количественный анализ основан на пропорциональности интенсивности линий масс-спектра каждого из веществ его парциальному давлению в области ионизации. Суммарный масс-спектр аддитивно складывается из масс-спектров всех компонентов смеси. Можно анализировать все смеси (газы, жидкости, твердые), которые в ионизационной камере прибора полностью испаряются без разложения компонентов. Эффективность масс-спектрометрии как метода молекулярного анализа сильно увеличивается при его комбинациях с хроматографией, инфракрасной и ультрафиолетовой спектроскопией. Особенно эффективна комбинация с хроматографией, когда [c.451]

    На основании изучения во ВНИИ НП структуры олефинов, входящих во фракцию тетрамеров пропилена и полученных при алкилировании ею бензола алкилбензолов методами инфракрасной и ультрафиолетовой спектроскопии, установлено, что основными компонентами являются алкилбензолы, имеющие, вероятно, следующее строение  [c.420]

    При последней перегонке остаточная вода удаляется в виде азеотропной смеси с ацетонитрилом (предельная температура кипения 76,0 °С при 14,2% П20).В нашей практике было принято отбрасывать дистиллят, получаемый при температуре ниже температуры кипения ацетонитрила (82,0 °С при 760 мм). Обычно это количество достигало 100 мл при исходном количестве 4 л. Затем дистиллят анализировался с помощью ультрафиолетовой спектроскопии при 2000 А в кювете толщиной 1 см поглощение продуктом составляло менее 1,00. Время выдержки растворителя, необходимое для получения удовлетворительного ультрафиолетового поглощения, изменялось при переходе от одной партии растворителя к другой. Во многих случаях растворитель был готов к употреблению практически сразу после удаления азеотропной смеси. [c.10]

    Инфракрасную и ультрафиолетовую спектроскопии успешно применяют при исследованиях масел. Ультра- [c.21]

    Ванадий извлекают из битумов и других остаточных продуктов, обрабатывая их в течение 5 ч при 500 °С смесью 1 М раствора НЫОз, кислородсодержащего газа и полигликоля. В результате такой обработки ванадий переходит в неорганические соединения, растворимые в воде и легко извлекаемые. Для определения небольшого содержания металла в нефти [419] в дополнение к классическим химическим методам применяют колориметрию, спектрофотометрию, эмиссионную спектрометрию, инфракрасную и ультрафиолетовую спектроскопию, рентгеноскопию, дифракцию, масс-спектрометрию, полярографию, амперометрическое титрование, хроматографию, радиоактивный анализ. [c.36]

    В некоторых случаях посредством спектроскопических методов можно определять типы углеводородов, входящих в состав исследуемого продукта. Например, с помощью ультрафиолетовой спектроскопии можно определять содержание ароматики, с помощью масс-спектроскопии — содержание алканов, цикланов, алкенов и ароматики в прямогонных и вторичных бензиновых фракциях [49]. [c.14]

    Ультрафиолетовая спектроскопия изучает спектры углеводородов в ультрафиолетовой области. Для аналитических целей служит диапазон ультрафиолетового излучения в пределах (2000—4000А). [c.32]

    Ультрафиолетовую спектроскопию применяют в химии нефтп для исследования ароматических углеводородов в различных фракциях нефти. [c.34]

    Методом ультрафиолетовой спектроскопии исследовались три-и полизамещенные гомологи бензола, полученные реакцией алкилирования ксилолов и мезитилена алифатическими и полиметиленовыми олефинами в присутствии хлористого алюминия, а также некоторые гомологи нафталина [56, 59]. Подробно изучено влияние числа и положения заместителей в бензольном кольце (на примере трех- и четырехзамещенных бензола С в—С д) на ультрафиолетовые спек- тры [60]. Свойства исследованных синтетических углеводоро- дов и ультрафиолетовые спектры приведены в табл. 51 и на рис. 44-48. [c.276]


    Так, инфракрасные спектры фракции весьма близки к спектрам фракций конденсированных бициклоароматических углеводородов, выделенных из той же нефти, а также к спектрам индивидуальных замещенных нафталинов. В ультрафиолетовом спектре этой фракции не обнаружено полос, характерных для конденсированных три- и полициклических ароматических систем, но были обнаружены, правда весьма нерезко выраженные и диффузные, полосы поглощения вблизи 30250 см, специфичные для три- и тетразамещенных нафталинов. Из полученных спектральных данных следует, что в наиболее нолициклической части высокомолекулярных углеводородов радченковской нефти, если и присутствуют структуры, содержащие конденсированные полициклические ароматические ядра, то лишь в небольших количествах, которые не удается однозначно определить методами инфракрасной и ультрафиолетовой спектроскопии. [c.295]

    Ароматические углеводороды относительно легко удается выделить из высокомолекулярной части нефти в виде концентратов, однако последние нелегко разделить на компоненты. В случае сернистых нефтей основная часть сераорганических соединений, близких по структуре ароматическим углеводородам, сосредоточивается в ароматических концентратах. Но даже при отсутствии сераорганических соединений нелегко разделить сложную многокомпонентную смесь, состоящую из наиболее сложно построенных гибридных молекул. Решить эту проблему можно только при использовании большого комплекса химических методов (избирательное гидрирование и дегидрирование, комнлексообразование, окисление) и физических (хроматография с использованием разных адсорбентов и элюантов, термодиффузия, масс-спектроскопия, инфракрасная и ультрафиолетовая спектроскопия, люминесценция и др.). Главная задача состоит в том, чтобы прежде всего выделить и установить структуру тех компонентов, которые составляют основную массу смеси. На эту задачу еще много десятилетий тому назад обращал внимание Д. И. Менделеев. В последнее время эта мысль Менделеева все чаще привлекает внимание исследователей. [c.299]

    Полученные в нашей лаборатории данные но избирательному гидрированию высокомолекулярных конденсированных ароматических соединений из ромашкинской нефти, содержащих 4,4% 8, показывают с несомненностью, что основная часть серы входит в состав гетероциклов. При полном удалении серы общее количество колец на молекулу снижалось в среднем на 1,6 (с 4,8 до 3,2). Условия гидрирования исключали возможность крекинга, т. е. разрыва С — С-связей. Исследование методом ультрафиолетовой спектроскопии фракций, полученных при хроматографическом разделении на окиси алюминия отбензиненной нефти месторождения Вассон (Тексас) [511, показало, что сернистые соединения в отбензиненной нефти (выше 150° С) составляют не менее 15%, причем на долю гомологов тиофена (бензтиофены, дибензтиофены и тиофеннафталины) приходится около 70%. Эти исследователи также подчеркивают, что наиболее высокое содержание серы (4,73—6,11%) приходится на фракцию с конденсированными ароматическими структурами. В гомологах бензола содержалось всего 0,86% 8, причем она почти поровну распределялась между тиофеновой и сульфидной серой. [c.346]

    Поглощение молекулой ультрафиолетового излучения вызывает переход от исходной комбинации колебательной и вращательной энергии ее электронов к соответствующей комбинации этих энергий при возбужденном состоянии электронов. Систематические измерения большого числа органических соединений позволили установить, что только молекулы, содержащие полярные или ненасыщенные группы, поглощают в коротковолновой части ультрафиолетовой области. Для многоатомных молекул эти спектры очень сложны и трудно поддаются расшифрсвке. Учитывая характерный вид ультрафиолетовых спектров ароматических колец, Корбетт и Швэрбрик (23) с помощью ультрафиолетовой спектроскопии установили присутствие ароматических колец в парафиновых п нафтеновых фракциях битумов. [c.52]

    Такшл образом, подученные кинетические закономерности позволяют получать продукты с заданньпли пластическими характеристика-ш. Следовательно, в основе направленного синтеза асфальтосмолистых олигомеров лежат исследовашш кинетики, квазилинейных регрессионных закономерностей и экспрессный контроль физико-химических характеристик метода ди ультрафиолетовой спектроскопии. [c.40]

    Источники излучения. Все используемые в оптической спектроскопии источники излучения являются излучателями непрерывного спектра. Для инфракрасной спектроскопии, а также для спектроскопии в видимой области, используют раскаленные излучатели для ультрафиолетовой спектроскопии — специальные газоразрядные лампы. Распределение интенсивности излучения по спектру для идеального термического излучателя описывается законом Планка для излучения энергии абсолютно черным телом. В широком диапазоне частот интенсивность излучения различна. Особенно мала она в самом конце длинноволновой области после прохождения максимума, ближе к концу коротковолновой области, интенсивность излучения быстро падает. Радиационные свойства излучателя и положение максимума интенсивности определяются температурой, химическим составом и состоянием поверхности этого излучателя. Испольчуемые в ультрафиолетовой области водородная и аейтериевая лампы характеризуются почти равномерным спектральным распределением энергии в интервале частот 33 ООО—50 ООО см ( 300—200 нм) [401. Сведения о наиболее часто используемых излучателях непрерывного спектра приведены в табл. 5.18. [c.235]

    Ультрафиолетовая спектроскопия (русское сокращение УФ, международное — UV) основана на аналогичных принципах, с той разницей, что используется излучение с длинами волн от 0,2-10-5 до 0,4-10-6 в этом диапазоне поглощают кратные связи, особенно сопряженные (разд. 3.4), и ароматические соединения. Световые кванты поглощенного излучения вызывают переходы я-электронов или несвязывающих электронов с низших уровней на высшие. Поэтому такие спектры называют также электронными. К ним относят и спектры, полученные при поглощении видимого света, т. е. электромагнитного излучения с длинами волн в диапазоне 0,4-10-6—0,75-10- м (впрочем, с точки зрения определения структуры соединения эта область спектра не имеет большого значения). [c.25]

    В последние годы ситуация в химической кинетике стала меняться особенно быстро. Появились и нашли широкое применение радиоспектроскопические методы и в первую очередь электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР). Благодаря совершенствованию аппаратуры дальнейшее развитие получили такие классические методы исследования, как инфракрасная и ультрафиолетовая спектроскопия. Наряду с этим все шире во многих исследовательских лабораториях начинают использовать различные флуоресцентные и хемилюмине-сцентные методы анализа коротко живущих частиц, метод остановленной струи, импульсный фотолиз, радиотермолюминесценция и т. п. Важную информацию о механизме химических превращений можно [c.3]

    Описанный метод предназначен прежде всего для приготовления растворителя для полярографических исследований и поэтому не предусматривает удаление следов ароматических углеводородов. Однако эти примеси нежелательны при использовании растворителя для ультрафиолетовой спектроскопии или анодной электрохимии. Предпочтительнее других, по-видимому, метод очистки, предложенный О Доннеллом и сотр. [3]. Этот метод сводится к тому, что 4 л коммерческого ацетонитрила вместе с 25 мл хлористого бензола нагреваются с обратным холодильником в течение 1 ч. Если концентрация влаги в исходном материале превосходит 0,2%, то ее следует удалить путем предварительной перегонки. Обычно содержание воды в коммерческом растворителе не превышает этого уровня. Перегонка проводится со скоростью 5-10 мл/мин в приемник, содержащий 10 мл воды для гидролиза остаточного хлористого бензола. После этого добавляется 40 г карбоната натрия и производится нагрев с обратным холодильником в течение 2 ч, затем осуществляется быстрая перегонка. К полученному продукту добавляется 25 г карбоната натрия и 50 г перманганата калия и образующаяся смесь в течение нескольких часов при одновременном перемешивании нагревается до температуры несколько ниже температуры кипения и быстро перегоняется в приемник с предохранительной трубкой для изоляции растворителя от окружающей атмосферы. Дистиллят слегка подкисляют с помощью концентрированной серной кислоты для осаждения аммиака, который образуется в предыдущей стадии очистки. Перегонка осуще- [c.9]

    Метанол широко используется в препаративной электрохимии, например для проведения реакции анодного декарбоксилирования и анодного метоксили-рования. Эпизодически растворитель применялся также при полярографии на КРЭ. Метанол не пригоден в качестве растворителя для вольтамперометрии на платиновом микроэлектроде или кулонометрии при контролируемом потенциале на том же электроде. Метанол находится в жидком состоянии в удобной для работы области температур (от -98 до +64 °С). Имеет весьма высокое давление паров и достаточно высокую диэлектрическую постоянную (33). Максимальная допустимая концентрация составляет 2 10 %. Хотя по своему поведению метанол похож на воду, он сильнее растворяет различные органические соединения. Метанол подходит как растворитель для ультрафиолетовой спектроскопии поглощение наблюдается при 210 нм. Главное применение метанола связано с тем, что он хорошо растворяет сильноосновные электролиты КОН, NaOH, КОМе и NaOMe. Для растворения очень неполярных соединений используются смеси метанола с бензолом. [c.37]

    Витамин А является наиболее давно известным витамином. Его существование как фактора роста было открыто Гопкинсом и Степпом в 1909 г. Химическая структура его была выяснена в 1931 г. Каррером при использовании новых методов исследования, именно хроматографической адсорбции, молекулярной дистилляции и ультрафиолетовой спектроскопии. [c.642]

    Удобным методом непрямого определения содержания ингибитора является использование ультрафиолетовой спектроскопии водных растворов ингибиторов, которую можно применить практически к любому водорастворимому ингибитору атмосферной коррозии металлов, имеющему максимум поглощения в ультрафиолетовой области спектра [104]. На рис. 27 и в табл. 32 приведены результаты спектрофотометрировання водных экстрактов антикоррозионных бумаг, полученных с использованием ингибиторов на основе бензойной, нитро- и динитробензойных кислот, которые можно использовать для практического определения содержания указанных ингибиторов в упаковочном материале 1 — раствор циклогексиламина, 3,5-динитробензойно-кислого 2—2,4-динитробензой нокислого 3 — бензойнокислого 4 — п-нитробензойно-кислого 5 — м-нитробензойнокислого 6 — о-нитробензойнокислого 7 — раствор дициклогексиламина 3,5-динитробензойнокислого 8 — 2,4-динитробензойнокислого 9 — бензойнокислого 10 — о-нитробензойнокислого  [c.136]


Смотреть страницы где упоминается термин Ультрафиолетовая спектроскопи: [c.92]    [c.450]    [c.450]    [c.6]    [c.211]    [c.229]    [c.92]    [c.3]    [c.74]    [c.16]    [c.261]    [c.261]    [c.98]    [c.239]    [c.742]   
Органические растворители (1958) -- [ c.47 ]

Органические ускорители вулканизации каучуков (1964) -- [ c.336 , c.397 , c.483 ]




ПОИСК





Смотрите так же термины и статьи:

Спектроскопия ультрафиолетовая



© 2025 chem21.info Реклама на сайте