Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитическая спиртов

    Каталитическое окисление в жидкой фазе имеет то преимущество перед газофазным процессом, что позволяет более точно регулировать состав конечных продуктов [60]. Та1 , при окислепии н-бутана в жидкой фазе образуется в первую очередь уксусная кислота при полном отсутствии формальдегида. При окислепии же пропана в газовой фазе, напротив, образуются главным образом пропионовый альдегид, пропиловый спирт, ацетон, уксусный альдегид, уксусная кислота, формальдегид, метиловый спирт, окись пропилена, окись этилена. При окислении н-гексана теоретически можно получить около 60 различных продуктов окисления, не считая вторичных продуктов, образующихся за счет дальнейших реакций кислородсодержащих компонентов. Метан и этан не только содержатся в значительно больших количествах в природном газе, чем пропан или бутан, но они представляют интерес и для применения в качестве исходного сырья, так как нри окислении дают продукты более простого состава. Именно сложный состав продуктов газофазного окисления был причиной того, что внедрение этого процесса в промышленную практику сильно задержалось. [c.151]


    Рнс. 126. Схема получения этилового спирта прямой каталитической гидратацией этилена. [c.205]

    Общие сведения. Изопропиловый и етор-бутиловый спирты в основном применяют для получения каталитическим дегидрированием соответствующих кетонов — ацетона и метилэтилкетона. Производство ацетона в США в 1956 г. составило 250 тыс. т, из которых 230 тыс. т были получены из изопропилового спирта. [c.206]

    Реакционную смесь разбавляют водой и перегонкой освобождают от ацетона и непрореагировавшего изопропилового спирта. Полученный таким образом водный раствор перекиси водорода применяют для каталитического окисления аллилового спирта в глицерин. Для этого аллиловый снирт в водном растворе в присутствии 0,2%-ного раствора вольфрамовой кислоты (катализатор) окисляют 2 молярными объемами перекиси водорода при 60—70° в течение 2 час. После испарения воды и заключительной перегонки под вакуумом получают чистый глицерин с выходом 80—90%, считая на аллиловый спирт. [c.178]

    Низшие кислоты находят себе различное применение. Муравьиную кислоту, например, используют при силосовании зеленых кормов. Уксусную и масляную кислоты применяют для этерификации целлюлозы. Пропионовая кислота в виде кальциевой соли является отличным средством для консервирования хлеба. Кислоты s— g предпочитают каталитически восстанавливать в спирты, адипаты и фталаты которых служат превосходными пластификаторами поливинилхлорида. Кар боновые кислоты С —Сд можно с успехом применять в виде натровых солей в пенных огнетушителях кислоты Сд—Сц можно использовать для флотационных целей. Кислоты С12— ie поставляют мыловаренной промышленности. Для получения синтетического пищевого жира используют кислоты Сд—С в, предварительно освобожденные от всех дикарбоновых кислот. Высокомолекулярные кислоты is—Сг1 могут быть применены для производства смазочных масел и мягчителей для кожевенной промышленности (в комбинации с триэтанолами- ном). Кубовые остатки от перегонки превращают после кетонизации и восстановления в смеси углеводородов типа вазелина. Эти немногие примеры ири желании можно умножить, так как патентная литература по этому вопросу чрезвычайно обширна. [c.470]

    Жирные кислоты для мыловарения могут с успехом заменить высшие насыщенные жирные кислоты животного и растительного происхождения. Неизбежное образование головного погона жирных кислот первоначально резко ухудшало экономику процесса окисления парафина, так как они не находили никакого применения. Однако в настоящее время на них имеется большой спрос, так как каталитическим гидрированием их можно превратить в первичные спирты, являющиеся важным полупродуктом для производства пластификаторов. [c.10]


    Третичный спирт можно восстановить также каталитически, аналогично рассмотренному в разделе а. [c.62]

    Смесь кетонов каталитически восстанавливали в смесь вторичных спиртов с почти количественным превращением. [c.565]

    В высокотемпературных процессах с использованием водорода (гидроочистка, каталитический риформинг, производство жирных спиртов и т. п.) серьезную опасность представляет водородная коррозия. [c.72]

    Смолисто-асфальтовые вещества являются продуктами глубокого окисления органических кислот, эфиров и спиртов при повышенных температурах и каталитическом влиянии металлов. [c.17]

    Рунге с сотрудниками [78, 79] провели в 1952—1953 гг. обширные исследования по определению наиболее подходящих катализаторов для гидратации пропилена. С этой целью были изучены кислые катализаторы, такие, как серная кислота, нафталинсульфокислота, фосфорная кислота, кислые фосфаты, окись вольфрама без промотора и носителя, а также на различных носителях, например на активированном кислотой монтмориллоните. Показано, что серная кислота не подходит из-за нестойкости, а фосфатные катализаторы отличаются незначительной активностью. Фосфорные кислоты на носителях проявляют при средней крепости кислоты максимальную каталитическую активность, причем наилучшим носителем является крупнопористый силикагель. Выход в единицу времени на единицу объема составил 0,52 кг изопропилового спирта на 100 мл [c.62]

    При каталитическом присоединении спиртов и фенола в результате действия щелочью почти всегда образуется первичный моно- [c.85]

    Так как реакция восстановления сольватированными электронами происходит ие непосредственно на поверхности электрода, то его каталитические свойства перестают играть заметную роль. Исключается также или сводится до минимума возможность образования металлоорганических соединений с участием металла электрода, изменяется природа промежуточных продуктов и т. д. Вопрос об изменении природы промежуточных продуктов рассматривался в литературе довольно подробно в связи с реакцией выделения водорода. Речь шла о водных средах, где, по указанным выше причинам, восстановление через промежуточное образование сольватированных (гидратированных) электронов не очень вероятно, хотя и возможно. Эти рассуждения имеют, однако, более общее значение, так как могут быть отнесены практически к любым протонным средам, а также к апро-тонным, содержащим протонодонорные добавки (вода, спирты и т. д.), необхо- [c.444]

    Каталитическое и термическое разложение. Термическое разложение спиртов без применения катализаторов редко дает хорошие результаты. Однако при использовании дегидратирующих катализаторов, например активированной окиси алюминия, температура дегидратации значительно снижается и выходы олефина или смесей олефинов обычно очень высокй. Однако часто Щ)и втом им(шт место перемещение двойной связи и даже структурная изомеризация, например в присутствии кислотных катализаторов. [c.412]

    Второй способ гидратации олефинов в спирты заключается в прямом каталитическом присоединении воды по олефиновой двойной связи. В этом процессе олефин (этилен) вместе с водяным наром при высоких температуре и давлении пропускается над соответствующим катализатором, напрпмер фосфорной 1Шслотой, нанесенной на кизельгур, активированный уголь или асбест. Процесс прямой каталитической гидратации представляет собой равновесный процесс, поэтому при однократном пропуске компонентов реакции через печь только небольшой процент олефинов превращается в спирты, так что требуется вести процесс с многократной циркуляцией реагирующих веществ, требующей довольно значительных затрат энерглп. Несмотря на это процесс прямой гидратации все же дешевле. [c.199]

    В результате сравнительного изучения каталитической дегидратации десяти вторичных и двух третичных спиртов в паровой фазе было показано [52], что продажная окись алюминия вызывает меньшее количество изомеризаций, чем флоридин, сульфат алюминия и фосфорная [c.414]

    Каталитическое дегидрирование изопропилового спирта. Каталитическое дегидрирование изопропилового спирта осуществляется пропусканием его паров в смеси с водородом при 400 над пемзой, обработанной окисью цинка или сульфидом цинка над латунью или н<елезно-медно-цинковым сплавом и т. д. [c.209]

    В иаетояп(ее время стирол получают исключительно каталитическим дегидрированием этилбензола над определенными катализаторами. Ранее для этой цели применялись и некоторые другие способы [85]. В одном из таких способов этилбонзол подвергался хлорированию, 1-хлор-2-фенил-этап отделялся, омылялся в фенилэтиловый спирт, а последний дегидратировался в стирол  [c.236]

    Разложение спиртов над кислотными катализаторами. Выше уже отмечалось влияние следов кислот или слабокислых катализаторов на ускорение реакций изомеризаций и перегруппировок при каталитическом разложении спиртов. [c.415]


    Каталитическое разложение рассматривалось выше как автоокисление, катализированное тяжелыми металлами. Каталитическое разложение с помощью металлов приводит к образованию в качестве свободных радикалов первичных алкоксилов, которые в результате дальнейших реакций образуют спирт и карбонильные производные. Каталитическое действие фталоцианина железа иа гидроперекиси приводит к образованию кетонов [31]. [c.299]

    Высокая температура в работающем двигателе обеспечивает значительную скорость инициирования перекисного окис.пения. Полученные перекиси быстро подвергаются термическому или каталитическому разло жению, образуя, кроме обычных карбонильных соединений и спирта, кислоты, воду и двуокись углерода. Подобное глубокое окисление до кислотных продуктов является основной причиной ухудшения качества смазочных массл в двигателях внутреннего сгорания. [c.307]

    До eux пор важнейшим остается метод, основанный на работах Реппе о присоединении СО и воды или спиртов к ацетилену нри каталитическом воздействии Ni( 0)4. Синтез акрилатов протекает при 35 — 45 °С под давлением стехиометрически по уравнению  [c.148]

    Гидрирование альдегидов в первичные спирты в известной мере может протекать в сочетании с реакцией Ройлена. Оно идет как гомогенная каталитическая реакция само но себе и основано на том, что карбонилгидрид кобальта при определенной температуре и определенном соотношении окиси углерода и водорода может функционировать как восстанавливающий агент [43]. [c.214]

    Таким образом, в настоящее время, получение первичных спиртов, исходя из альдегидов, возможно посредством их гидрирования тремя способами. Во-первых, гидрированием альдегидов в газовой фазе в присутствии избытка водорода и, например, никелевого катализатора без давления или под небольшим давлением гетерогенно-каталитической реакцией. Во-вторых, в дополнение к реакции Ройлена можно по окончании образования [c.214]

    Уравнение (VIII..Я2) является основой для расчета многостадийных трубчатых адиабатических реакторов в той же мере, как и для периодических, если только реакция идет без изменения объема реагирующей смеси. Так как, однако, реакторы такого тина часто применяются для проведения газофазных реакций, сопровождающихся изменением объема (например, синтез метилового спирта и окисление двуокиси серы), выведем уравнения для трубчатого реактора, используя в качестве меры концентрации массовую долю. В случае гетерогенно-каталитической реакции будем предполагать, что для нее най- -депо квазигомогенное кинетическое выражение, согласно методам, описанным в [c.225]

    Дальнейшее последование этой реакции показало, что нет необходи- мости работать со стехиометрическим количеством ] арбонпла никеля и что того же эффекта можно достичь с каталитическим количеством йодистого никеля. В присутствии спиртов при температуре 180—220° и давлении окиси углерода lOO—200 ат можно, используя в качестве исходного материала олефины с прямой цепью из 4—18 углеродных атомов, получить с 90%-ным выходом сложные эфиры. [c.219]

    Можно, наконец, получить такгке свободные кислоты из олефинов, воды и каталитических количеств карбонила никеля без добавления йодистого никеля. При 250—280° и 200 ат окиси углерода в присутствии карбонила никеля из этилена получают пропионовую кислоту с 85%-ным выходом. Если ввести в эту реакцию пропионовую кислоту, то в присутствии про-ниопата никеля образуется с 85%-ным выходом пропионовый ангидрид, важный исходный материал для получения пропиоцеллюлозы. Подобным же образом из олефинов, окиси углерода и первичных спиртов в присутствии [c.219]

    Замещение гидроксильной группы водородом в принципе можно осуществить тремя различными способами. Во-первых, все спирты можно превратить в соответствующие углеводороды путем каталитического восстановления, например, на сульфидном никель-вольфрамовом катализаторе при температуре около 300° и давлении 200 ат по непрерывной схеме. Чистый пикель особенно в паровой фазе в условиях более высоких температур может вызвать укорачивание углеродной цепи и поэтому непригоден для рассматриваемой цели (Пальфрей)  [c.59]

    Из жидких алифатических углеводородов наилучшим исходным материалом для сульфохлорирования являются н-парафины типа н-додекана и октадекана. Правда, и средние члены гомологического ряда, как н-гексан и н-октан, реагируют легко и сравнительно однозначно. Однако подобные углеводороды не являются подходящим промышленным сырьем, так как в чистом виде они мало доступны и слишком дороги. Они могут быть получены из соответствующих спиртов нормального строения каталитической дегидратацией последних в олефины, которые з.атем под давлением гидрируют, например в присутствии никелевого катализатора, в соответствующие парафины, или восстановлением спиртов нормального строения в одну ступень в насыщенные углеводороды, которое осуществляется, например, пропуска-нояем их в смеси с водородом над сульфидными катализаторами, лучше всего над смесями сульфидов никеля и вольфрама при температуре 300—320° и давлении 200 ат. [c.396]

    Очень важное направление в применении головных погонов заключается в том, что их каталитически восстанавливают в спирты, которые переводят в нейтральные эфиры фталевой кислоты обработкой фталевым ангидридом. Последние являются важными растворителями и мягчителями для промышленности пластмасс, обладающими высокой устойчивость к холоду (иапример, Е. В. 242 и Е. О. 356 за вода фирмы Дойче Гидрирверке в Родлебене). [c.471]

    Низшие окиси вольфрама (W0, WO. , V4On, W Og) неплохо зарекомендовали себя в качестве катализаторов [67—72]. WaOg можно получить путем восстановления WOg этиловым или изопропиловым спиртом прн 250 °С. Конверсия на этом катализаторе достигает 6,5% при 230 "С, 10% при 250 С и 14,5% при 270 "С. Возможна добавка графита в качестве восстановителя WOg, имеющей недостаточную каталитическую активность [73]. [c.62]

    X. И. Ареглидзе впервые применил монтмориллонитовые глины Грузии и их модифицированные формы в катализе, в контактно-каталитических превращениях спиртов, олефинов, циклоолефинов и сераорганических соединений. Им было показано, что олефины на вышеуказанных алюмосиликатах подвергаются изомеризации как с мт1грацией двойной связи с периферии к центру молекулы, так и с разБствлением углеродного скелета. Подобная изомеризация олефнновых углеводородов способствует повьпиению их октановых чисел, что имеет определенное практическое значение для облагораживания крекинг-бензинов. [c.6]

    Гетеролитическнй, или так называемый ионный катализ, имеет место в каталитических реакциях крекинга, изомеризации, циклизации, алкилирования, деалкилирования, полимеризации углево — доро/,,ов, дегидратации спиртов, гидратации олефинов, гидролиза и мног IX других химических и нефтехимических процессах. [c.81]

    Каталитическое разложение цетилового спирта над окисью алюминия при 345 дает цетен с высоким выходом [109], но продукт представляет собой, по-видимому, смесь изомерных гексадеценов. [c.414]

    Шаклетт и Смит [281 обрабатывали несколько бензилхлоридов, приготовленных реакцией хлорметилирования гидридом лития и литий-алюмииийгидридом в растворе тетрагидрофурана, и получили количественные выходы ароматических углеводородов. Ими найдено, что реакция таких галогенидов с ацетатом натрия в уксусно кисло1е с последующим щелочным гидролизом в водном спирте и каталитическим гидрированием образующегося карбинола над катализатором — хромитом меди — приводит к количественным выходам. [c.486]

    Исследования в области каталитического гидрирования окиси углерода в течение первой половины XX в. развивались все более и более быстрыми темпами. Первыми вехами на пути этих исследований двились работы Сабатье и Сандерана [24] по синтезу метана на никелевых катализаторах и открытие Баденской анилиновой и содовой фабрикой [4] реакции между водородом и окисью углерода. В результате этой реакции образовывался жидкий продукт, содержавший спирты, альдегиды, кстоны, жирные кислоты и некоторое количество насыш енных и ненасыщенных алифатических углеводородов. Она протекала при давлениях 100—200 ат и температурах 300—400° в присутствии окисей кобальта и осмия, активированных щелочью и нанесенных на асбест . Последующие исследования привели к разработке в 1923—1925 гг. промышленного синтеза метанола. Начиная с 1923 г. и до настоящего времени, проводятся обширные работы по изучению процесса Фишера-Тропша в лабораторном и полузаводском масштабах. [c.519]

    Гидрирование окиси углерода с образованием спиртов и углеводородов выше Gj представляет собой относительно медленную каталитическую реакцию. Андерсон [27с] рассчитал, что молекула окиси углерода живет на поверхности кобальтового катализатора около 5 мин., прежде чем она прореагирует. Все активные катализаторы синтеза содерн ат железо, иикель, кобальт или рутений в качестве основного гидрирующего компонента. Эти четыре металла в условиях синтеза медленно, но с измеримой скоростью образуют карбонилы металлов, что, по-видимому, имеет определенное значение. Оптимальная температура синтеза для никеля и кобальта находится в пределах 170—205°, для железа 200—325° и для рутения 160—225°. Допустимое максимальное давление для синтеза на никелевых катализаторах составляет примерно 1 ат, на кобальтовых — около 20 ат. При более высоком давлении активность этих катализаторов резко падает (по мере повышения давления). Железные катализаторы, приготовляемые плавлением магнетита, проявляют активность под давлением 20—100 ат i, в то время как осажденные железные катализаторы выше 20 ат ослабевают I27d]. Рутениевые катализаторы относительно неактивны при давлении ниже 100 ат, но их активность быстро растет по мере его повышения до 300 ат [27е]. При оптимальных давлениях (О—1 ат для Ni 1—20 ат для Go, 1—20 ат для осажденных Fe-катализаторов, 20—100 ат для плавленых Fe-катализаторов и 100—300 ат для Ьи) коэффициент давления (показатель п в уравнении скорость = коистат та х давление") составляет около 0—0,5 для Ni и Go и близок к единице для Fe и Ru. [c.521]

    Производство бутадиена и стирола каталитической дегидрогенизацией приобрело промышленное значение. Несмотря на то, что это производство зависит от общего спроса на каучук и от поставок природного каучука, весьма сомнительно, чтобы возможные колебания рыночных цен могли вызвать полную остановку этой промышленности. После второй мировой войны производство синтетического каучука уменьшилось с 760 ООО до 275 ООО т в год, производство бутадиена из спирта прекратилось полностью, а дегидрирование бутена несколько сократилось. Низкий индекс производства дерн ался в январе 1950 г., когда природный каучук продавался но цене 18,3 цента за фунт. Когда цена его в ноябре 1950 г. возросла до 73 центов за фунт, то снова увеличилось производство синтетического каучука, достигнув 530 000 m в 1951 г. [65]. Производительность действующих и строящихся заводов но получеп1тю бутадиена из нефтяного сырья составляла в 1953 г. 637 000 т, в то время, как производительность заводов по получению бутадиена из спирта составляла всего 215 000 тп [81]. Можно предположить, что каталитическое дегидрирование бутиленов и этилбензола будет сохранять свое значеппе до тех пор, пока не будут созданы еще более совершенные методы производства бутадиена и стирола. [c.210]


Смотреть страницы где упоминается термин Каталитическая спиртов: [c.133]    [c.221]    [c.270]    [c.242]    [c.179]    [c.492]    [c.413]    [c.445]    [c.465]    [c.482]    [c.322]   
Технология катализаторов (1989) -- [ c.8 , c.12 ]




ПОИСК







© 2025 chem21.info Реклама на сайте