Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсные системы вторичные

    Кривая 3 отвечает состоянию системы с высоким потенциальным барьером при отсутствии вторичного минимума или при его глубине, меньшей тепловой энергии (кТ). Вероятность образования агрегатов частиц в таких условиях очень мала, и дисперсные системы обладают большой агрегативной устойчивостью, [c.331]


    В соответствии с законами электродинамики, осциллирующие молекулярные диполи являются источниками вторичных волн с той же-частотой (О, В однородной среде с поляризуемостью ао интерференция вторичных волн, по принципу Гюйгенса—Френеля, приводит к распространению света только в направлении первичной (падающей) световой волны. В неоднородной среде, содержащей частицы или иные неоднородности (макромолекулы, флуктуационные образования) с поляризуемостью а, отличной от поляризуемости среды ао, не происходит полного гашения световых волн, распространяющихся в направлениях, отличных от направления распространения первичной волны, т. е. обнаруживается дифракция света на неоднородностях среды. В этом и заключается сущность рассеяния света малыми частицами (опалесценции), приводящего, в частности, к возникновению эффекта Тиндаля (правильнее Фарадея—Тиндаля) луч света в дисперсной системе становится видимым. [c.159]

    Объем дисперсной системы, через который проходит рассеянный свет, мал, и можно не учитывать вторичное рассеяние рассеянного света. [c.160]

    Вполне возможно допустить и такое равновесное состояние дисперсной системы, обусловленное пассивными силами, когда она находится в заторможенном термодинамическом равновесии. Ее переход из состояния с большей свободной энергией в состояние с меньшей свободной энергией заторможен пассивными силами, и этот переход осуществляется самопроизвольно при устранении пассивных сил. Современное развитие термодинамики дисперсных систем [155—157, 162—165] позволяет утверждать, что все вторичные процессы старения дисперсной системы должны сводиться к укрупнению частиц и уменьшению их суммарной поверхности, т. е. идти в естественном направлении уменьшения свободной энергии системы. [c.24]

    Третье состояние устойчивости характеризуется тем, что кинетическая энергия частиц кТ больше глубины вторичного энергетического минимума, но меньше барьера отталкивания. При этом соударения микрообъектов, участвующих в броуновском движении, очень редко приводят к возникновению агрегатов. Дисперсные системы, находящиеся в таком состоянии, являются стабильными они обычно содержат малые количества электролита 10 моль л. [c.51]

    Погрешности от вторичного рассеяния возникают в объектах с очень большой мутностью. Они легко устраняются подбором кювет соответствующей толщины или разбавлением дисперсной системы. [c.62]

    Согласно теории, развитой Рэлеем, предполагается, что сферические частицы в дисперсной системе находятся настолько далеко друг от друга, что можно пренебречь вторичным рассеянием, и поэтому интенсивность рассеянного света пропорциональна числу частиц в единице объема, или частичной концентрации дисперсной системы V. Формула Рэлея для интенсивности света /р, рассеянного единицей объема дисперсной системы со сферическими частицами, значительно меньшими длины волны падающего света (не более О,IX), на расстоянии Я от частиц в направлении, составляющем угол 0 с направлением падающих лучей, имеет вид [c.297]


    Анализ многообразных свойств структур в дисперсных системах позволил П. А. Ребиндеру разделить их на два основных класса, различающихся по видам взаимодействия частиц дисперсной фазы. Исходя из того, что коагуляция соответствует первичному и вторичному минимуму потенциальной кривой взаимодействия частиц, он предложил различать конденсаци-онно-кристаллизационные и коагуляционные структуры. Конденсационно-кристаллизационное структурообразование, отвечающее коагуляции в первичном потенциальном минимуме, осуществляется путем непосредственного химического взаимо- [c.417]

    В кристаллических полимерах установлено наличие большого количества структур, обладающих поверхностью раздела и поверхностным натяжением, а изменение их свободной поверхностной энергии, как и в дисперсных системах, играет важную роль в образовании вторичных структур. В явлениях защитного эффекта, в действии наполнителей в полимерах, в водных дисперсиях полимеров поверхностные свойства дисперсных частиц и свойства макромолекул непосредственно связаны между собой. Интересной переходной формой между дисперсными и полимерными систе.мами являются дисперсии полимеров в пластификаторах (гл. IX). Много общего имеется также в диэлектрических свойствах, оптических свойствах (например, в явлениях светорассеяния, в двойном лучепреломлении при течении), гидродинамических свойствах. [c.16]

    Полимерные композиционные материалы как гетерогенные двухфазные системы, в которых компоненты каждой фазы сохраняют свою индивидуальность, как правило, имеют одну непрерывную фазу, каковой является полимерная матрица (по М.Ричардсону - первичная непрерывная фаза). Распределение фаз в ПКМ очень существенно сказывается на их свойствах. Непрерывные нити, волокна и ткани образуют вторичную непрерывную фазу, а дисперсные наполнители -вторичную дисперсную фазу. [c.13]

    Проведенное сравнение значений критической концентрации с результатами расчета кривых взаимодействия позволяет установить корреляцию между свойствами дисперсной системы в растворах электролитов и глубиной вторичного минимума [18, 21, 22]. [c.56]

    Этот эффект, обнаруженный ранее нами на модельных топливных системах, связан с тем, что в НДС со вторичными асфальтенами определяющим является кинетический фактор устойчивости, за счет которого менее дисперсные лиофобные системы могут удерживать в растворе достаточно крупные агрегаты асфальтенов. [c.111]

    Наиболее характерны три типа потенциальных кривых. Первый отвечает системам или их состояниям, когда и< О при любом К, а и > кТ, что при достаточно высокой концентрации и дисперсности частиц приводит к быстрой коагуляции. Второй тип потенциальных кривых отличается наличием достаточно высокого потенциального барьера и вторичного ми- [c.101]

    На послед)пощих стадиях, когда выработаны физико-химический (особенности взаимодействия внутренней и внешней фаз конкретной дисперсии) и энергетический (количество подводимой для диспергирования энергии, обеспечивающей такое взаимодействие) ресурсы применительно к конкретной системе, что в эксперименте наблюдается как момент выхода на плато кинетической кривой, в объеме дисперсии, во-первых, сохраняется количество передаваемой энергии и, во-вторых, большая часть внутренней фазы уже имеет размер осколков , поэтому интегральное увеличение степени дисперсности невозможно при одновременно созданных условиях активного агрегирования этих осколков . Далее, при накоплении достаточного количества вторичных агрегатов вновь начинается процесс диспергирования далее совокупность этих процессов повторяется — из-за чего и наблюдаются осцилляции дисперсности. Здесь важно отметить тот факт, что часть привносимой энергии расходуется не только на достижение конечной цели, но и на возбуждение и поддержание паразитных осцилляций — это практическое замечание. Не менее важен и научно-познавательный аспект мы наблюдаем ранее не отмечавшееся явление кооперативного поведения многочастичных дисперсных систем в распределенных силовых полях. Подобные факты отмечались лишь в биологических, химических, экологических системах. Необходимо отметить, что в определенных условиях такое поведение свойственно и дисперсным системам, что отражает общенаучный характер этого явления. [c.128]

    По установившимся современным представлениям нефтяные остатки — сложная коллоидная нефтяная дисперсная система, Дисперсная фаза остатков в обычньк условиях состоит преимущественно из твердых частиц двух типов — ассоциатов асфальтенов и высокомолекулярных алканов с различной толщиной сольватной оболочки, состоящей из компонентов жидкой дисперсионной среды, представленной смолами и взаиморастворимыми высокомолекулярными углеводородами различных гомологических рядов. Следует иметь в виду, что нефтяные остатки - продукты, подвергавшиеся длительному температурному воздействию в процессе перегонки дистиллятной части нефти и, следовательно, претерпевшие более или менее глубокие химические изменения. Поэтому в исследовательской практике при оценке природы высокомолекулярных компонентов обычно пользуются терминами нативные , к которым отнесены вещества, вьщеленные из нефти в условиях, исключающих изменение их состава и структуры, и вторичные , т. е. претерпевшие изменения или образовавшиеся в процессе технологической обработки нефти. [c.15]


    И. Ф. Ефремовым [13] развито представление о том, что при желатинировании многих золей и суспензий возникновение пространственной сетки обязано силам притяжения между частицами, действующим при сохранении разделяющего их потенциального барьера. При достаточно высоком потенщ1але поверхности и малой толщине двойных ионных слоев, что соответствует сравнительно большой концентрации электролита в дисперсной системе, на результирующей кривой энергетического взаимодействия появляется яма, отвечающая дальним расстояниям. Если глубина такого минимума велика по сравнению с энергией теплового движения, то частица может зафиксироваться в нем, и наступит коагуляция, называемая в отличие от случая непосредственного контакта поверхностей коагуляцией во вторичном миниму.ме (рис. 1.1). [c.13]

    Приблизиться к пониманию и количественной оценке энергетических процессов в реальных дисперсных системах, где каждая частица окружена подобными ей, дает картина взаимодействия двух частиц с третьей так называемой пробной частицей (рис. 1.2). Глубина потенциальной ямы, определяющая фиксацию частиц в узлах квазикристаллической решетки, оказывается значительно большей, чем при взаимодействии двух отдельных частиц. В рассматриваемом случае коллективного взаимодействия такая яма будет существовать даже при условии превышения на любых расстояниях (в пределах значений, соответствующих двум максимумам на потенциальной кривой) сил отталкивания над силами притяжения. В этом случае взаимная фиксация частиц во вторичном минимуме может осуществляться только в условиях огра шченного (стесненного) объема среды, то есть при наличии минимально необходимой концентрации дисперсной фазы. [c.13]

    Особенности поляризации в полярных средах связаны с диффуэно-стью двойного слоя, проявляющейся даже при дипольной структуре межфазной границы, индуцирующей вторичные диффузные слои в глубине обеих фаз. Учет поляризационных сил особенно важен при построении физической картины злектрокоагуляции, в технологии разделения систем с полярными средами, в том числе и очистки природньгх и сточных вод. Устойчивость дисперсной системы в электрическом поле зависит от знака и величины суммарной энергии взаимодействия, обусловленной энергией молекулярного притяжения, ионно-электростатической энергией отталкивания и энергией диполь-дипольного притяжения [43].  [c.15]

    Анализ многообразных свойств структур в дисперсных системах позволил П. А. Ребиндеру разделить их на два основных класса, различающихся по видам взаимодействия частиц дисперсной фазы. Исходя из того, что коагуляция соответствует первичному п вторичному минимуму потенциальной кривой взаимодействия частиц, он предложил различать конденсационно-кристаллизационные и коагуляционные структуры. Конденсациоиио-кри-сталлизацпонное структурообразование, отвечающее коагуляции в первичной потенциальной яме, происходит путем непосредственного химического взаимодействия между частицами и их срастания с образованием жесткой объемной структуры. Если частицы аморфные, то структуры, образующиеся в дисперсных системах, принято называть конденсационными, если часпщы кристаллические, то структуры являются кристаллизационными. При непосредственном срастании частиц механические свойства структур соответствуют свойствам самих частиц. Конденсационно-кристаллизаци-онные структуры типичны для связнодисперсных систем, т. е. систем с твердой дисперсионной средой. Такие структуры придают телам прочность, хрупкость и не восстанавливаются после разрушения. [c.365]

    При эволюции ПС могут образоваться, как минимум, два вида карбенов, если последние рассматривать как ПС с выродившимися сольватными оболочками за счет полимеризационного перехода из нее в ядро молекул асфальтенов. Первый вид - это анизотропный карбен (рис. 1.16), который получается, когда ПС образована голоядерными структурами. В отсутствие длинных алкильных заместителей асфальтены в ядре будут связываться за счет спин-спинового и я-взаимодействия, что способствует росту ядра в направлении оси "С" графитовой структуры. Утонение сольватной оболочки до слоя диамагнитных молекул соответствует моменту образования карбенов, коллективное состояние которых может быть отнесено к так называемым полимерным жидким кристаллам, которые в последнее время обнаружены и интенсивно исследуются [51,52]. Различие в размерах карбенов и их молекулярном весе не может препятствовать образованию мезофазы. Такая возможность показана в работе [53]. Образование вторичной мезофазы в нефтяных дисперсных системах обнаружено в работе [54] при термолизе. Такие карбены приводят к образованию волокнистого нефтяного углерода, как это, например, показано в работе [c.45]

    Между количественными и качественными изменениями в нефтяной дисперсной системе существует зависимость, которая определяется соотношением поверхностной и объемной энергий взаимодействия компонентов, составляющих надмолекулярную структуру. Обладая нескомпенсированной избыточной поверхностной энергией, зародыши формируют вокруг себя сольватные оболочки определенной толщины из молекул дисперсионной среды. Вместе с сольватной оболочкой зародыш образует сложную структурную единицу (ССЕ), которая при изменении вне-пших условий может разрушаться или расти. Во втором случае формируются вторичные ССЕ, размеры которых — радиус надмолекулярной структуры и толщина сольватной оболочки, а также упаковка молекул в надмолекулярной структуре могут изменяться по мере изменения межмолекулярного взаимодействия среды [ 16]. [c.47]

    Дальнюю коагуляцию (во вторичном минимуме) в гру-бодисперсных системах можно существенно замедлить, применяя в качестве стабилизатора агрегативно устойчивые золи (дисперсные системы коллоидной степени дисперсности— м). При добавлении коллоидных частиц в грубодисперсные системы в результате коагуляции или гетерокоагуляции на поверхности крупных частиц образуется защитный слой из мелких, который экранирует молекулярные силы, действующие между крупными частицами, и тем самым способствует стабилизации системы. [c.154]

    С другой стороны, тесные контакты коллоидной химии со смежными дисциплинами способствовали обогащению ее экспериментальной базы. Наряду с такими классическими методами эксперимента, родившимися именно в коллоидной химии, как определение поверхностного натяжения и двухмерного давления, ультрамикроскопия, центрифугирование, диализ и ультрафильтрацня, наблюдение разнообразных электрокинетичеоких явлений в дисперсных системах, дисперсионный анализ и порометрия, многочисленные прецизионные адсорбционные методы, изучение рассеяния света (опалесценции) и т. п., в разных разделах коллоидной химии нашли эффективное применение всевозможные спектральные методы ЯМР, ЭПР, УФ- и ИК-спектроскопия, гашение люминесценции, многократно нарушенное полное внутреннее отражение, эллипсометрия (с широким использованием лазерной техники), малоугловое рассеяние рентгеновских лучей и другие рентгеновские методы, радиоактивные изотопы, все виды электронной микроскопии. Большие перспективы открывает привлечение современных физических методов исследования поверхностей с использованием медленных электронов, масс-спектроскопии вторичных ионов и т. п. [c.9]

    Наиболее просты закономерноаги рассеяния света при выполнении следующих условий 1) рассеивающие частицы малы, и их форма близка к изометричной, поэтому наибольший размер частицы значительно меньше дпины волны падающего света г<(А/10), так что колебание зарядов в частице происходит в одной фазе, и наведенный дипольный момент ц пропорционален объему частицы И 2) частицы не поглощают света (не окрашены) 3) частицы не обладают электрической проводимостью 4) частицы оптически изотропны, вследствие чего вектор поляризации параллелен вектору электрической напряженности первичной волны 5) концентрация частиц мала — расстояние между частицами велико по сравнению с длиной волны падающего света 6) объем дисперсной системы, через который проходит рассеянный свет, мал, и можно не учитывать вторичное рассеяние света. [c.193]

    В зависимости от состава (хим. природы ПАВ, валентного типа и концентрации электролитов) толщины Т.п., отвечающие ее метастабильно-равновесному состоянию, могут отличаться соотв. различаются и время жизни Т.п. в этом состоянии, и цвет Т. п. в отраженном свете. Обычно выделяют сравнительно малоустойчивые серые (иногда цветные) Т. п. с ТОЛ1ЦИНОЙ в неск. десятков нм, более тонкие (примерно 7- 5 нм) пленки черного пвета (черные пленки) и т. наз. ньютоновские черные пленки (толщина 3-5 нм), к-рые иногда наз. вторичными черными пленками. Так, стабилизированные ПАВ водные Т. п. пен и прямых эмульсий бывают цветными или серыми при концентрации Na l в дисперсионной среде до 10 М. обычными черными при концентрации менее 0,3 М и ньютоновскими черными при более высоких концентрациях электролита. Св-ва обычных черных водных пленок хорошо описываются теорией ДЛФО (см. Дисперсные системы), ньютоновские черные пленки представляют собой бислои ПАВ, иногда с малой по толщине прослойкой дисперсионной среды между монослоями. [c.608]

    На основе современных представлений о пространственных структурах в дисперсных системах и растворах высокополимеров, развитых в СССР п.А,Ребиндером, В.А.Каргиным и их сотрудниками, А.С.Колбанов-ской разработана теория структурного строения дорожных битумов в зависимости от объемного содержания асфальтенов и химического состава мальтенов 11J. Установлено, что изменение концентрации асфальтенов в битумах вызывает изменение их структуры, С повышением объемного заполнения асфальтенами в системэ возникают "агрегаты" или иные вторичные надмолекулярные структурные образования в результате адсорбирования на поверхности асфальтенов смол и парафинов. Число их растет, пока весь объем систеш не окажется залолнен-ным структурной сеткой из асфальтенов. С увеличением концентрации асфальтенов все большее количество смол переходит в сильно упрочненное высокоструктурированное пленочное состояние. При этом вязкость и прочность системы значительно увеличивается. [c.43]

    Как известно, учение о силах взаимодействия между частицами развивалось главным образом на основе исследования граничных н идких слоев с помощью прямых экспериментальных методов, взаимодействия макроповерх-постей в модельных системах и коагуляционных процессов, протекающих в дисперсных системах. Множественный характер поверхностных сил, а также нолидисперсность и неправильная форма коллоидных частиц значительно затрудняют интерпретацию результатов изучения коагуляции. Ситуация упрощается в случае применения модельных дисперсных систем, содержащих монодиснерспые сферические частицы и малое количество электролитов. Обычно при проведении опытов с такими системами преследуется цель количественного описания элементарных актов взаимодействия частиц, иногда уточняется значение постоянной А, чаще определяются условия фиксации частиц во вторичном или первичном минимуме и одновременно ставится задача апробирования теории коагуляции. [c.131]

    Битумные мастики представляют собой сложные структурированные дисперсные системы, в которых помимо коагуляционных структур возникают пространственные структуры с участием наполнителя. Тип структуры мастик определяется природой, составом и количеством добавок. Введение в битум минеральщх наполнителей приводит к формированию вторичных коагуляционных структур. Основными требованиями, предъявляемыми к минеральным наполнителям битумных мастик, являются тонкодисперсность, низкая влагонасыщенность, гидрофобность, устойчивость к воздействию различных агрессивных сред, способность к смачиванию битумом. [c.164]

    Вторичными образованиями в покрытиях следует считать кристаллы, выделяющиеся из пересыщенных расплавленных систем, либо возникающие в порошковых дисперсных системах в результате твердофазового химического взаимодействия между исходными компонентами. Последние при этом исчезают, образуя новые соединения. К подобному реакционному типу относится большинство сложных металлических и металлоподобных покрытий. При избрании в качестве иходных компонентов покрытий порошков металлов, бора, кремния, углерода получаются устойчивые интерметаллиды, бориды, силициды, карбиды, различные эвтектики [c.177]

    Почвы — более сложные дисперсные системы, чем грунты, с которыми они генетически связаны. Наряду с минеральной частью, состоящей из частиц разной природы и различных размеров, весьма важную роль в них играют органические вещества и прежде всего гумус [474]. Однако природа твердой фазы, размер и форма ее частиц придают почвам такие физико-механические свойства, как способность их сопротивляться сдвигу и разрыву, а также сохранять водопрочную комковатую структуру [10]. Гумусовые вещества распределяются главным образом на поверхности раздела между минеральной частью и почвенным раствором и оказывают существенное влияние на влагоемкость почв, а также на протекание сложных физико-химических и биохимических процессов. Вместе с тем они, по-видимому, действуя аналогично ПАВ, определяют агрегативную устойчивость дисперсной системы [4]. Почвенные частицы образуют первичные агрегаты размером меньще 0,25 мм, представляющие собой ПКС локального типа, и вторичные агрегаты (размер 0,25—7 мм). Водопрочность агрегатов, т. е. способность их сохранять при погружении в воду прочность на сдвиг и разрыв, а также пористость и определенное соотнощение по размеру, являются важными критериями агрономической ценности почвенных структур [10, 406, 475]. [c.107]

    Результаты исследования термодинамической совместимости показывают, что параметры растворимости резорцино-формальдегидной смолы, найлона и вискозы очень близки (67 мДж/м ), в то время как у полиэфира он значительно отличается (43 мДж/м ). Это основная причина, почему трудно получить удовлетворительную связь простых смесей на основе резорцино-формальдегидной смолы с полиэфирным волокном на молекулярном уровне это обусловлено плохим контактом между двумя фазами. Полиэфир обычно пропитывают в два этапа. На первом его погружают в клей, состоящий из водорастворимой эпоксидной смолы, добавленной для получения привеса 0,5% к дисперсной системе блокироданного изоцианата. Блокированный изоцианат затем активируют при 230 °С. Полиэфирное волокно вторично погружают в стандартную смесь на основе резорцино-формальдегидной смолы. Более широко распространенная система включает конденсирование с резорцино-формальдегидной смолой триммера (полимера, образованного в результате реакции р-хлорфенола с резорцином). [c.65]

    Коагуляционные структуры возникают за счет ван-дер-ваальсовых сил притяжения частиц и образуются в результате коагуляции их на расстояниях, отвечающих вторичному минимуму на потенциальной кривой, когда между частицами дисперсной фазы имеются прослойки среды. Наличие таких прослоек в местах контакта между частицами обусловливает относительно небольшую прочность и ярко выраженные пластические свойства структур. Для коагуляционных структур характерны такие специфические свойства, как тиксотропия и реопексия. Тиксотропия — способность структурированной системы восстанавливать во времени свои прочностные свойства после ее механического разрушения. Реопексия — явление, обратное тиксотропии — возникновение и упрочнение структуры в результате механического воздействия. [c.187]

    На первый взгляд кажется, что для дисперсных систем правило смесей должно хорошо оправдываться. Коллоидная частичка состоит из большего количества молекул или атомов, причем взаимодействие между ними не меняется при образовании дисперсной фазы, если не считать частичек, находящихся в поверхностном слое. Поэтому можно предположить, что вещество в дисперсном состоянии имеет ту же диэлектрическую постоянную, что и в недиспергированном, а дисперсионная среда — неизменную диэлектрическую постоянную, и в большинстве случаев концентрация дисперсной фазы невелика. И тем не менее правило смешения с применением уравнения Клаузиуса — Мо-сотти для дисперсных систем оправдывается почти всегда гораздо хуже, чем для истинных растворов. Это свидетельствует о том, что в коллоидных системах есть вторичные явления, влияющие на диэлектрическую постоянную, т. е. поверхностные явления. Вполне естественно предположить, что диэлектрические свойства коллоидного раствора, как и другие его свойства, зависят от взаимодействия поверхности дисперсной фазы с дисперсионной средой, а также от адсорбционных процессов в поверхности раздела. [c.106]


Смотреть страницы где упоминается термин Дисперсные системы вторичные: [c.43]    [c.256]    [c.118]    [c.171]    [c.118]    [c.371]    [c.371]    [c.211]    [c.307]    [c.37]    [c.267]    [c.307]    [c.254]    [c.296]   
Последние достижения в области жидкостной экстракции (1974) -- [ c.303 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы



© 2025 chem21.info Реклама на сайте