Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностные фазы, термодинамика

    Уравнение изотермы адсорбции Гиббса с точки зрения термодинамики универсально и применимо к границам раздела любых фаз. Однако область практического использования уравнения для определения величины адсорбции ограничена системами, у которых доступно экспериментальное измерение поверхностного натяжения, т. е. системами жидкость — газ и жидкость — жидкость. Рассчитанные по этому уравнению значения Г наиболее близко совпадают со значениями, найденными другими методами, в области разбавленных растворов. [c.331]


    Современная коллоидная химия включает следующие основные разде.ты 1) молекулярно-кинетические явления (броуновское движение, диффузия) в дисперсных системах гидродинамика дисперсных систем дисперсионный анализ 2) поверхностные явления адсорбция (термодинамика и кинетика), смачивание, адгезия, поверхностно-химические процессы в дисперсных системах строение и свойства поверхностных (адсорбционных) слоев 3) теория возникновения новой (дисперсной) фазы в метастабильной (пересыщенной) среде конденсационные методы образования дисперсных систем 4) теория устойчивости, коагуляции и стабилизации коллоидно-дисперсных систем строение частиц дисперсной фазы (мицелл) 5) физико-химическая механика дисперсных систем, включающая теорию механического диспергирования, явления адсорбционного понижения прочности твердых тел, реологию дисперсных систем образование и механические свойства пространственных структур в дисперсных системах 6) электрические и электрокинетические явления в дисперсных системах 7) оптические явления в дисперсных системах (коллоидная оптика)—светорассеяние, светопоглощение коллоидная химия фотографических процессов. [c.281]

    Для описания термодинамики поверхностных явлений применяют два метода метод избыточных вeл [чин Гиббса и метод слоя конечной толщины . За толщину поверхностного слоя принимают расстояние по обе стороны от границы раздела фаз, за пределами которого свойства слоя перестают отличаться от свойств объемных фаз. Практически вся поверхностная энергия сосредоточена в поверхностном слое толщиной в несколько молекул, поэтому все связанные с нею соотношения можно относить только к поверхностному слою. Однако, как следует из определения толщины поверхностного слоя, установление его границ со стороны объемных фаз [c.25]

    Поверхностное натяжение является функцией состава раствора. Эта функциональная зависимость была математически выражена Гиббсом на основании термодинамики поверхностной, или пограничной , фазы. [c.243]

    Дается обзор важнейших фактов, связанных со столетием теории капиллярности Гиббса. Освещаются следующие моменты понимание и новая интерпретация отдельных положений теории Гиббса развитие и обобщение теории капиллярности Гиббса возникновение новых направлений в термодинамике поверхностных явлений. Обсуждаются понятие поверхности натяжения для искривленных поверхностей, теория гиббсовской упругости пленок, метод слоя конечной толщины в термодинамике поверхностных явлений. Особое внимание уделяется обобщениям уравнения адсорбции и правила фаз Гиббса. В качестве новых направлений рассматриваются исследование толщины поверхностных слоев, термодинамика тонких пленок, теория процессов поверхностного разделения. [c.13]


    Основу описания эффектов третьего уровня составляют методы механики мелкомасштабных течений около включения дисперсной фазы, термодинамика поверхностных явлений, методы описания равновесия многокомпонентных систем, различные теории межфазного переноса. [c.44]

    Термодинамика поверхности раздела фаз была развита Гиббсом (1878 г.). Он принимал реальный поверхностный слой жидкости за новую поверхностную фазу, отличающуюся от объемной фазы тем, что ее толщина чрезвычайно мала и в пределе равна одной молекуле фазы разделены бесконечно тонкой поверхностью раздела. [c.440]

    Гуггенгейм и другие авторы вводят также понятие поверхностная фаза , эквивалентное двум указанным см. Гуггенгейм Е. А. Современная термодинамика. Л., Госхимиздат, 1941, 183 с. [c.51]

    Результаты многочисленных работ по статической усталости и по кинетике роста трещин часто обсуждаются в терминах коррозии под напряжением . Если под коррозией понимать растворение с переходом атомов твердой фазы в объем раствора, то такой процесс действительно иногда вносит существенный вклад в общую картину [297]. Однако чаще всего судьба атомов, образовавших связь, после ее гидролитического расщепления несущественна. В ряде случаев можно утверждать, что они остаются на месте, так как активная среда не образует жидкой фазы, а присутствует в виде адсорбционного слоя [268]. Однако даже если они переходят в раствор (может быть, с переотложением в другом месте, если раствор насыщенный), то мерой действия среды все равно может служить работа адсорбции, хемосорбции или топохимической реакции, т. е. термодинамика поверхностных взаимодействий. [c.97]

    Как известно, степень заполнения подложки ОН-группами проявляется в той или иной степени гидрофильности поверхностн образца. Химический контроль степени гидроксилирования по-верхности пластин кремния или кварца ввиду ее малой величины весьма затруднителен, поэтому ее определяют по изменению краевого угла смачивания поверхности жидкой водой, Равновесный краевой угол представляет одну из важнейших характеристик смачивания. Величина этого угла может бьт, оценена исходя из известного положения термодинамики о том, что в состоянии равновесия свободная энергия системы минимальна, Энергетическими характеристиками поверхности твердого тела в контакте с жидкостью являются удельная свободная поверхностная энергия н поверхностное натяжение а. Для определения условия равновесия фаз при смачивании рассчитьь вают работу, связанную с изменением площадей контакта. Зависимость равновесного краевого угла 0о от поверхностного натяжения на границе раздела трех фаз твердой подложки, жидкой капли и окружающей их газовой атмосферы, выражается уравнением [c.79]

    Г. Термодинамика поверхностных явлений с использованием концепции поверхностной фазы [c.66]

    Обзор этих методов опубликован Дамаскиным [204]. Их общие принципы хорошо известны [21, 225, 226], а термодинамическая обработка результатов для ртутных электродов подробно рассмотрена в оригинальных работах [227], книгах [228, 229] и обзорах [2, 123]. В общем случае емкостный метод может дать более точную информацию о и Г, чем метод измерения поверхностного натяжения с применением гиббсовской термодинамики поверхностных фаз. Причина состоит в том, что здесь используется дифференцирование, а не интегрирование. Однако требуется знать координаты электрокапиллярного максимума при каждой концентрации. Их приходится находить электрокапиллярными методами или измерением периода капания либо [c.491]

    Как было отмечено в дискуссии, важную роль при описании адсорбции должна играть термодинамика малых систем. Этот теоретический подход в настоящее время используется явно недостаточно, особенно в случае пористых адсорбентов твердые непористые адсорбенты также имеют на поверхности относительно небольшие области, отделенные друг от друга ступенями роста, ребрами и другими линейными дефектами. Наличие указанных областей приводит к тому, что мономолекулярный адсорбционный слой на твердом адсорбенте с так называемой однородной поверхностью может представлять набор малых систем, к которым неприменимо понятие термодинамического предела. Это существенно меняет наше представление о поверхностных фазах, об их термодинамике и статистике. Поэтому нужно согласиться с тем, что ближе всего к идеально однородной поверхности находится поверхность жидкости. [c.32]

    Гиббсом на основании термодинамики поверхностного слоя, возникающего на границе раздела фаз и часто называемого поверхностной или пограничной фазой . Термодинамический потенциал для поверхностной фазы записывают, в согласии с уравнением (16), следующим образом  [c.241]


    К этим фазам можно применить основные уравнения термодинамики. Обозначим буквами аир электролит и электрод, а буквой 5 — поверхностную фазу. Тогда [c.356]

    Выше была рассмотрена группа коллоидных систем, объединенных под общим названием лиофобных (гидрофобных) коллоидов, которые обладают сильно развитой физической поверхностью раздела и большим избытком свободной поверхностной энергии. Благодаря этому образуются ионные и молекулярные адсорбционные слои, которые и сообщают агрегативную устойчивость коллоидным частицам, тогда как стремление свободной поверхностной энергии лиофобных (гидрофобных) коллоидов к самопроизвольному уменьшению в силу второго начала термодинамики делает их термодинамически неустойчивыми. Весьма характерным свойством этих коллоидных систем является, как известно, слабое взаимодействие между веществами дисперсной фазы и молекулами дисперсионной среды. [c.326]

    Остановимся на постановке задачи. Всякое растяжение или сжатие пленки сопровождается изменением ее поверхности и, следовательно, объемно-поверхностными фазовыми процессами, приводящими к изменению масс объемных и поверхностных фаз. При этом упругость пленки будет проявляться в том случае, если эти процесы сопровождаются изменением поверхностного натяжения, что, в свою очередь, возможно лишь тогда, когда вариантность f и полная вариантность F системы совпадают. Последнее условие осуществляется в закрытых и частично открытых системах, когда число неподвижных компонентов равно или больше общего числа объемных фаз и поверхностей (см. 8 главы I). Отсюда следует, что пленка, соприкасающаяся с двух сторон с одной и той же фазой, может проявлять упругость при наличии в ней не менее двух неподвижных компонентов, пленка же, находящаяся между различными фазами, — прн наличии не менее трех неподвижных компонентов. Таким образом, термодинамическая теория упругости толстых пленок составляет часть термодинамики закрытых систем и должна основываться на совместном рассмотрении условий равновесия и частичной изоляции. [c.262]

    Поверхностные явления. Термодинамика поверхностных явлений. Опыт показывает, что для увеличения поверхности какой-либо фазы, например поверхности воды, граничащей с паром, необходима затрата работы. Работа изохорно-изотермического увеличения поверхности на 1 см , выраженная в эргах, равна поверхностному натяжению на границе между фазами. Если перенос молекул вещества из внутренних частей фазы к ее границе связан с затратой работы, то можно предположить, что и свойства вещества в поверхностном слое будут отличаться от свойств более глубоких слоев. Молекулы воды а поверхности испытывают с одной стороны (именно со стороны жидкости) более сильное притяжение, чем со стороны пара, в то время как молекула, находящаяся внутри жидкости подвергается действию силовых полей соседних молекул одинаково со всех сторон. [c.198]

    Построение детализированной связной диаграммы Е-фазы с подробным учетом всех ее физико-химических особенностей является сложной задачей из-за недостаточной изученности термодинамики поверхностных явлений [6]. Поэтому диаграммное представление процессов на границе раздела фаз в настоящей работе будет ограничено только отображением межфазных переходных потоков совместно с условиями равновесия на межфазной границе. [c.143]

    Подчеркивается доминирующая роль поверхностных явлений в дисперсных системах с высокоразвитой границей раздела фаз. Достаточно доступно излагается термодинамика гетерогенных систем по методу избытков термодинамических функций Гиббса. Важное место занимает раздел, в котором ставится вопрос о нетривиально-сти термодинамического описания микрогетерогенных систем, не являющихся в принципе равновесными, и о природе их устойчивости, с выделением роли флуктуаций, лиофилизации в результате адсорбции (по Ребиндеру), специфики поведения тонких слоев и проявления расклинивающего давления. [c.5]

    Из-за несимметричности силовых полей на границе раздела между фазами энергия Гиббса на поверхности выше, чем в объеме фаз. Из второго закона термодинамики (см. гл. И) следует, что любые процессы протекают самопроизвольно, если они сопровождаются уменьшением энергии Гиббса. Поэтому конденсированные фазы стремятся принимать такие формы, в которых удельная поверхность минимальна. Например, капли жидкости принимают сферическую форму, где отношение величины поверхности к объему минимально. По этой же причине любые процессы, ведущие к уменьшению поверхностного натяжения, являются самопроизвольными. Поверхностное натяжение — важная характеристика (физико-химическая) твердых и жидких тел. [c.171]

    Дисперсные системы обладают большим запасом поверхностной энергии, т. е. высоким термодинамическим потенциалом. Поэтому, согласно второму закону термодинамики, они склонны к сокращению площади 5уд поверхности раздела фаз, что сообщает им склонность к самопроизвольному слипанию (слиянию) частиц дисперсной фазы, приводящему к разделению фаз, расслаиванию системы. [c.209]

    Коллоидные растворы представляют собой гетерогенные системы, что и служит одной из причин их неустойчивости. Они обладают большой свободной энергией и в соответствии со вторым законом термодинамики будут стремиться к равновесному состоянию, характеризующемуся разделением системы на две фазы, имеющие минимальные межфазовые поверхности и, следовательно, минимальную свободную поверхностную энергию. Отсюда становится понятным, что стабилизаторы, адсорбируясь на дисперсной фазе и снижая тем самым величину свободной энергии, также будут способствовать устойчивости системы. [c.135]

    Коллоидные растворы обладают большим запасом свободной энергии, а поэтому термодинамически неустойчивы. Огромная удельная поверхность дисперсной фазы создает избыток поверхностной энергии, которая, согласно второму закону термодинамики, стремится к наименьшему значению, что связано с уменьшением поверхности раздела между частицами и средой. Это вызывает переход системы в такое состояние, когда частицы объединяются, сцепляясь под действием молекулярных сил в агрегаты. В одних коллоидах объединение идет довольно быстро, в других сравнительно медленно. [c.111]

    К поверхностным явлениям относятся все эффекты, связанные с различием физических свойств изучаемых систем, зависящих от различного поведения молекул в поверхностном слое и объеме непрерывной фазы. Помимо явлений адсорбции с этими же причинами связано возникновение вполне определенных равновесных форм огранения кристаллов, изменение термодинамических свойств вещества в зависимости от размера частиц (капель или кристаллов). Термодинамика поверхностных явлений широко используется в теории возникновения и роста частиц новой фазы. [c.156]

    В середине 1880-х годов были опубли кованы и другие основополагающие работы по. химической термодинамике. Р Лг Шателье сформулировал свой знаменитый принцип подвижного равновесия [7], вооружив химиков методами сознательного управления смещением равновесия в сторону образования целевых продуктов. В середине 1880-х годов стала известной в Европе работа Дж. Гиббса О равновесии гетерогенных веществ , опубликованная в 1876—1878 гг. в США [8] т содержащая (ставшее также знаменитым) правило фаз н новые аналитический и геометрический методы исследавання и описания условий равновесия через термодинамические потенциалы. В этой работе Дж. Гиббса были заложены основы термодинамической теории поверхностных явлений, получившей развитие в 1930—1940 гг. в учениях о сорбционных явлениях и о катализе. [c.113]

    Так как суммарная поверхность дисперсной фазы очень велика, то, значит, коллоидные системы должны обладать повышенным запасом свободной поверхностной энергии.) Из термодинамики известно, что всякая система стремится самопроизвольно уменьшить свою свободную энергию. Это происходит либо за счет сокращения суммарной поверхности системы (слипание частиц в более крупные агрегаты), либо в результате адсорбции коллоидными частицами веществ, понижающих поверхностное натяжение. [c.12]

    Это значит, что с ростом температуры число активных центров на единицу поверхности сначала растет и, только начиная с определенной температуры, убывает. Подобные кривые невозможно объяснить, исходя из представления о спекании как о поверхностном плавлении активных центров или исходя из эффекта, связанного с уменьшением общей повмхности с повышением температуры. Это явление с позиций термодинамики было рассмотрено О. П. Пол-торакои, который исходил из следующей модели активные центры являются атомной фазой , адсорбированной на поверхности кристалла. При этом оказалось, что для мелкодисперсных кристаллов количество атомной фазы иа единицу поверхности уменьшается с ростом кристаллов. Таким образом, с изменением температуры протекают два конкурирующих процесса сначала при повыщении температуры обработки катализаторов увеличивается число дефектов, а следовательно, и их поверхностная концентрация ири дальнейшем повышении температуры увеличение числа дефектов и их подвижности приводит к росту кристаллов, а следовательно, к уменьшению поверхностной концентрации дефектов. [c.338]

    Уравнение (VI.25), впервые полученное Гиббсом, сыграло большую роль в термодинамике поверхностных явлений. Его физический смысл состоит в том, что в жидкой дисперсной фазе химический потенциал вещества повышен. Однако это повышение составляет только /з молярной поверхностной энергии Гиббса капель с радиусом г. Из вывода ясно, что множитель выражает отношение числа измерений поверхности и объема капли или кристалла. [c.179]

    Коллоидные системы обладают большой свободной энергией и в соответствии со вторым законом термодинамики будут стремиться к равновесному состоянию, характеризующемуся разделением системы на две фазы, имеющие минимальные межфазовые поверхности и, следовательно, минимальную свободную поверхностную энергию. Отсюда становится понятным, что стабилизаторы, адсорбируясь на дисперсной фазе и снижая тем самым количество свободной энергии, будут способствовать устойчивости системы. [c.111]

    Если дисперсная фаза является жидкой, то в отсутствие внешних сил капельки приобретают сферическую форму. Объясняется это существованием избыточной свободной поверхностной энергии. Как известно, сфера обладает наименьшей поверхностью при данном объеме и процесс образования сфер идет самопроизвольно в соответствии со вторым началом термодинамики. В сферической капле все поверхностные молекулы не различимы между собой, но отличаются от объемных своей ориентацией. Поверхностные слои обычно характеризуются дальним порядком расположения ориентированных молекул (глава УП1), Эта особенность весьма существенна, ибо в результате организации микроструктур в дисперсных системах часто образуются ориентированные макроструктуры. [c.9]

    И. Дорохов с сотр., используя методы механики гетерогенных сред и неравновесной термодинамики и учитывая баланс массы, импульса и энергии для двухфазной многокомпонентной среды, в которой протекают химические реа1сции, процессы тепло- и массообмена и фазового перехода, получили кинетические уравнения переноса субстанций как в пределах фазы, так и через фаницу раздела фаз, В этом случае рассматривается так называемая двухтемпературная модель, а влияние поверхностно- [c.142]

    Из этой таблицы следует, что коллоидно-дисперсные системы в отличие от истинных растворов сами по себе агрегативно неустойчивы. Размеры их дисперсных частиц могут изменяться как самопроизвольно, так и под влиянием внешних факторов. Одной из причин неустойчивости коллоидных растворов является их гетерогенность. Обладая громадной суммарной поверхностью, следовательно, большой свободной энергией, коллоидные системы согласно второму началу термодинамики стремятся к равновесному состояипю, характеризующемуся разделением системы ка две фазы, имеющие минимальные межфазовые ПОВерХНОСТИ И МИНИМЭЛЬ-ную свободную поверхностную энергию. [c.277]

    Термодинамика. Основы термодинамики А, были созданы Дж. Гиббсом в 70-е гг. 19 в. По Гиббсу, в равновесной двухфазной системе вблизи пов-сти раздела фаз происходит нек-рое изменение локальных значений всех экстенсивных св-в (кроме объема). Однако фазы считаются однородными вплоть до нек-рой геом. пов-сти, разделяющей их. Поэтому значение к.-л. экстенсивного св-ва для системы в целом ( ]/ ) не равно сумме значений этого св-ва в однородных фазах аир. Разность а° - ( < -I-= г приписывается двухмерной поверхностной фазе, связанной с разделяющей пов-стью. Т. к. поветзхностная фаза не имеет толщины, то и IV = где И-объем. [c.39]

    Как было указано вьине, в результате адсорбции происходит перераспределение компонентов между объемными фазами и поверхностным слоем, что влечет за собой изменение их химических потенциалов в системе, поэтому этот процесс можно рассматривать как превращение поверхностной энергии в химическую. Выведем соотношение между иоверхиостР ым натяжением и химическими потенциалами компонентов системы. Объединенное уравнение первого и второго начал термодинамики для внутренней энергии поверхности с учетом поверхностной и химической энергии имеет вид (объем поверхности равен нулю) [c.35]

    Поверхностные явления. Термодинамика поверхностных явлений. Опыт показывает, что для увеличения поверхности какой-либо фазы, например поверхности воды, граничащей с паром, необходима затрата работы. Работа изохорно-изотермического увеличения площади поверх1Юсти иа 1 см , вырал енпая в эргах, равна поверхностному натяжению на границе. между фазами. Если пере- [c.265]

    Термодинамика поверхностных явлений была развита Гиббсом. Он принимал поверхностный слой за новую поверхностную фазу , отличную от объем1П>1Х фаз тем, что ее толщина чрезвычайно мала по сравнению с протяженностью в двух других измерениях, и поэюму рассматривал 1юверхн0с1ный слой как геометрическую разделяющую поверхность, применяя к ней общие термодинамические уравнения. [c.223]

    К сожалению, Гиббс не развил количественно такую одномерную термодинамику, указав лишь, что она должна быть подобна двумерной термодинамике, разработанной им для границ раздела двух фаз. Согласно Гиббсу, избыточная энергия линии раздела трех фаз, или линейное натяжение, обозначаемое далее у., возникает в силу того, что поверхностные натяжения изменяются вблизи границы раздела трех фаз. Это иллюстрировано на рис. 1 на примере границы трех фаз с одинаковыми натяжениями между ними Стоо. В области, ограниченной пунктирной линией, натяжения изменены в среднем до а. Тогда по определению Гиббса у. = = 3 (а—сГоо)б, где б — радиус зоны взаимодействия трех фаз. В случае когда а < Оос, при 50 дин/см и б л см получаем X — 1,5-10" дин. Если ог>-аос, то значение у будет положительным. Другими словами, х может быть как положительным. [c.250]

    В основе термодинамики агрегативной устойчивости лежит представление о расклинивающем давлении, введенное Б. В. Дерягиным в 1935 г. Расклинивакнцее давление возникает при сильном уменьшении толщршы пленки в результате взаимодействия сблп кающихся поверхностных слоев. Пленкой называют часть системы, находящуюся между двумя межфазными поверхностями (газообразными, твердыми или жидкими). Если пленка имеет большую толщину, то обобщенное уравнение первого и второго начал термодинамики отличается от представленных ранее (с одним межфазным слоем) только тем, что в него входят поверхностные энергии (oi,2 и СТ2.3) обеих межфазных поверхностей (слоев). При уменьшении толщины пленки ограничивающие ее поверхностные слои начинают перекрываться, вследствие чего возникает давление, обусловленное взаимодействием как сближающихся фаз, так и межфазных слоев. Таким образом, избыточные термодинамические функции тонких пленок зависят от толщины пленки h. Например, для пленки выражение избыточной энергии Гиббса имеет вид [c.273]

    Классическая термодинамика гетерогенных систем является неполной главным образом в двух отношениях. Во-первых, она не принимает во внимание флуктуаций, роль которых растет с повышением дисперсности. Во-вторых, выше известной степени дисперсности становится не вполне корректной приложимость основного допущения Гиббса о независимости термодинамических параметров, характеризующих межфазную поверхность, от размеров фаз и кривизны их поверхностей. Однако вместо вопроса о том, до каких минимальных размеров частиц можно еще говорить о наличии у них фазовой поверхности и соответствующего поверхностного натяжения, целесообразно поставить вопрос о том, как изменяется величина поверхностного натяжения при уменьшении размеров очень малых частиц. Очевидно, что вследствие дискретной молекулярной структуры вещества нeвoз южнo избежать скачка в его свойствах при переходе к молекулярной степени дисперсности, но все же можно попытаться подойти поближе к этой границе. [c.89]

    Растекание — результат взаимодействия полярных молекул жидкости (например, воды) с родственными по химическому строению молекулами другой жидкости. Это явление сопровождается понижением поверхностного натяжения твердого тела, уменьшением энергии Гиббса на поверхности раздела фаз. Растекание наблюдается при контакте двух нерастворимых друг в друге жидкостей, например какого-либо масла (м) и воды (в), имеющих относительно меньшее и большее поверхностные натяжения, обозначаемые соответственно Ом и ств. Кроме того, поверхностное натяжение на границе вода — масло обозначают сгвм. Если рассмотреть систему, состоящую из воды с нанесенной на нее каплей масла и воздуха при постоянных давлении и температуре, то в соответствии с вышеизложенными материалами по термодинамике (см. гл. П) изменение энергии Гиббса системы будет равно сумме произведений соответствующего поверхностного натяжения на изменение площади контакта между фазами. При увеличении поверхности раздела вода — масло на столько же увеличится граница раздела масло воздух. [c.175]

    Коллоидные системы, как было показано выше, характеризуются большой поверхностью раздела фаз, вследствие чего они обладают. эначительной свободной поверхностной энергией. В этих системах, в соответствии со вторым началом термодинамики, самопроизвольно могут протекать только процессы, связанные с уменьшением свободной энергии и, следовательно, с уменьшением свободной поверхностной энергии. Чем больше значение а, тем интенсивнее протекают эти процессы. Уменьшение свободной энергии, как видно из уравнения А = аЗ, может происходить либо за счет уменьшения поверхности 3, либо за счет уменьшения поверхностного натяжения ст. Уменьшение поверхности происходит, например, при коалесценции капель или при слипании частиц, приводящем к образованию компактного коагулюма. Образование же коагуляционных или конденсационных структур сопровождается снижением поверхностного натяжения вблизи мест контакта из-за увеличения межмолекулярного взаимодействия между частицами. Таким образом, процессы коагуляции во всех случаях приводят к снин<ению поверхностной энергии системы. [c.65]


Смотреть страницы где упоминается термин Поверхностные фазы, термодинамика: [c.39]    [c.225]   
Физическая химия поверхностей (1979) -- [ c.66 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхностные термодинамика



© 2024 chem21.info Реклама на сайте