Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры молекулярно-массовых характеристик ММР и СММ

    III. 3. МОЛЕКУЛЯРНО-МАССОВЫЕ ХАРАКТЕРИСТИКИ ПОЛИМЕРОВ [c.92]

    При исследовании свойств сополимеров было отмечено, что при одинаковом составе и близких молекулярно-массовых характеристиках некоторые показатели могут существенно различаться. Это объясняется проведением синтеза сополимеров при различных параметрах процесса и применением каталитических систем разного строения, следствием чего может быть различное распределение мономерных звеньев в макромолекулярных цепях сополимеров (разная степень блочности), а также различное содержание сомономера в разных фракциях полимера (разная композиционная неоднородность). Это вызывает различия в кристалличности и плотности и, следовательно, в некоторых эксплуатационных свойствах сополимеров [c.26]


    Регулирование молекулярно-массовых характеристик полимера [c.20]

    Важнейшей областью применения эксклюзионной хроматографии является исследование высокомолекулярных соединений. Применительно к синтетическим полимерам этот метод за короткий срок занял главенствующее положение для определения их молекулярно-массовых характеристик и интенсивно используется для изучения других видов неоднородности. В химии биополимеров эксклюзионную хроматографию широко применяют для фракционирования макромолекул и определения их молекулярной массы. [c.48]

    Максимальную активность катализатор проявляет на поверхности раздела фаз. Благодаря тому, что активность центров на поверхности раздела фаз отличается от активности центров при другом расположении атомов активного компонента на носителе, появляется возможность регулирования молекулярно-массовых характеристик полимера, синтезируемого на катализаторах с такими носителями. [c.185]

    Таким образом, создана теоретическая основа для контролируемого синтеза полимеров с заданными молекулярно-массовыми характеристиками. [c.60]

    Молекулярно-массовые характеристики синтезируемых полимеров зависят от многих факторов, влияющих [c.113]

    Действие на ПЭВД органических жидкостей в значительной степени зависит от температуры. При комнатной температуре ПЭВД в течение длительного времени не растворяется в большом числе органических растворителей. Происходит диффузия и постепенное набухание. Имеется большой экспериментальный материал по этол вопросу. В приложении V приводятся данные по действию на ПЭВД как органических соединений, так и неорганических веществ при комнатной и при повышенной температуре. Эти данные позволяют судить как о характере, так и об интенсивности воздействия и влиянии на это воздействие повышенной температуры. Степень набухания ПЭВД в различных органических жидкостях различна и увеличивается с повышением температуры. При температуре приблизительно 60 °С ПЭВД растворим в ряде растворителей, в первую очередь в галогенуглеводородах, производных алифатических и ароматических углеводородов. Действие ПАВ на ПЭВД используется для испытания полимера на стойкость к растрескиванию под напряжением. На стойкость к растрескиванию влияют молекулярно-массовые характеристики полимера. Так, с увеличением молекулярной массы, а также с сужением ММР стойкость ПЭВД к растрескиванию падает. Присутствие низкомолекулярных фракций, наоборот, способствует росту этого показателя. [c.163]


    Возникновение или отсутствие градиента температур в быстрых процессах полимеризации, его изменение при переходе от одного макроскопического режима к другому (типа А, Б, В) оказывают заметное влияние на молекулярно-массовые характеристики образующегося полимера (см. табл. 3.4). Это связано с тем, что при малых значениях К температура в зоне реакции (при макроскопическом режиме типа А) распределена относительно равномерно, в то время как возникновение градиента температур в виде факела по координатам реакционного объема (макроскопические режимы Б и В) при радиусах выше некоторого критического значения К р (под К р понимается значение К, обусловливающее переход из режима типа А в режим типа Б) ведет к уширению ММР за счет накопления доли низкомолекулярной фракции. Следует иметь в виду, что ММР полимерного продукта уширяется по мере удаления от точки ввода катализатора вдоль оси лг, что является следствием увеличения температуры и образования макромолекул при различных температурных условиях вдоль оси х. Расчеты адекватно отражают тенденцию влияния геометрических размеров реакторов при проведении жидкофазных весьма быстрых процессов полимеризации на молекулярно-массовые характеристики образующихся полимерных продуктов и согласуются с экспериментом (табл. 3.4) [9 . [c.146]

    Таким образом, на примере весьма быстрой жидкофазной электрофильной полимеризации ИБ четко показано влияние геометрии реакционного объема на молекулярно-массовые характеристики образующегося полимера и возможность перехода от одного макрокинетического режима к другому (режимы А, Б, В) за счет изменения радиуса К зоны реакции. При увеличении радиуса К ши- [c.146]

    Переход от режима квазиидеального вытеснения (тип А) к факельному (типы Б и В) сопровождается снижением конверсии мономера и ухудшением молекулярно-массовых характеристик полимера (снижением Р и уширением ММР). Критический радиус К р, определяющий переход от факельного режима работы реактора (типы Б и В) к макроскопическому режиму вытеснения в турбулентных вихрях (тип А), зависит от соотношения процессов диффузии мономера (Д) и гибели активных центров А (1,), т.е. определяется соотношением характерных времен процессов смешения и химической реакции т . Из соотношения размерности К р представляется в виде [10]  [c.147]

    С увеличением радиуса реакционной зоны эффект изменения молекулярно-массовых характеристик полимера становится более ощутимым (рис. 3.21), при этом для модели I Р с увеличением а изменяется незначительно, а /Р  [c.157]

    Таким образом, в общем случае внутренний теплосъем за счет кипения компонентов реакционной смеси является достаточно эффективным способом термостатирования химических реакций. Ограничение температуры реакционной смеси в процессе быстрой полимеризации в жидкой фазе за счет кипения части мономера или растворителя по-разному влияет на протекание реакции в зависимости от радиуса реакционной зоны К. В области малых радиусов (К<К р), когда формируется плоский фронт реакции и температура в зоне реакции относительно равномерно распределена по радиусу реакционной зоны К, ход процесса и молекулярно-массовые характеристики образующегося полимера в определенном интервале температур перестают зависеть от исходной температуры сырья (рис. 3.27) [2Г. [c.163]

    Оптимизация молекулярно-массовых характеристик полимеров в быстрых. .. 167 [c.167]

    Оптимизация молекулярно-массовых характеристик полимеров в БЫСТРЫХ процессах полимеризации изобутилена. Зонная модель [c.167]

    МолЕКУлярно-МАССОвыЕ характеристики полимера, образующегося в [c.172]

    Молекулярная неоднородность является следствием статистического характера образования полимеров, и распределение его макромолекул по молекулярной массе зависит от метода синтеза полимеров - аддиционной полимеризации (полимеризации) или конденсационной полимеризации (поликонденсации). В промышленности для контроля молекулярно-массовых характеристик используют различные технологические приемы (см. часть I), а при биосинтезе природных полимеров в некоторых случаях достигается даже монодисперсность. [c.170]

    Появление разветвлений отражается на химической структуре и топологии макромолекул, а также на зависящих от этих параметров физико-химических и механических свойствах полиарилатов [23-26]. В работе [22] на примере полиарилата Ф-2 рассмотрено влияние природы растворителей на молекулярно-массовые характеристики и гидродинамические свойства полимеров, получаемых высокотемпературной поликонденсацией. Полимеры, синтезированные в среде дитолилметана (ДТМ), имеют разветвленную структуру и меньшую термическую устойчивость, чем образцы, полученные в а-хлорнафталине. [c.286]

    Через 1 ч из реактора отбирают пробу для определения молекулярно-массовых характеристик полимера методом гель-проникающей хроматографии. Медленно прибавляют в реактор стирол, перегнанный таким же образом, как и первый мономер, но при 30 мм рт. ст., охлаждая реактор снаружи, чтобы поддерживать температуру внутри него 50 °С. Прибавление стирола заканчивают за 20 мин. Далее проводят полимеризацию еще 30 мин. [c.129]

    Каучук СКДК получается методом ионной полимеризации бутадиена в растворе нефраса под действием кобальтосодержащей каталитической системы октаноат кобальта-диизобутилалюминийхлорид-вода. При этом используется специальная технология получения готового каталитического комплекса, обеспечивающего образование однотипных активных центров. Как показывает опыт освоения данного процесса скорость полимеризации, молекулярно-массовые характеристики и, соответственно, свойства полимеров в широких интервалах зависят от многих факторов, особенно от дозировки каталитического комплекса, соотношений компонентов, температуры и т.д. С другой стороны, поведение каталитической системы изучено явно недостаточно. Поэтому для промышленного освоения технологии СКДК целесообразно провести математическое моделирование данного процесса. [c.59]


    Измерение молекулярно-массовых характеристик золь-фракции производится обычными методами, используемыми для полимеров и олигомеров, ж не представляет каких-либо затруднений. Выделение же золь-фракции из полимера, хотя и является весьма простой в экспериментальном плане операцией, требует тщательного анализа условий выделения для получения корректных данных. Это прежде всего касается выбора растворителя и температурных условий экстракции, так как в полимере могут иметься золевые частицы различной сложности, а следовательно, и растворимости. [c.32]

    МОЛЕКУЛЯРНО-МАССОВЫЕ ХАРАКТЕРИСТИКИ ПОЛИМЕРОВ И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ [c.39]

    Поскольку основной причиной, сглаживающей это различие, является размывание вещества в хроматографе, об эффективности хроматографической системы в ГПХ можно судить по степени-искажения молекулярно-массовых характеристик полимера, отыскиваемых без учета приборного уширения. Показано [88], что критерием этого искажения может служить отпошепие коэффициента С линейной калибровочной зависимости [c.131]

    Разработаны и предложены оригинальные схемы роста полимерной цепи в условиях контролируемой радикальной полимеризации виниловых мономеров в условиях металлоорганического катализа. Установлено, что а-метилстирол-хромтрикарбонил позволяет проводить контролируемую радикальную полимеризацию метилметакрилата и некоторых других мономеров в энергетически выгодных режимах, полностью подавляя гель-эффект и целенаправленно регулируя молекулярно-массовые характеристики полимера. Получен гетерогенный катализатор на пенокерамическом носителе ХИПЕК , промотированный продуктами распада ацетилацето-натов Си и Со. [c.17]

    Прежде всего, рассматривается зависимость физико-механических свойств вулканизатов СКДК от молекулярно-массовых характеристик, в том числе, от разветвленности полимера. Определены основные требования к макро — и микроструктуре каучука СКДК. Кроме того, рассмотрены основные зависимости скорости процесса полимеризации, молекулярно-массовых характеристик полимера от конверсии и времени процесса. На основе этих зависимостей и литературных данных разработана, как предварительная, кинетическая схема процесса полимеризации, включающая в себя следующие элементарные стадии процесса полимеризации инициирование, рост цепи, передачу цепи на мономер, передачу цепи на полимер, обрыв цепи. [c.59]

    Такого типа поверхности позволяют выбрать программу подачи катализатора и близкие к оптимальным значения концентраций катализатора, которые следует подавать в каждую из зон для получения полимера с зада шыми (в пределах возможного) молекулярно-массовыми характеристиками. Так, более или менее узкое ММР получается вблизи максимумов Р или в том случае, когда почти весь катализатор подается в первую зону. [c.171]

    Впервые систематизируются научные исследования в области макроскопической модели протекания быстрых процессов олиго- и полимеризации изобутилена. Обсуждаются диффузионная, гидродинамическая и зонная модели. Рассмотрено математическое моделирование процесса полимеризации изобутилена как быстрой химической реакции. Раскрыты основные принципиально новые, в большей мере не имеющие аналогов, закономерности процесса и выявлены три макроскопических типа протекания реакции, прежде всего факельного и квазиидеального вытеснения в турбулентных потоках ( плоский фронт реакции). Рассмотрен нетрадиционный подход к оценке кинетических констант реакции полимеризации изобутилена Кр и К . Детально проанализированы методы регулирования основных молекулярно-массовых характеристик полиизобутилена благодаря изменениям различных факторов в первую очередь не имеющих аналогов в режиме квазиидеального вытеснения в турбулентных потоках, где выявлен ряд критических параметров. Рассмотрено влияние теплосъема как внешнего, так и внутреннего (за счет кипения мономера и/или растворителя). Детальный анализ теплового режима реакции полимеризации изобутилена и его влияния на молекулярную массу и молекулярно-массовое распределение полимера позволили предложить новый метод оценки молекулярно-массовых характеристик с использованием зонной модели. На базе этой модели разработаны принципы регулирования молекулярных масс и молекулярно-массового распределения полиизобутилена в зависимости от числа зон подачи катализатора и его количества, подаваемого в каждую зону. [c.378]

    В экспериментальной части проведены исследования, позволившие выявить факторы, влияющие на выход, строение и молекулярно-массовые характеристики ППК, а также на образование побочного продукта - ПК. Исследованы также регуляторы молек -лярной массы ППК с целью получения полимера с широким диапазоном молекулярно-мзссовьтх характеристик. [c.7]

    Растворимость кардовых полиоксадиазолов позволила впервые исследовать гидродинамические свойства, полидисперсность, молекулярно-массовые характеристики этого типа циклоцепных полимеров [178, 179, 270, 271, 282, 287]. Для кардового полиоксадиазола 4,4 -дифенилфталиддикарбоновой кислоты в ДМАА и ТГФ уравнения Марка-Хаувинка имеют вид [т ] = 7,74-Ю и [т]] = [c.144]

    Это открыло возможность для изучения гидродинамических, реологических, молекулярно-массовых характеристик и других свойств этих полимеров, сведения о которых содержатся в ряде публикаций [1, 3, 9, 33, 48, 59-63, 87, 91, 121-126, 177, 186-193]. Сведения о ММР полифосфазенов неоднозначны. Во многих работах отмечалось широкое ММР этих полимеров [1, 3, 60-62, 121-126, 177]. Так, для полифторалкоксифосфазенов в ряде работ приводились коэффициенты полидисперсности порядка - 7-79 [3, 60-62]. Вместе с тем на примере поли[бис(тетрафтор-пропокси)фосфазена] было показано, что полифторалкоксифосфазены могут получаться и с узким ММР = 1,03 1,39), если их синтез осуществлять в кон- [c.346]

    Как указывалось выше, стабильность водных растворов ПВС в большой степени определяется структурой и молекулярно-массовыми характеристиками полимера. Кроме того, она зависит й от межмолекулярной композиционной неоднородности ПВС. Так, одной из причин, вызывающих старение водных растворов, является присутствие в них незначительного количества малоомы-ленного ПВА, который инициирует процессы кристаллизации в растворе. С целью увеличения сроков хранения растворов полимер промывают метанолом или этанолом [114]. [c.113]

    Взаимодействие полиблочного СПУ с растворителем определяется термодинамическими параметрами взаимодействия компонентов (блоков) как между собой, так и каждого компонента с растворителем [14, 15]. В результате количественного различия в термодинамических параметрах взаимодействия компонентов с общими растворителями образуются ассоциаты макромолекул, которые являются лабильными и их формирование связано с предисто-рией приготовления раствора. В работе [16] установлено, что при одно- и двухстадийном способах получения полиуретана отличаются как кинетические параметры, так и молекулярно-массовые характеристики результирующего продукта. В случае двухстадийного способа получения ПУ степень полимеризации существенно выше. Причина этого явления заключается в том, что присзтствие низкомолекулярных акцепторов протонов препятствует самоассоциации уретанмочевинных жестких сегментов при синтезе полимера [17]. При этом прочностные характеристики полимера могут значительно измениться по сравнению с тем же материалом, полученным без растворителя. Кроме того, использование растворителя при формировании структуры полиуретана дает возможность оказывать влияние на конформационные свойства его макромолекул. Установлено [18], что образцы сеток, полученных из раствора, имеют более простую топологию и меньше зацеплений. Различные растворители могут оказывать различное действие на конечную форму макромолекулы, в результате чего изменяются и механические свойства полимера. Использование полярных растворителей при синтезе полиуретанов, где происходит максимальное разворачивание макромолекулярного клубка, позволяет получать материалы, имеющие удлинение при разрыве более 1000% при достаточно высоких значениях разрывной прочности, достигающей 52 МПа [19, 20]. [c.227]

    Взаимосвязь между молекулярно-массовыми характеристиками и свойствами полимера используется [65] в системе автоматизированного управления процессом эмульсионной полимеризации. В существующих АСУТП выходными параметрами служат показатели пластоэластических свойств (ПЭС) длительные и трудоемкие лабораторные испытания не дают возможности для оперативного контроля процесса полимеризации [66]. Полученная [65] для бутадиен-питрильных каучуков математическая модель связывает ПЭС с параметрами ММР  [c.115]

    Для препаративного фракционирования лигнинов использовали электродиализ, ступенчатое извлечение из древесины, ступенчатое осаждение из растворов, элюирование из хроматографических колонок, а для аналитического фракционирования - ультрацентрифугирование, турбиди-метрическое титрование и эксклюзионную жидкостную хроматографию. При изучении молекулярно-массовых характеристик препаратов лигнина привлекались практически все методы определения молекулярной массы полимеров. [c.413]

    Регулярная 12-лучевая структура гибридного полимера была подтверждена гидродинамическими методами [60] и специальным способом селективной окислительной деструкции фуллеренового ядра в сочетании с хроматографическим анализом [60-62]. В процессе деструкции фуллеренового ядра путем окисления связей С=С системой КМп04-дибензо-18-краун-6 цепи вырезаются по отдельности. Исследование продуктов деструкции позволяет получить информацию не только о молекулярно-массовых характеристиках полимерных цепей, входящих в гибридную макромолекулу, но и оценить их число и местоположение на молекуле фуллерена. [c.208]

    Для улучшения качества полимерных материалов, производимых химической промышленностью, исключительно важно знание их молекулярно-массового распределения. Наиболее подходягцим методом его массового определения является гель-проникающая хроматография. Однако с ее помощью быстрое получение сведений о молекулярно-массовых характеристиках полимеров, синтезируемых в результате некоторого непрерывного серийного процесса, возможно лишь при оптимальном хроматографическом режиме. Поиск этого режима следует начинать с выбора критерия достаточной эффективности хроматографической системы. В основе такого критерия может лежать требование различимости хроматограмм полимерных образцов, отличающихся друг от друга по ММР. [c.131]


Библиография для Полимеры молекулярно-массовых характеристик ММР и СММ: [c.344]   
Смотреть страницы где упоминается термин Полимеры молекулярно-массовых характеристик ММР и СММ: [c.519]    [c.175]    [c.122]    [c.324]    [c.519]    [c.109]   
Хроматография полимеров (1978) -- [ c.206 , c.209 , c.221 , c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Массовая

Молекулярно-массовые характеристики полимеров и методы их определения

Определение молекулярно-массовых характеристик полимеров без коррекции хроматографических данных на приборное уширение (первый уровень интерпретации)

Определение молекулярно-массовых характеристик полимеров с учетом приборного уширения, описываемого функцией Гаусса (второй уровень интерпретации)

Ч асть II. ИССЛЕДОВАНИЕ МОЛЕКУЛЯРНОЙ ГЕТЕРОГЕННОСТИ ПОЛИМЕРОВ ТРАНСПОРТНЫМИ МЕТОДАМИ Молекулярно-массовые характеристики полимеров



© 2025 chem21.info Реклама на сайте