Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферментативные фрагментов ДНК и РНК

    Общим для большинства ферментативных систем является то, что субстрат связывается с активным центром двумя или большим числом точек. В качестве примера можно указать на сорбцию молекулы синтетического субстрата на активном центре папаина (стр. 19). Углеводородный фрагмент сорбируемой молекулы связывается с белком за счет гидрофобных взаимодействий. Дополнительную ориентацию ей придают 3 водородные связи (пунктир) с аминокислотными остатками белка 01у-66 и Азр-158. [c.23]


    Важная роль в ферментативном катализе отведена сорбции на активном центре боковых фрагментов субстратной молекулы, не претерпевающих в ходе реакции никаких химических изменений. Теоретический анализ двухцентровой модели химического взаимодействия, проведенный в гл. II, показал, что кинетическая роль подобного комплексообразования реагентов сводится фактически к стабилизации переходного состояния реакции и, тем самым, к понижению свободной энергии активации катализируемой реакции. В этом параграфе будут рассмотрены кинетические показатели некоторых неферментативных моделей, на примере которых удобно проиллюстрировать то, что реализация дополнительных взаимодействий реагентов за счет их боковых химически инертных групп действительно приводит к ускорению реакции. Это взаимодействие (типа E-R, см. схему 2.10) может быть электростатическим или гидрофобным, а также протекать с образова- [c.72]

    Сочетание этого кофактора с белком приводит к резкому увеличению активности фермента. Функции кофакторов (специфических небелковых фрагментов) в ферментативном катализе, как и их химическая природа, сложны и разнообразны. [c.187]

    Вообще говоря, логично было бы сделать предположение о том, что ферментативная деструкция промежуточных олигосахаридов вплоть до малых фрагментов 0(, Ог легче происходит при низких pH, в то время как при высоких pH легче атакуются длинные олигосахариды, чем короткие (см. пример 5). Если бы последую-щ lя экспериментальная проверка этого предположения показала, что р11-зависимость начальной скорости гидролиза исходной мальтозы смещена в щелочную сторону по сравнению с рН-зависи-мостью гидролиза, например, тетра- или пентамеров, то подтвердилась бы именно такая трактовка, нежели предположение о рН-зависпмости эффективности множественной атаки . Однако авторы работы [9] не предусмотрели этой достаточно вероятной возможности (см. пример 4) и вместо этого постулировали наличие множественной атаки при pH 6,9. Обработка экспериментальных данных [9] в рамках механизма множественной атаки показала, что субстрат проскальзывает вдоль активного центра а-амилазы на два глюкозных остатка и максимальная степень множественной атаки при pH 6,9 составляет 2,2—3,5. [c.84]

    На данной схеме фактически представлен один цикл ферментативного превращения, в начале которого фермент образует фермент-субстратный комплекс, и в конце — выходит из комплекса с новым субстратом после серии последовательных атак. Здесь показано, что после первичного ферментативного гидролиза с константой скорости первого порядка 2 десорбируется лишь одна из частей субстрата 8 , тогда как другая, остающаяся на ферменте, может скользить вдоль активного центра, периодически расщепляясь им с константой скорости кз и образуя короткие фрагменты с неизменной степенью полимеризации Пр. На схеме (63) г — [c.97]


    Главное содержание кинетических подходов к описанию процессов ферментативной деструкции полимеров, разработанных к настоящему времеии, состоит в том, чтобы связать макроскопические кинетические параметры, определенные из эксперимента, с микроскопическими, характеризующими взаимодействие субстрата и его фрагментов с активным центром фермента и его сайтами. [c.105]

    Накопленный к настоящему времени опыт теоретического рассмотрения кинетики ферментативной деструкции полимеров позволяет утверждать, что иа экспериментально определяемую величину константы Михаэлиса должны влиять гетерогенность состава полимерного субстрата (по типу мономерных звеньев), различия в типах статистического распределения полимеров по степени полимеризации, конкурентное самоингибирование субстратом (или его фрагментами), множественная атака. Конкурентное самоингибирование уменьшает величину эффективной константы Михаэлиса. Напротив, возрастание степени множественной атаки (если последняя вообще имеет место) приводит к возрас- [c.135]

    Целлюлоза, амилоза, амилопектин и гликоген — полисахариды, построенные исключительно из фрагментов о-глюкозы, — отличаются друг от друга только положением и стереохимией гликозидных связей. Сравнение ферментативного расщепления этих соединений демонстрирует замечательную специфичность ферментов. [c.286]

    Спиртовое брожение. — Способность ферментов катализировать многие другие реакции, кроме перечисленных выше, прекрасно иллюстрируется тщательно изученной последовательностью реакций ферментативного расщепления гексоз до этилового спирта и двуокиси углерода. Ключевыми промежуточными продуктами являются /)-фруктозо-6-фосфат и 0-фруктозо-1,б-дифосфат, образующиеся под действием фермента из сахара и донора фосфата. Расщепление фруктозо-1,6-дифосфата идет через обратимую альдолизацию с переносом водорода от С -гидроксила к третьему углеродному атому, причем образуются фрагменты I и II  [c.722]

    В качестве объекта исследования во всех задачах используются либо митохондрии из различных тканей, либо их фрагменты, обладающие соответствующим набором ферментативных активностей. Получение интактных митохондрий или их фрагментов, а также выделение некоторых митохондриальных ферментов само по себе представляет небольшое, но требующее тщательности и опыта самостоятельное препаративное исследование. Поэтому получение этих препаратов приведено в Практикуме в виде отдельных работ. [c.403]

    Ферментативный фрагмент из 20—30 аминокислотных остатков вполне может быть приготовлеи синтетически. Да и полный синтез инсулина (51 звено) представляется сейчас реальной задачей. Один пз наиболее изученных ферментов — рибонуклеаза (РНК-аза). Поскольку для нее известна структурная формула, то существует большая вероятность понять механизм ее действия в ближайшем будущем. [c.142]

    Окисление жирных кислот с нечетным числом атомов углерода также может происходить в цикле окисления жирных кислот. Такие жирные кислоты редко встречаются в природе, но образуются в ходе окислительного расщепления валика и изолейцина. При окислении последовательное отщепление молекул ацетил-СоА происходит до тех пор, пока не останется трехуглеродный фрагмент в виде пропионил-СоА, который подвергается далее ферментативному карбоксилированию, в результате которого получается метилмалонил-СоА. Ферментом является пропионилкарбоксилаза  [c.105]

    Ферментативная циклизация этих меченых скваленов А, В, С и О приводит к образованию фрагментов структуры ланостерина А, В, СУ и О (рис. 5.22). [c.334]

    Несмотря на указанные. ограничения (которые на скорость диффузии лиганда к сорбционному центру накладывает стерические затруднения со стороны отдельных фрагментов поверхностного ело белковой глобулы), константы скорости для истинных субстратов все же остаются, как правило, большими, если сравнивать их со скоростями обычных (н ерментативных) химических процессов второго порядка (см., например, табл. 2). С другой стороны, в силу высокой эффективности ферментативного катализа (и, следовательно, в силу огромных скоростей химических превращений, идущих на активных центрах ферментов) сорбция субстрата на ферменте в ряде случаев может лимитировать валовую скорость катализируемой (еакции [641 (см. гл. VII). [c.31]

    Нерешен также и вопрос о ковалентном катализе. В ряде ферментативных реакций образуются промежуточные соединения с ковалентной связью между ферментом и субстратом [29, 48, 49]. В качестве примера можно указать на протеазы, где в ходе ферментативной реакции образуется ацилфермент (см. гл. IV). Трудно сказать, почему реакция не протекает прямо, а идет через образование промежуточного соединения с ферментом (или коферментом). В этом отношении Дженкс [29] указал, что именно здесь могут быть заложены важные химические закономерности ферментативного катализа, которые в настоящее время почти или вообще не поняты . Не исключено, однако, что причина простая, а именно, что в ковалентно-связанном промежуточном соединении легче, чем в сорбционном фермент-субстратном комплексе, реализуются различного рода механизмы напряжения, которые позволяют использовать свободную энергию сорбции химически инертных субстратных фрагментов на ферменте на понижение активационного барьера скоростьлимитирующей химической стадии (см. 4 этой главы). Возможно, наличие промежуточных соединений в ферментативных механизмах отражает лишь сложную картину участия в реакции большого числа функциональных групп, многие из которых вообще склонны образовывать ме-тастабильные продукты (как, например, имидазольная группа [29]). Иными словами, образование промежуточных соединений хотя и сопровождает ферментативный катализ, но, возможно, не имеет прямого отношения к наблюдаемым ускорениям. [c.66]


    Зависимость скоростей реакций, катализируемых химотрипсином, от pH обнаруживает оптимум при pH 8. [42]. Механизм зависимости химотрипсино-. вого катализа от pH заключается в следующем [6—9, 13, 43, 44]. Эффективные константы скоростей химических стадий ферментативной реакции 2 и сохраняют постоянное значение при щелочных и нейтральных значениях pH, но при дальнейшем понижении pH они уменьшаются. Сигмоидальный характер этих зависимостей указывает на участие в катализе ионогенной группы фермента с рЛГа7. Многие годы полагали, что этой группой является имидазольный фрагмент His-57, однако позднее она была идентифицирована как карбоксил Asp-102 [45]. Ее протонизация разрушает водородные связи в составном нуклеофиле (рис. 32), что приводит к потере ферментом каталитической способности. [c.132]

    Не менее важным структурным элементом молекулы субстрата является и а-ациламидная группа. Этот субстратный фрагмент не оказывает заметного влияния на свободную энергию образования комплекса Михаэлиса, однако, как видно из табл. 28, наличие его в молекуле сложного эфира приводит к существенному ускорению последующих химических стадий ферментативной реакции и обусловливает также стереоспецифичность катализа по отношению к -энантиомерам. [c.134]

    Уравнение (4.27) означает, что величина специфического эффекта в скорости ферментативной реакции линейно возрастает с увеличением показателя гидрофобности я субстратной группы R. Это находится в резком диссонансе с данными по модельной реакции щелочного гидролиза этиловых [107—109] или л-нитрофениловых [110—112] эфиров тех же карбоновых кислот, где константа скорости второго порядка практически не зависит от длины алифатической цепи. В ферментативной же реакции с увеличением углеводородного фрагмента в субстратном остатке понижается свободная энергия активации примерно на —600 кал/моль (—2,5 кДж/моль) на каждую СНа-группу [что следует из (4.27)], если учёсть, что значение я для СНа-группы равно 0,5. Найденное значениеЛЛ <7 согласуется с величиной свободной энергии сорбции на активном центре алифатических соединений (см. 4 этой главы). [c.149]

    Термин полимерный субстрат обычно означает, что данный полимер служит объектом действия на него фермента. В ряде случаев в роли полимерных субстратов используются и синтетические поли- или олигомеры, но они, как правило, моделируют поведение природных полимеров и их фрагментов. Синтетические олигомеры зачастую более доступны, чем их природные аналоги, и их можно приготовить практически однородными (гомополимер-ными) в отношсиуи химической последовательности, в то время как природные полимеры, выделенные из клеток животного, растительного или микробного происхождения, могут содержать дефекты (в химическом отношении, а не с точки зрения биологической целесообразности). Именно этим вызвано в последнее время все возрастающее применение синтетических поли- и олигомеров для изучения механизма их ферментативной деструкции. [c.6]

    Изучение кинетики ферментативной деградации этих субстратов осложнено трангликолизированием и множественным характером связывания их в активном центре лизоцима [2]. Выше были приведены данные о том, что ферментативный гидролиз коротких олигосахаридов (Gl NA )2 и (Gl NA )3 осушествляется не прямым путем, а скорее через промежуточные стадии трансгликозилирования. Подробная сводка данных по взаимодействию фрагментов природных субстратов — хитина и бактериальной клеточной стенки — с активным центром лизоцима приведена в обзоре [2]. [c.195]

    Третий структурный фрагмент, необходимый для эволюционирующих систем,— это группировки, ответственные за энергетическое обеспечение. Сюда входят оксиоксо-группы, фосфорсодержащие и другие фрагменты с макроэргическими связями. Высказывалось предположение, что эти структурные единицы тоже выполняют роль катализаторов по отношению к ряду реакций, но скорее всего их назначение состоит в снятии термодинамических запретов путем сопряжения реакций диспропорционирования и разрушения макроэргических связей с ферментативными реакциями [22]. [c.197]

    Единственная химическая реакция, которая здесь будет рассматриваться, —это гидролиз. Он может осуществляться как ферментативным, так и химическим путем. Горячая разбавленная минеральная кислота медленно расщепляет амидные связи с образованием с учайных фрагментов, в конечном итоге приводя к простым аминокислотам. Контролируемый кислотный гидролиз разрушает белок с образованием смеси пептидов. Возможен также ферментативный гидролиз протеолитические ферменты очень разнообразны по своему специфическому действию. Некоторые из них, такие, как папаин или фицин, фактически неспецифичны и расщепляют белки до свободных аминокислот, в то время как другие — трипсин, химотрипсин и пепсин— гидролизуют только особые связи в белковых молекулах (ср. мальтаза, эмульсин и т. д., разд. 17.6 и 17.7). Так, пепсин расщепляет амидную связь между карбоксильной группой ди-карбоновой ь-аминокислоты и аминогруппой ароматической ь-аминокислоты при условии, что вторая карбоксильная кислотная группа дикарбоновой аминокислоты не связана. Химотрипсин менее специфичен и расщепляет амидную связь с карбонильной стороны ароматической ь-аминокислоты. Трипсин гидролизует амидные связи, включающие карбоксильные груп- [c.296]

    Существуют также некоторые различия в основаниях, получающихся при гидролизе. Если аденин, гуанин (производное пурина) и цитозин (пиримидин) выделяются при гидролизе и РНК, и ДНК, то в качестве четвертого основания РНК содержит урацил, а ДНК — тимин. Ферментативный гидролиз нуклеиновых кислот расщепляет их на фрагменты, называемые ну-клеозидами (состоят из одной молекулы основания, соединенного с одной молекулой сахара) и нуклеотидами (содержат по одной молекуле основания, сахара и фосфорной кислоты). [c.317]

    Общее направление взаимодействия определяется стереохимией ферментативной реакции между UDPG и о-фруктозо-6-фосфатом. Как UDPG, так и сахарозофосфат являются а-глю-козидами, так как суммарно перенос глюкозного фрагмента осуществляется с обращением конфигурации и любой механизм реакции должен объяснить это явление. Для алкилирования существует два возможных альтернативных механизма SnI и Sn2. Зк1-Процесс в живых системах маловероятен, поскольку промежуточно образующиеся карбокатионы обладают высокой энергией и чрезвычайно реакционноспособны, поэтому их реакции трудно контролируются. 8н2-Механизм, который не включает такие высокореакционные интермедиаты, более подходит [c.325]

    Такое планирование оправдано в тех случаях, когда потенциальное исходное соединение является бросовым товаром (например, является отходом того или иного производства и желательна его рациональная утилизация, либо когда в целевой молекуле легко распознать структурные фрагменты, отвечающие доступным соединениям. Наиболее выразите.льньш примером второй ситуации может служить синтез биополимеров (белков, полисахаридов, нуклеиновых кислот). Все они построены из небольших мономерных блоков, соединенных через гетероатомы. Такими мономерами для полипептидов и белков являются аминокислоты, для полисахаридов — моносахариды, а для нуклеиновых кислот — нуклеотиды. В биополимерах эти мономеры соединены амидной, 0-гли-козидной и фосфодиэфирной связями соответственно. Такие связи легко расщепляются при химическом или ферментативном гидролизе. Обратное превращение — сборка межмономерных связей — представляет собой обыч- [c.295]

    Огромное значение для молекулярной биологии последнего десятилетия имеет развитие генетической инженерии (возникшей в 1972—1973 гг. П. Берг, П. Лобан, С. Коэн и Г. Бойер) и методов работы с рекомбинантными ДНК в сочетании с методами химического синтеза крупных фрагментов ДНК. В результате сделались доступными для исследования индивидуальные гены и регуляторные генетические элементы, было стимулировано изучение ферментов биосинтеза и обмена нуклеиновых кислот. Благодаря этому после 1977 г. были обнаружены мозаичное (экзон-интронное) строение генов, явление сплайсинга и ферментативной активности у РНК, усилители ( энхансеры ) экспрессии генов, многие регуляторные белки, онкогены и онкобелки, мобильные генетические элементы. Возникла белковая инженерия, которая позволяет получать новые, не существующие в природе белки. Молекулярная биология начала оказывать существенное влияние на развитие биотехнологии, медицины и сельского хозяйства. [c.9]

    И ча с М,, Биологический код, пер, с англ,, М., 1971. ГЕННАЯ ИНЖЕНЕРИЯ (генетич. инженерия), совокупность методов, позволяющих искусственно получать молекулы ДНК, содержащие генетич. информацию из двух или более источников любого биол. и (или) хим. происхожде-пия. Осп. этапы Г. и. I) фрагментация молекул ДНК из ра, л. источников (бактерий, вирусов, культуры клеток, ткапей, целых организмов), обычно с помощью рестрикта-зы, или искусств. х1[мико-ферментативный синтез фрагмента ДНК 2) расщепление с номогцью этого же фермента молекулы ДНК (вектора), способной автономно реплицироваться в клетке (обычно это плазмидная или вирусная ДНК) 3) соединение фрагментов ДНК с вектором в еди- [c.125]

    ГЛЮКОЗА (декстроза, виноградный сахар) iHi206, моносахарид сладкого вк,уса (структурную ф-лу см, в ст, Мута-ротация). В природе распростр, D-Г, для ее а- и -аноме-ров Гпл 146 и 148—150 °С, [ ]d +112 и +18,7° соотв,, равновесное [а]о +52,7° раств, в воде (в 100 мл 82 г при 25 С и 154 г при 15 °С), Содержится в соке растений и в кровн структурный фрагмент мн, олиго- и полисахаридов. Гл. источник энергии для большинства организмов, Получ, кислотным или ферментативным гидролизом крахмала или целлюлозы. Сырье в произ-ве витамина С, глюконата Са входит в состав напитков и конд, изделий питат. в-во и компонент кровезаменителей в медицине, [c.139]

    Перегруппировка открыта К. Фрисом в 1908. ФРУКТОЗА (плодовый, нли фруктовый, сахар левулоза), моносахарид сладкого вкуса (слаще сахарозы в 1,5 раза). В природе распростр. В-Ф. для ее (3-аномера (ф-ла I) illл 102—104 °С, 1а]п —132°, равновесное [а]п —93°. Содержится в спелых фруктах, меде структурный фрагмент олигоса-харидов (напр., сахарозы и раффинозы), полисахаридов (напр., инулина). Фосфаты Ф. — промежут. соед. в энергетич. обмене углеводов. Получ. мягким кислотным или ферментативным гидролизом сахарозы или фрук-танов. Усиаивается больными диабетом лучше, чем глюкоза. [c.635]

    Рассмотрим теперь совсем недавний пример разделения ДНК и РНК. Здесь решалась более тонкая задача разделения НК, соизмеримых по своим размерам, а именно очистки ДНК плазмиды pBR 322 от примеси РНК. Присутствие РНК в препаратах плазмидной ДНК мешает протеканию некоторых ферментативных реакций и затемняет результаты введения концевой радиоактивной метки. Оказалось, что даже интенсивная обработка РНКазой (50 мкг/мл, 37°, 1 ч) не расщепляет РНК полностью, а лишь дробит ее на фрагменты, не обнаруживаемые электрофорезом в 1%-ном геле агарозы (они уходят вперед), но переосаждающиеся этанолом вместе с плаз-мидной ДНК. Кроме того, обработка РНКазой вообще нежелательна. Несмотря на предварительный прогрев, в ней остается небольшая [c.143]

    Таким образом, продвигаясь сверху вниз, по картине относительного сдвига пятен непрерывно удлиняющихся на одно звено фрагментов можно расшифровать всю первичную структуру олигонуклеотида. Здесь надо сделать два дополнительных замечания. Во-первых, мы ничего не узнаем таким образом о природе 5 -концевого нуклеотида, но его легко определить рассмотренными ранее методами ТСХ нуклеотидов. Например, после исчерпывающего гидролиза фосфодиэстеразой змеиного яда только этот нуклеотид будет представлен иуклеозиддифосфатом вида pNp. Во-вторых, метод не позволяет обнаружить модифицированные (минорные) нуклеотиды. Их приходится идентифицировать также методами ТСХ нуклеотидов нли нуклеозидов после исчерпывающего ферментативного гидролиза, как описано выше, где, в частности, приводилась и методика, используемая в цитируемой работе. [c.505]


Смотреть страницы где упоминается термин Ферментативные фрагментов ДНК и РНК: [c.132]    [c.136]    [c.154]    [c.160]    [c.161]    [c.35]    [c.135]    [c.165]    [c.192]    [c.197]    [c.197]    [c.199]    [c.15]    [c.117]    [c.485]    [c.252]    [c.201]    [c.250]    [c.20]    [c.216]   
Биоорганическая химия (1987) -- [ c.370 , c.372 ]




ПОИСК







© 2025 chem21.info Реклама на сайте