Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры кальция

    По химическому составу цементы представляют собой главным образом силикаты и алюминаты кальция, т. е. в их состав входят 31 и А1 — химические элементы, особо склонные к образованию гетероцепных полимеров (в основе которых лежат связи 51 — 0—51 и Л1 — О — А1). В зависимости от относительного содержания сили- [c.482]

    Выделение каучука из латекса может осуществляться введением электролитов — хлорида натрия, солей алюминия, хлорида кальция. Однако в связи с образованием нерастворимых и не вымывающихся из полимеров кальциевых солей эмульгатора, замедляющих вулканизацию резиновых смесей, хлорид кальция для коагуляции не применяется. [c.391]


    Подшипник состоит из одного или нескольких древесных вкладышей (рис. 5.18), образующих поверхность трения, облицованных методом литья под давлением термопластичным полимером. Процесс изготовления вкладышей состоит из нарезки березовых заготовок, сушке и последующей пропитки с одновременным уплотнением. Для пропитки используются смеси из масла МС-20 и солей поливалентных металлов жирных кислот, например стеарата цинка, магния, кальция. [c.200]

    Каучук из латекса выделяется в два приема. Сначала к латексу добавляют раствор электролита—хлористый кальций (концентрация 10—12%), который вызывает укрупнение частиц каучука, затем добавляют 10%-ную уксусную кислоту для выделения из него полимера в виде сравнительно мелкой крошки. [c.248]

    Проводя полимеризацию ацетилена совершенно в других условиях, Реппе получил циклические полимеры [20]. Для этого ацетилен нагревают до умеренной температуры под давлением в присутствии катализатора, суспендированного в растворителе. Обычно катализатором служит цианистый никель в присутствии окиси этилена или карбида кальция. В качестве растворителя пользуются тетрагидрофураном. При 60—70° и 20 ата был получен циклооктатетраен QHg с выходом около 70%. [c.291]

    Стеарат лития и кальция (омыление в открытом котле) Рапсовое масло с полимериыми добавками (80 мм-/с при 40°С) Противоокислительная, антикоррозионная, адгезионная (беззольные) [c.263]

    Очистка 2,5- дихлорстирол а. Мономерный 2,5-дихлорстирол освобождают от полимера, образующегося даже при хранении мономера в холодильнике, смешиванием с метиловым спиртом (несколько объемов на объем мономера) при комнатной температуре, в результате чего полимер осаждается, а мономерный 2,5-дихлорстирол растворяется в метиловом спирте. Этот раствор несколько раз встряхивают с 2%-ным водным раствором едкого натра, при этом мономер освобождается от ингибитора н от большей части метилового спирта. 2,5-Дихлорстирол отделяют, промывают несколько раз водой и сушат хлористым кальцием. Очищенный таким образом 2,5-дихлорстирол применяют сразу же после очистки [177, 1781. [c.143]

    Содержание примесей определяется чистотой исходных полимеров, температурой получения СУ и, как правило, не превышает 0,02%. В их состав входят в порядке уменьшения количества железо, ванадий, кальций, кремний, алюминий, марганец, магний. Возможна специальная очистка СУ. [c.496]

    По химическому составу цементы представляют собой главным образом силикаты и алюминаты кальция, т. е. в их состав входят Si и Al — химические элементы, особо склонные к образованию гетероцепных полимеров (в основе которых лежат связи Si—О—Si и А1—О— —А1). В зависимости от относительного содержания силикатов и алюминатов различают силикатный цемент (портланд-цемент) и алюми-натный (глиноземистый). [c.577]


    Определение кальция в полимере [c.322]

    Огромное значение имеет коллоидная химия в земледелии. Почва является сложнейшей коллоидной системой. Размер и форма частиц почвы, наряду с их природой, определяют водопроницаемость и поглотительную способность почвы, которые в свою очередь влияют на урожайность. Пески, обладающие невысокой дисперсностью, легко пропускают воду, высокодисперсные же глины, наоборот, хорошо удерживают влагу. Присутствие щелочей повышает дисперсность и гидрофильность почв. В противоположность этому соли кальция коагулируют почву и понижают ее гидрофильность. На этом основано известкование почвы, применяемое для того, чтобы понизить способность почвы удерживать влагу. В последнее время широко применяются так называемые структурирующие агенты на основе некоторых полимеров, внесение которых в почву устраняет эрозию и придает почве желательные свойства. [c.30]

    Для растворов полимеров характерно влияние на их свойства, особенно на вязкость, малых добавок различных минеральных веществ. Так, например, небольшие примеси солей кальция и других электролитов очень сильно повышают вязкость растворов нитроцеллюлозы, ацетилцеллюлозы и л<ела-тина. [c.222]

    В различных коллоидных системах и растворах полимеров минимальная концентрация геле- и студнеобразования зависит от природы дисперсной фазы. Так, глютин застудневает при 5 /о-ной концентрации, золь кремневой кислоты — при 3—6%-ном содержании 5102, агар принимает студнеобразное строение при 0,1—0,2%-ной концентрации, а германиевокислый кальций дает гель при содержании воды 99,935%. Понятно, что эти концентрации для различных систем могут меняться в зависимости от способа приготовления золя или раствора полимера, его чистоты и ряда других условий, но основной принцип зависимости желатинирования и гелеобразования от концентрации остается неизменным. [c.228]

    В последнее время стали применяться новые органические наполнители лигнин, высокополимерные вещества —феноло-формальдегидные смолы, резорцино-формальдегидные смолы, полимеры стирола, а также новые минеральные наполнители —силикаты магния, кальция и др. [c.148]

    В условиях повышенной солености пластовых вод и содержания солей кальция и магния водные растворы наиболее доступных полимеров становятся неустойчивыми, нарушается их структура и пропадает эффект загущения воды, а более устойчивые полимеры биологического происхождения пока практически недоступны. [c.49]

    Второе ограничение в количестве кальций-цианамида, применяемом на тонну смешанного товара, происходит вследствие того, что, в случае употребления больших количеств его, может образоваться дициандиамид, полимер цианамида. Это соединение нежелательно с точки зрения агрикультуры, так как не имеет значения для питания растений и в больших количествах является ядом для почвенных бактерий, если присутствует. [c.95]

    Одновременно были проведены разведочные опыты по исследованию каталитической активности полихелатов, синтезированных в той же лаборатории на основе лигандов хинизарина 4,4 -бис-(ацетоацетил)-дифенил метана, 4,4 -бис-(ацетоацетил)-фенилена и др. (табл. 3). Полихелаты кобальта на основе 4,4 -бис-(ацетоацетил)-фенилена — терефталидиацетофенона имеют необычно высокую для кобальта активность. Полихелаты цинка и в этих структурах каталитически неактивны. Полимеры кальция, бериллия, магния, не исследовавшиеся ранее, также каталитически неактивны. [c.222]

    В лабораторных условиях омыление аллилхлорида целесообразно осуществлять с применением водного раствора гидроокиси кальция в автоклаве с мешалкой при 150 °С. В промышленности (рис. 47) омыление проводится 5—10% раствором едкого натра при 150 °С под давлением 13—14 кгс/см [8, 47, 48]. В этих условиях выход достигает 85—95%. Побочные продукты — это в основном простой диаллиловый эфир (5—10%), а также ненрореагировавшие хлоро-прены и высококипящие полимеры аллилового спирта и пропионового альдегида. Количество побочных продуктов можно уменьшить, [c.189]

    По первому методу в производственных условиях проводят коагуляцию бутадиен-нитрильных карбоксилсодержащих латексов, по второму — бутадиен-стирольных. Повыщение содержания метакриловой кислоты в сополимере приводит к значительному снижению расхода электролита на коагуляцию. Это указывает на возможность уменьшения высокополярными полимерами с карбоксильными группами агрегативной устойчивости латексов, стабилизованных поверхностно-активными веществами типа RSOзNa. Этот прием — введение незначительных количеств (до 0,37о) водорастворимых полимеров с карбоксильными группами позволяет значительно снизить устойчивость латексов типа СКС-30-1,25, стабилизованных алкилсульфонатом натрия, к действию электролитов и обеспечить коагуляцию солями одновалентных металлов (МаС ) взамен хлорида кальция. [c.399]

    Растворы технического полиакриламида и других полимеров в воде проявляют свойства полиэлектролитов, поэтому их вязкость зависит от наличия низкомолекулярных электролитов. Соли, имеющиеся в растворителе, в частности хлорное железо, хлористый кальций и хлористый натрий, как правило, заметно снижают вязкость (рис. 51, 52, 53). Указанные соли и их ионы в закачивае.мые растворы попадают из разных источников, например, ионы железа — на стадии приготовления полимерного рас- [c.112]


    Полиакрилонитрил представляет собой порошок белого цвета или аморфную массу, легко растираемую в порошок. В отличие от других акриловых полимеров полиакрилонитрил не растворяется в обычных растворителях. Он растворяется в диметил-формамиде и концентрированных растворах некоторых неорганических солей — хлорида цинка, рода-нидов натрия и кальция, бромида лития и др. Полинак имеет относительно высокую теплостойкость. При нагревании в атмосфере азота до 200 °С свойства полиакрилонитрила не изменяются, при 220— 230 °С он размягчается и одновременно разлагается с выделением аммиака, а при 270 °С — с выделением цианистого водорода. В случае продолжительного нагревания при более низких температурах (до 100 °С) изменяется окраска полимера, уменьшается его растворимость. [c.47]

    Полимеризация проводится в среде уайт-спири-та, непрерывно поступающего из сборника 8 в количестве, необходимом для получения пульпы с 10—12%-ной концентрацией полимера. В качестве катализатора применяется раствор стеарата кальция в уайт-спирите, который поступает из емкости 9. [c.49]

    Повышение эффективности деэмульгаторов может быть достигнуто и при совместном применении их с высокомолекулярными полиэлектролитами, которые увеличивают растворимость в воде солей кальция, магния и способствуют пептизации механических примесей. Полиэлектролитами являются полимеры с молекулярной массой от 5000 до нескольких миллионов. Использование смеси неионогенных деэмульгаторов с полиакриламидом при обезвоживании нефтей на промыслах Башкирии позволило достигнуть глубокой очистки нефти от воды и механических пр месей [105]. [c.130]

    По своему химическому характеру диспергенты делятся па зольные и беззольные. Первые содержат в своем составе металлы в виде солей нефтяных сульфокислот (сульфонаты кальция или бария) или нафтеновых кислот. К незольным диспергирующим присадкам относятся алифатические алкила-мипы, а также так называемые полярные полимеры, представляющие продукты совместной полимеризации двух (или трех) мономеров, из которых один — носитель активных свойств присадки и содержит полярную группу (азотистое основание), а другой — неполярное соединение, являющееся олеофилыюй частью присадки, обеспечивающей ее растворимость в топливе. Третий мономер, если он прпсутствует, не выполняет дополнительных функций и служит удлинителем цепи сополимера. [c.324]

    Проектная схема получения присадки включает следующие стадии сульфирование фенола серной кислотой с целью получения катализатора алкилирования алкилирование фенола полимер-дистиллятом в присутствии продуктов сульфирования, которые остаются в готввой присадке в виде алкилсульфонатов кальция нейтрализацию продуктов алкилирования гидроокисью кальция удаление из продуктов реакции воды и полимер-дистиллята конден-с цию алкилфенолята кальция и алкилфенола в щелочной ореде водным раствором формальдегида отделение механических примесей и сушку присадки. [c.322]

    Для полимерных растворов характерны также повышение устойчивости склонных к обвалам горных пород, избирательная гидро-фобизация, флокуляция частиц шлама, что облегчает удаление его из раствора в очистных устройствах. Следует, однако, иметь в виду, что акриловые полимеры неустойчивы при взаимодействии с солями кальция и магния, высаливаются и теряют эффективность. [c.52]

    Химические реагенты на основе акршовых полимеров, биополимеры предназначены для снижения фильтрации средне- и высокоминерализованных глинистых растворов в широком интервале температур. Так, метас вводится в раствор в концентрации 0,5-1,5%. Он применяется для уменьшения фильтрации при температурах до 180-200°С. Вязкость растворов, обработанных этим реагентом, с увеличением содержания хлористого натрия снижается. Наиболее эффективны реагенты при pH 9-12. В присутствии солей кальция эффективность их резко снижается, поэтому рекомендуется использовать одновременно специальные реагенты, связывающие ионы кальция. [c.56]

    Н. Н. Серб-Сербиной, Э. Г. Кистера и Т. П. Губаревой установлено, что гуматы с низкими степенями кальцинирования представляют гидрофильные полуколлоидные системы. Проведенные М. И. Липкесом исследования механизма известкования глинистых суспензий показали, что специфический характер адсорбции извести (особенно при высоких температурах) позволяет регулировать концентрацию ионов кальция в их фильтратах, поддерживая на определенном уровне соотношение ионов натрия и кальция в гуматах. Ввод в раствор добавок щелочи (0,25—0,50%) ускоряет процесс обмена ионов кальция на натрий, в обменном комплексе глин, уменьшая тем самым количество кальция в гуматах. Переход гуматов в растворимое состояние улучшает стабилизирующие свойства УЩР, а дополнительное кальцинирование твердой фазы повышает ингибирующие свойства раствора. Видимо, этим можно объяснить и действие акриловых полимеров при стабилизации известковых растворов. [c.181]

    При комнатной температуре поливинилфторид труднораство-рим, при нагревании он растворяется в диоксане, циклогексане, хлорбензоле и вновь осаждается по охлаждении растнора. Молекулярный вес полимера составляет 23 000 500, удельный вес равен 1,3 г слг температура размягчения 170°. При температуре выше 190° полимер начинает темнеть в результате частичной термической деструкции. Потемнение можно затормозить добавлением в полимер стеарата кальция или окиси магния. [c.255]

    Полимеры окиси этилена молекулярного веса 2 ООО ООО—. 3 ООО ООО МОЖ1ГО получить методом аииошюй полимеризации в присутствии углекислого стронция, бария или кальция. Высокомолекулярный полиоксиэтилен кристалличен, температура его плавлегтия составляет 65 . Полимер растворим в воде, поэтому его применяют в качестве эмульгатора и загустителя. [c.405]

    Применение используется для многочисленных синтезов, получения красителей, ПАВ, присадок для топлив, дубителей. Является антиокисли-телем, антисептиком (в том числе и для древесины), используется для получения фенолальдегидных полимеров качественного и количественного определения свободного оксида кальция в цементе. [c.99]

    Сульфитно-спиртовая барда представляет собой в основном кальциевые соли лигносульфоновых кислот — лигносульфонаты кальция. Лигнин — это природный полимер, содержащийся в древесине. Лиг-носульфоновые кислоты образуются при сульфировании лигнина. Если лигниногруппу обозначить через К, то формула лигносульфоната кальция изображается так [(К50з)2Са] . [c.168]

    В настоящее время в промышленности синтетического каучука полимеризация изопрена и бутадиена в основном осуществляется на комплексных металлорганических катализаторах на основе алкилалюминия и галогенидов титана, характерной особенностью которых является чрезвычайно высокая чувствительность к примесям, имеющимся в мономере. Влияние примесей на протекание процесса полимеризации различно. Например, присутствующий в изопрене циклопентадиен полностью дезактивирует катализатор полимеризации, диметилформамид значительно снижает стереорегулярность полимеров, а влага или образующийся вследствие ее взаимодействия с галогенидом титана хлористый водород способствует сшиванию полимерных цепей, образованию твердых хрящей в каучуке. Ниже для примера приведен состав примесей, обнаруженных во фракции Св дегидрирования изоамиленов на кальций-никельфосфатном катализаторе, % (масс.)  [c.164]

    Приборы и реактивы. (Полумикрооборудование.) Пробирки обычные. Стекло часовое. Чашки фарфоровые. Водяная баня. Стеклянные палочки. Щипцы тигельные. Железная пластинка. Шпатель. Медь металлическая (проволочная сетка). Ацетат кальция обезвоженный . Фенол (кристаллический). Спирт метиловый. Спирт этиловый. Ацетальдегид. Паральдегнд (полимер ацетальдегида). Ацетон. Бензальдегид. Растворы гидроксида натрня (0,5 п.), аммиака (25%-ный, 1%-ный), серной кислоты (пл. 1,84 г см и 2 н.), перманганата калия (0,5 н.), дихромата калия (0,5 н.), нитрата серебра (2%-вый), сульфата меди (1 н.), бромная вода. [c.241]

    В результате проведенных работ были созданы новые технологии, основанные на гетерогенно-каталитическом окислении D-глюкозы до D-глюконовой кислоты и этиленгликоля до гликолевой кислоты. Технология окисления D-глюкозы обеспечивает выход D-глюконовой кислоты (полупродукта синтеза глюконата кальция и рибофлавина) 90 - 95 % /1/. Высокий выход продукта дает значительный экономический эффект и позволит удовлетворить возрастающие потребности в продукции химико-фармацевтической и пищевой промьшшенности. Техно югия окисления этиленгликоля позволяет получать гликолевую кислоту (мономер для синтеза сополимеров гликолевой и молочной кислот) с выходом 80-90 % /2/. Создание нового процесса позволяет освоить новый, более дешевый и менее дефицитный вид сырья для производства гликолевой кислоты (в настоящее время сырьем для синтеза гликолевой кислоты служит монохлорацетат натрия высокой квалификации). Это позволит полнее удовлетворить потребности в полимерах для производства материалов восстановительной медицины и биоразлагаемых упаковочных материалов. [c.67]

    Жесткий материал, пригодный для изготовления изделий, труб и листов, выпускают под названием винипласт (игелит РСИ, винидур). Прессовать изделия из порошка полимера можно только в стадии его пластичности, которая для полихлорвинила лежит выше температуры начала термической деструкции его, ускоряемой образующимся при этом хлористым водородом. Для предотвращения автокаталитической деструкции во время формования изделий в полихлорвинил вводят стабилизаторы (стеарат кальция, бария или свинца, амины) в количестве не более 4—5%. Эти вещества соединяются с выделяющимся хлористым водородом, снижая на 65—80 мин. скорость термической деструкции (нри 165—170 ), и позволяют за этот период времени отформовать изделие. [c.796]

    Реакции смолообразования, нриводящне к осаждению полимеров, можно использовать для очистки сточных вод, содержащих фенол, его форполимеры и формальдег ид. Для этого к сточным водам добавляют серную кислоту и нроцесс очистки ведут ири высокой температуре. 13 качестве осаднтеля рекомендуется применять хлорид железа (III) нлн сульфат алюминия. В большинстве случаев осадки сжигают. На предприятиях, изготовляющих фанеру, древесностружечные и древесноволокнистые плиты, сточные воды обычно подкисляют сульфатом алюминия, доводя pH до 4. С помощью этого метода смолы почти полностью переходят в осадок, который легко отфильтровать особенно в тех случаях, когда осаждение проводят при повышеппых температурах. После этого воду необходимо нейтрализовать гашеной известью (pH = 6,5— 8,0), а образовавшийся сульфат кальция отфильтровать. [c.88]

    Недавно был получен полиэтиленоксид с молекулярным весом порядка нескольких миллионов [4, 32, 56]. Штаудингер и Ломан в 1933 г. установили, что окислы и карбонаты стронция и кальция и т. п. являются ката-пизаторамн получения полиэтиленоксидов. Однако скорость полимеризации была очень низкой, и некоторые их эксперименты продолжались около 2 лет. Было установлено, что специально приготовленный карбонат стронция может вызвать весьма быструю полимеризацию очищенной окиси этилена с образованием высокомолекулярного полимера. Необходимо, чтобы применяемый карбонат стронция совершеппо не содержал посторонних ионов. Например, нитрат, хлорат, бисульфат и другие ионы в самых незначительных количествах полностью ингибнруют реакцию полимеризации. В то же время оказалось, что для эффективной полимеризации окиси этилена желательно присутствие воды в количестве ис менее 0,5%- [c.301]


Смотреть страницы где упоминается термин Полимеры кальция: [c.83]    [c.255]    [c.347]    [c.163]    [c.184]    [c.226]    [c.349]    [c.233]    [c.186]    [c.55]    [c.205]    [c.431]    [c.189]   
Прогресс полимерной химии (1965) -- [ c.337 ]

Прогресс полимерной химии (1965) -- [ c.337 ]




ПОИСК







© 2025 chem21.info Реклама на сайте