Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Максимумы полярографические подавление

    При повышении концентрации адсорбирующегося иа электроде вещества прогибы на полярографических кривых увеличиваются до тех пор, пока ток не достигает величины нормального предельного тока максимум остается подавленным вплоть до потенциала десорбции. Зависимость тока максимума от логарифма концентрации поверхностноактивного вещества имеет З-образную форму следовательно, наибольшее изменение высоты максимума при добавлении в раствор поверхностноактивного вещества наблюдается тогда, когда максимум подавлен наполовину. [c.424]


    Подавление максимумов. Для подавления максимумов на полярографических волнах применяют поверхностноактивные вещества, например 0,2—0,5%-ный раствор желатина или клея, метиловый красный и т. п. Следует обращать внимание на то, чтобы вещества, подавляющие максимум, сами не восстанавливались. [c.433]

    Поверхностно-активные вещества, как, например, отрицательно заряженные гидрофильные коллоиды, типа белков (желатины) или красителей кислого характера, даже при очень низкой концентрации обладают способностью подавлять кислородные полярографические максимумы. Степень подавления максимума, как правило, пропорциональна концентрации поверхностно-активного вещества. Это свойство было использовано в полярографии для определения поверхностно-активных веществ, не обладающих полярографически активными группировками. На рис. 29 изображено подавление кислородного максимума добавками раствора желатины. [c.53]

    Наличие максимумов осложняет полярографический анализ. Поэтому следует проводить измерения в условиях, когда максимумы подавлены. Адсорбционный способ подавления максимумов достигается введением в раствор поверхностно-активных веществ. Для этого часто используют желатину. Если применяются органические вещества, которые адсорбируются в узкой области потенциалов, а потенциал полуволны восстанавливающегося вещества лежит вблизи п. и. 3., то при десорбции органического вещества в условиях максимумов 2-го рода можно наблюдать ложную полярографическую волну. Помимо адсорбционного метода для подавления максимумов 2-го рода следует уменьшать радиус капилляра и высоту ртутного столба. Особенно эффективно действует уменьшение радиуса капилляра, поскольку, согласно уравнению Пуазейля, скорость вытекания ртути из капилляра пропорциональна радиусу в четвертой степени. [c.196]

    Наличие максимумов осложняет полярографический анализ. Поэтому следует проводить измерения в условиях, когда максимумы подавлены. Адсорбционный способ подавления максимумов достигается введением в раствор поверхностно-активных веществ. Для этого часто используют желатину. Если применяются органические вещества, которые адсорбируются в узкой области потенциалов, а потенциал полуволны восстанавливающегося вещества лежит вблизи т. н. з., то при десорбции органического вещества можно наблюдать ложную полярографическую волну. [c.208]


    Первые два из них применимы только к жидким металлам, из которых изготовляют капающий электрод. В этих условиях адсорбция органических веществ может быть изучена по подавлению полярографических максимумов и по изменению тока заряжения, текущего на капельный электрод. Практически эти методы применялись лишь для ртутного электрода. [c.36]

    Добавка желатина необходима для подавления полярографических максимумов тока, которые связаны с тангенциальными движениями поверхности ртутной капли. [c.108]

    Оценить полярографическую кривую при наличии максимума невозможно. Максимум можно полностью подавить добавлением поверхностноактивных веществ и получить при этом нормальный диффузионный ток. Для подавления максимумов применяют желатину, высокомолекулярные кислоты, спирты, красители, смачивающие средства, производные целлю- [c.128]

    Метод основан на свойстве растворенных поверхностно-активных макромолекул полистирола адсорбироваться на поверхности ртутной капли и уменьшать величину полярографического максимума кислорода. Полярографический максимум получают на фоне 0,1 н. раствора К1 в бинарном растворителе бензол—метанол (1 3). В смеси бензол—метанол растворяется только ограниченное число молекул полистирола определенной молекулярной массы, остальная часть полимера выпадает в осадок. Растворенный полимер, адсорбируясь на поверхности ртути капельного электрода, уменьшает полярографический максимум. Согласно методике в электролитическую ячейку при измерениях вводят одинаковое количество полимера, поэтому при переходе от образцов с большей молекулярной массой к образцам с меньшей молекулярной массой в осадок выпадает все меньшая часть полимера. При этом концентрация полимера в растворе увеличивается, и степень подавления максимума возрастает. [c.238]

    Как уже отмечалось, степень подавления полярографических % максимумов зависит от концентра- ции ПАВ. Учитывая это, а также различную растворимость отдельных фракций полимера с различными молекулярными массами в ограниченно растворяющей полимер системе растворителей, мы разработали метод определения молекулярных масс некоторых полимеров, ограниченно растворяющихся в бензол-метанольном растворе В этой смеси растворяется только ограниченное число молекул исследуемого полимера определенной молекулярной массы, остальная его часть выпадает в осадок. Оставшиеся в растворе молекулы полимера, адсорбируясь на поверхности ртути, оказывают подавляющее действие на полярографический максимум на волне кислорода. Так как, согласно предлагаемой нами методике, каждый раз в электролизер прибавляется одинаковое количество полимера, то при переходе к фракциям с меньшей молекулярной массой в осадок выпадает все меньшая часть полимера. Таким образом, концентрация полимера в растворе увеличивается, что и увеличивает степень подавления максимума. [c.228]

    Б случае полиметилметакрилата наблюдалось увеличение степени подавления полярографического максимума с возрастанием дозы облучения, что связано с разрывом полимерных цепей полиметилметакрилата. Такие процессы обычно сопровождаются снижением молекулярной массы полимера, образованием концевых функциональных групп. Снижение молекулярной массы полиметилметакрилата в процессе облучения было подтверждено вискозиметрическими измерениями. В частности, при увеличении дозы у-облучения в интервале 0,8—10 Мрад молекулярная масса (средняя) полиметилметакрилата снижалась более чем в 10 раз. Аналогичный характер изменений наблюдался при облучении полистирола и полиметилметакрилата УФ-светом. Указанные процессы оказывают определенное (отрицательное) влияние на эффективность пластмассовых сцинтилляторов при их использовании в качестве датчиков радиоактивных 1 ультрафиолетовых излучений. [c.234]

    Щелочноземельные металлы восстанавливаются с большим трудом на ртутном капельном электроде. Потенциал полуволны катионов этих металлов находится около —2 в. Хорошо выраженные волны дают Зг, Ва и Иа. Кальций восстанавливается на фоне растворов солей тетраметиламмония (i l, = —2,2 в), причем волна сильно искажается максимумом, не поддающимся подавлению обычными способами [271]. Поэтому прямые методы полярографического определения кальция малонадежны, хотя по ним имеется довольно большая библиография. [c.104]

    Добавление небольшого количества желатины вызывает уменьшение тока на первой капле приблизительно на 6%, хотя форма кривой при этом не меняется. Форма i — -кривой на последующих каплях в присутствии желатины практически такая же, как и у кривой на первой капле. Таким образом, добавление желатины в случае последующих капель вызывает увеличение тока в начале роста капли и уменьшение его в конце жизни капли. Однако если рассматривать площадь под i— -кривыми, то легко видеть, что в случае последующих капель эти два эффекта практически взаимно компенсируются (ср. кривые 2 и 4 на рис. 41) поэтому добавление к раствору желатины почти не влияет на средний ток на рядовых каплях. Из этих опытов следует важный для аналитической практики вывод добавление небольшого количества желатины (приблизительно до 0,01%), которое способствует подавлению максимума на полярографических кривых, не влияет на высоту волны. [c.92]


    Из приведенного обзора следует, что, изучая влияние адсорбции иа электрохимические процессы, можно сравнительно легко получить некоторые адсорбционные параметры, а также косвенно проследить изменение свойств двойного электрического слоя. Можно ожидать, что по накоплении большего экспериментального материала удастся выяснить особенности строения адсорбированной пленки. Очевидно, что для полярографической практики это имеет чрезвычайно большое значение, так как поверхностноактивные вещества используются для подавления максимумов первого и второго рода (см. гл. XIX) природа и концентрация поверхностноактивного вещества должны быть такими, чтобы оно не влияло на электрохимический процесс. Необходимо также отметить, что при сравнении и оценке результатов, полученных в различных индифферентных электролитах, следует принимать во внимание возможность адсорбции компонентов индифферентного электролита. [c.312]

    Присутствие в растворе поверхностноактивных веществ влияет не только на максимумы первого рода, но и на максимумы второго рода. Так как максимумы второго рода появляются на полярографических кривых в широкой области потенциалов, то для их подавления целесообразно применять различные по природе поверхностноактивные вещества. Крюкова [86] указала на прямую связь между электрокапиллярными кривыми и максимумами второго рода (рис. 219). При добавлении к раствору поверхностноактивного вещества на полярографической кривой с максимумом второго рода возникает прогиб при потенциалах, при которых это вещество адсорбируется на [c.424]

    Кривые соответствуют полярографическим волнам стрелка.ми указаны направление и интенсивность движения раствора. Максимум второго рода частично подавлен, так как растворы очищались не очень тщательно [77]. [c.429]

    Широкое распространение получил полярографический адсорбционный -анализ при контроле чистоты вод [47, 88, 98—107] и в сахароварении при очистке сахара [108—115]. На основании подавляющего действия можно отличать синтезированные вещества от веществ, образующихся при протекании биологического процесса [116—120]. С помощью полярографических максимумов некоторые авторы [121— 126] изучали поверхностную активность жидкостей биологического происхождения. Многочисленное применение получили полярографические максимумы в химии и производстве полимеров [127—133], масел [134, 135] и фотографических желатин [136— 140]. Подавление максимумов используется также при анализе продуктов литания [141, 142], ири анализе почв [143] и при решении вопросов физио- [c.432]

    Весьма высокой чувствительностью обладают методы, основанные на подавлении полярографических максимумов правда, эти методы пригодны лишь для качественной оценки адсорбируемости органических веществ. [c.67]

    Порядок выполнения работы. Для анализа готовят раствор, состав которого задается преподавателем. С целью подавления полярографических максимумов в раствор добавляют 1—2 мл 0,1%-ного раствора агар-агара или 2%-ного раствора желатина. Для удаления растворенного в воде кислорода. к нейтральным и щелочным растворам добавляют несколько миллилитров свежеприготовленного насыщенного раствора сульфита натрия. Через кислые растворы в течение 20 мин пропускают ток водорода от аппарата Киппа или специального электролизера. [c.365]

    Выполнение определения. Навеску полимера около 1,0 г, взятую с точностью до 0,0002 г, помещают в мерную колбу емкостью 50 жл и растворяют в 10 мл бензола. После растворения полимера в колбу добавляют около 30 мл метанола, 1 г нитрата аммония и 1 л<л раствора метилового красного для подавления максимума на полярографической волне перекиси бензоила. Затем объем раствора доводят метанолом до метки, закрывают пробкой, перемешивают и оставляют до полного осаждения полимера. В электролизер помещают 10 мл 264 [c.264]

    Полярографическому определению урана в различных неорганических кислотах в качестве электролита посвящены также исследования С. И. Синяковой [245] и Лгуаш да Сильва[302]. Измерения проводились с хлоридом, сульфатом, ацетатом и нитратом уранила, причем фоном служила обычно кислота с тем же анионом, что и взятая соль уранила. Через растворы продували азот или водород, а для подавления максимума на полярограммах прибавляли тимол. Во всех случаях найдена прямолинейная зависимость между концентрацией урана и величиной диффузионного тока [245]. [c.176]

    Хайт [8] применил солянокислый гидроксиламин в сочетании с тартратом натрия в качестве фона при полярографическом определении урана и нашел, что Мо и V не мешают при содержании эквивалентного объема 10%-ного тартрата натрия. Оказывают влияние Си и РЬ. Волна Си + сливается с волной урана при pH 2,7, а волна свинца — при pH 5. Для подавления максимума применялась желатина в концентрации 1,5-10""%. Однако в рудах автор определял уран без отделения Си и РЬ, применяя электролит, состоящий из 1 N ЫНзОН-НС и 59о-ного тартрата натрия (или цитрата аммония) с pH 4—5,5. Моррисон и Хайт [8] определяли следы урана на этом фоне после отделения его от Си, Ре, N1 и Сг эфирной экстракцией. [c.185]

    Другой полярографический метод определения небольших количеств урана в минеральном сырье недавно предложен Шульцек и др. [945]. Он основан на отделении урана в виде диураната аммония в присутствии комплексона III и тартрата (для маскировки остальных элементов) на колонке с силикагелем с последующим полярографическим определением урана после элюирования его раствором соляной кислоты, В качестве электролита — фона применяют раствор 0,5 М НС 104+0,5 М НС1, содержащий тимол в концентрации Ы0 М (для подавления максимума). На этом фоне потенциал полуволны U0 равен —0,25 в (отн. нас. к. э.), [c.192]

    Особенно эффективно определение по полярографическим максимумам различных красителей и высокомолекулярных веществ, адсорбционная способность которых связана, главным образом, с большим размером их молекул. В настоящее время имеется значительное число работ по применению полярографических максимумов для анализа и исследования высокомолекулярных веществ. В частности, имеется ряд работ по использованию полярографических максимумов для контроля кинетики образования полимеров [83], а также для определения растворимости полимеров в растворителях по изменению концентрации высокомолекулярного соединения в растворе, определяемой с помощью полярографических максимумов. Герачек и Малкус использовали, например, эффект подавления кислородных максимумов при анализе водных экстрактов синтетических смол для характеристики экстрагирования растворимых продуктов [84]. [c.68]

    Наряду с поливиниловым спиртом, возможность применения полярографических максимумов 2-го рода для определения молекулярных масс полимеров была показана также на примере ацетатфталатцеллюлозы [163, с. 92]. Для этого полимера было предложено [325] использовать максимумы 1-го рода на волне кислорода. Однако, как видно из кривой на рис. 7.7, построенной по данным [163] значительной разницы в степени подавления кислородного максимума 1-го рода различными фракциями ацетатфталатцеллюлозы не наблюдается, что, по-видимому, связано с незначительной адсорбируемостью этого полимера в области потенциалов кислородного максимума. [c.231]

    По Лингейну [863], наилучший индиферентный электролит для одновременного полярографического определения меди, висмута, свинца и кадмия содержит 0,4 моля виннокислого натрия, 0,1 моля кислого виннокислого натрия и не больше чем 0,005% желатины для подавления максимумов (pH 4,5). Концентрация жеТтатины в растворе очень сильно влияет на характер волны висмута. В отсутствие желатины волна [c.298]

    Однако на фоне ЫС1, и2804 и иодида тетраэтиламмония (С2Н5)4Ш в кислой среде (pH 2—4) получается хорошо выраженная полярографическая волна бериллия при этом диффузионный ток прямо пропорционален концентрации бериллия [427, 429, 430]. Потенциал полуволны бериллия Elf = —1,85 в. Характер полярографической кривой бериллия представлен на рис. 21 [430]. В 0,1 М растворе ЫС1 (в присутствии агар-агара для подавления полярографического максимума на кривой) прямая пропорциональная зависимость между <1 и концентрацией бериллия наблюдается для б - 10 —0,8 Ю моль Ве/л (pH 3,5— [c.87]

    Определенный объем щелочного раствора брома добавляют к 5%-ному раствору фенола, взятому в расчете 1—2 мл на 2—5 мМ брома в различных состояниях окисления, и через 5—10 мин. приливают 0,1 %-ный раствор желатина до 0,002%-ной концентрации (для подавления максимума), а также NaOH до концентрации 0,1 iV и не достающее до метки мерной колбы количество воды. Объем пробы и конечного раствора подбирают таким образом, чтобы концентрация бромит-ионов составляла 5 10 —10 г-экв/л. Часть приготовлен-ного раствора переносят в полярографическую ячейку и после пропускания инертного газа полярографируют в интервале потенциала РКЭ от —0,2 до —1,4 в отн. нас. к.э. Содержание бромита определяют по калибровочному графику, полученному нри той же концентрации NaOH. [c.132]

    Другой полярографический метод определения небольших количеств урана в минеральном сырье недавно предложен Шульцек и др. [945]. Он основан на отделении урана в виде диураната аммония в присутствии комплексона III и тартрата (для маскировки остальных элементов) на колонке с силикагелем с последующим полярографическим определением урана после элюирования его раствором соляной кислоты. В качестве электролита — фона применяют раствор 0,5 М H 104 fO,5 М НС1, содержащий тимол в концентрации ЫО М (для подавления максимума). На этом фоне потенциал полуволны иО равен —0,25 в (отн. нас. к. э.), и диффузионный ток прямо пропорционален концентрации урана (в интервале концентраций 4-10 —2-10" М). Относительная ошибка для десятых долей миллиграмма урана колеблется от 1,5до6% и только в присутствии свинца дострП ает 10,5%. Олово (IV) необходимо до анализа удалить из раствора многократным выпариванием с НВг и Вгд, так как оно мешает определению урана в указанных условиях. [c.192]

    Многие органические соединения, а также их комплексы с переходными элементами снижают перенапряжение водорода на ртутном электроде. В результате возникают каталитические водородные токи, величина которых в строго контролируемых условиях пропорциональна концентрации катализатора — вещества, снижающего перенапряжение водорода. Катализаторами могут быть многие азот- и серосодержащие органические соединения. Несмотря на все перечисленные сложности, полярография пригодна дпя количественного определения многих органических соединений в весьма сложных объектах. Есть и прямые методы определения электроактивных веществ (определяют следы С Н,К02 в анилине), и косвенные методы, основанные, например, на измерении степени подавления полярографических максимумов. Так можно оценивать молекулярные массы продуктов гидролиза крахмала ипи определять степень загрязнения различных вод природными и синтетическими ПАВ. Современные фармакопеи многих развитых стран рекомендуют полярографические методы определения лек хпвенных прещтов — алкалоидов, гормонов, антибиотиков, витаминов. [c.189]

    Для. пояснения рассмотрим пример типичного анализа. Требуется определить количественное содержание примеси кадмия в образце цинка. Для этого образец цинка весом 0,1 г растворяют в соляной кислоте и к нему добавляют необходимое количество желатины для подавления максимумов. Затем раствор разбавляют до определенного объема 1 н. раствором хлористого калия. Небольшую часть готового раствора вводят, в электролизер, а кислород удаляю пропусканием тока азота. Затем снимают предварительную полярограмму раствора при чувствительности гальванометра, равной 1/10 ее максимального значения. Диапазон изменения потенциала можно взять от —0,4 до —0,8 в снимать, всю кривую в данном случае нет необходимости. По этой кривой делают качественное определение кадмия в растворе, т. е. определяют наличие полярографической волны при потенциале —0,64 в. Поскольку потенциал восстановления цинка очень велик, то он не влияет на волну кадмия. Если предварительный анализ показывает наличие кадмия, то из него определяют степень разбавления, необходимую для получения наилучших результатов. Оптимальный диапазон концентрации восстанавливаемых ионов лежит в пределах от 10" до 10 н. Если раствор уже имеет необходимую степень разбавления, то чувствительность гальванометра можно увеличить если же концентрация раствора слишком велика, то алийвотную часть его разбавляют раствором хлористого калия. После этого снимают окончательную кривую. Затем приготавливают эталонный раствор хлористого кадмия, имеющий такую же степень разбавления, и снимают полярограмму этого раствора. Результирующие кривые будут аналогичны представленным на рис. 11.14. По ним определяют величины а для эталонного и анализируемого растворов. Тогда концентрацию С, кадмия при окончательном разбавлении неизвестного раствора можно вычислить из пропорции [c.175]

    Был описан ряд косвенных методов полярографического определения некоторых спиртов и гликолей. Описано полярографическое восстановление аллилового спирта в метаноле, содержащем 0,001 М ацетата ртути(П), О, 1 A4 NaNOg и 0,001 М тимолового синего для подавления максимума [271]. Аллиловый спирт можно также бромировать и определять полярографически в виде дибромпроизводного [221]. [c.377]


Смотреть страницы где упоминается термин Максимумы полярографические подавление: [c.306]    [c.733]    [c.317]    [c.318]    [c.37]    [c.216]    [c.74]    [c.162]    [c.226]    [c.227]    [c.55]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.451 ]




ПОИСК







© 2024 chem21.info Реклама на сайте