Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амины деструкция

    Деструкция под влиянием химических реагентов (химическая деструкция) может протекать под действием воды, спиртов, кислот, щелочей, аминов, фенолов, аммиака, кислорода и т. д. Наиболее распространенными видами химической деструкции является гидролиз. Например, под влиянием кислоты (кислотный гидролиз) из крахмала можно получать глюкозу  [c.409]


    Пластмассы характеризуются способностью под давлением при нагревании принимать любую форму, после охлаждения и снятия давления форма сохраняется. При массовом производстве изделий одинаковой формы и размеров применение пластмасс обеспечивает высокую производительность труда и снижение стоимости готовых изделий. Полимеры и материалы на их основе чувствительны к действию тепла, света и окислителей, к облучению частицами высокой энергии. Большинство полимеров имеет теплостойкость не выше 100—120°С, исключение составляют фторопласты, полиэфирные и элементорганические полимеры. Под действием света, тепла, окислителей в полимерах могут происходить процессы разрыва макромолекул — деструкция и сшивание макромолекул — структурирование, при которых полимер теряет эластичность и гибкость. Эти явления называются старением полимеров. Чтобы замедлить старение, в полимеры и пластмассы вводят специальные вещества — стабилизаторы (например, замещенные фенолы, ароматические амины и т. п.). [c.338]

    Полипропилен выдерживает действие 98%-ной серной кислоты при температуре 90 в течение 7 час., пе изменяется при 70 в 50%-ной азотной кислоте, не разрушается в концентрированной соляной кислоте и 40%-ном растворе едкого натра. Под влиянием кислорода воздуха полипропилен постепенно окисляется, особенно во время формования изделий при повышенной температуре. Окисление сопровождается возрастанием жесткости, а затем хрупкости материала. Введение в полипропилен антиокислителей (фенолы, амины) стабилизирует свойства полимера, находяш егося в расплавленном состоянии в течение нескольких часов. Длительное солнечное воздействие придает полипропилену хрупкость, ускоряя процесс окислительной деструкции. Введение в полипропилен антиокислителя и сажи позволяет повысить устойчивость полипропилена к световому воздействию. Термическая деструкция полимера наблюдается выше 300.  [c.788]

    Получение аминов деструкцией по Гофману [c.275]

Таблица 189. Получение аминов деструкцией по Гофману Таблица 189. <a href="/info/20641">Получение аминов</a> деструкцией по Гофману
    В первом периоде исследовалась химическая природа отдельных естественных высокомолекулярных соединений. Главным методом исследования при этом служила деструкция, позволившая установить природу простейших составных частей, из которых слагаются молекулы высокомолекулярных соединений. Так было установлено, что крахмал и клетчатка распадаются на молекулы глюкозы, каучук — на молекулы изопрена, белки — на молекулы а-амино-кислот. [c.315]


    Нитроанилины. — Нитрование анилина одной азотной кисло тон не приводит к удовлетворительным результатам. Амин в этих условиях подвергается окислительной деструкции. Во избежание окисления анилин стабилизуют растворением в серной кислоте. Нитро вание в таком растворе про.ходит несколько мягче и приводит в основном к лг-нитроанилину, но с низким выходом, так как амин находится в растворе главным образом в виде ионизованной соли и замещение проходит под влиянием довольно слабой мета-ориентирующей аммониевой группы —МН+. Эта реакция не имеет практического значения, посколь ку л -нитроанилин целесообразнее получать избирательным восстановлением л-динитробензола, протекающим под действием гидросульфида аммония. [c.239]

    Таким образом, было установлено, что при нагревании растворов ПВХ в ДМФ происходит дегидрохлорирование, образуются системы сопряженных двойных связей и возникают поперечные связи между цепями макромолекул. Все процессы взаимосвязаны и ускоряются с увеличением содержания примесей в ДМФ и кислорода воздуха в реакционной среде. При добавлении к растворителю многоосновных кислот, солей металлов и оловоорганических соединений, способных к комплексообразованию с аминами, деструкция растворов ПВХ в ДМФ резко замедляется. [c.247]

    Взаимодействие п-нитрозодифениламина с полиизопреном (получение каучука с аминными группами СКИ-ЗА) протекает, по-видимому, по несколько иному механизму, скорость реакции и деструкция полимера меньше, нет четкой корреляции между молекулярной массой и концентрацией функциональных групп. [c.229]

    Карбоновые кислоты [R = OH, схема (Г.9.21)] в условиях реакции Шмидта дают амин, имеющий на один углеродный атом меньше, чем исходная кислота (ср. с перегруппировкой Курциуса). При этом N-замещенная карбаминовая кислота, соответствующая амиду V в схеме Г. 9.22),-—тот же продукт, который образуется при деструкции по Гофману (Г. 9.19), — немедленно распадается на амин и двуокись углерода. Из замещенных малоновых кислот таким путем можно получать а-аминокислоты, поскольку в реакцию вступает лишь одна карбоксильная группа. (Напишите схему этой реакции ) [c.278]

    К реакциям различных классов в жидкой фазе, которые сопровождаются слабой хемилюминесценцией в видимой области, относятся термический распад перекисей, гидроперекисей, азосоединений окисление кислородом углеводородов и других соединений конденсация хлорангидридов кислот с аминами, поликонденсация (например, реакция получения найлона) окислительная деструкция полипропилена электролиз этанола, уксусной кислоты, солей органических кислот, нитрометана и т. п. Выход хемилюминесценции в этих реакциях порядка 10 — 10 . [c.121]

    При деструкции амидов по Гофману (действием гипогалогенитов на амиды) получают первичные амины, имеющие на один атом углерода меньше, чем исходное вещество 2). При этом в качестве промежуточного продукта образуется галогенамид I [схема (Г.9.21) в определенных условиях его можно изолировать] и.з него после отщепления галогеноводорода и перегруппировки воз- [c.273]

    Химическая деструкция протекает под действием полярных веществ, таких, как вода, кислоты, амины, спирты или кислород. [c.265]

    Недостатком фенолов и ароматических аминов является то, что опи в какой-то мере сами могут инициировать окислительную деструкцию. Так, неактивный радикал антиоксиданта может при достаточно высокой температуре реагировать с полимером, образуя активный макрорадикал  [c.280]

    Обычно наблюдаемая степень удаления арота не превышает 30%, даже при высоких показателях по удалению серы. Прямая деструкция азотсодержащих соединений невозможна из-за высокой термической стабильности. Энергия разрыва связи С-КНг составляет 335,2 Дж/моль, т. е. практически равна энергии разрьта связи С-С. Удаление азота обязательно должно включать стадию насыщения кольца [36,40]. В результате расход водорода высок — 6-7 моль водорода на моль аммиака [37]. Для ускорения реакции деазотирования в катализаторе необходимы обе функции - гидрирования и гидрообессеривания [47], но они сильно зависят от типа соединений. Азотсодержащие соединения оказывают ингибирующее влияние на активные центры катализаторов гидрообессеривания, природа которых пока полностью не выяснена. В целом гидродеазотирование гетероциклических соединений азота изучено хуже, чем гидрообессеривание. Ясно, однако, что тип связи азота, так же как и связи серы, играет большую роль и определяет скорость деструктивного гидрирования азотсодержащих соединений. Например, алифатические амины значительно более реакционноспособны, чем ароматические. [c.56]

    Общая методика деструкции по Гофману амидов кислот до аминов (табл. 151). [c.274]


    Получение аминов и амидов деструкцией по Шмидту [c.279]

    Химическая деструкция протекает под действием различны химических агентов, таких, как вода, кислоты, амины, спирты ил [c.64]

    Химическая деструкция протекает под действием таких веществ, как вода, кислоты, амины, спирты и т. д. [c.65]

    При температуре 18—23°С и исключении -воздействия прямых солнечных лучей полиэтилен весьма устойчив к старению. Для предотвращения теплового старения в полиэтилен вводят до 0,2% ароматических аминов, а для замедления светового старения — 0,3% технического углерода. Полиэтилен высокой плотности обладает большей склонностью к деструкции, поэтому старение его при повышенных температурах и воздействии атмосферы протекает быстрее, чем старение полиэтилена низкой плотности. [c.86]

    Одним из путей подавления каталитической активности примесей металлов переменной валентности в процессах окисления является перевод их в неактивную форму за счет образования комплексов или хелатов. В качестве таких агентов могут применяться антиоксиданты, относящиеся к производным /г-фениленди-амина [30, 31], которые пассивируют каталитическое действие меди, марганца и железа в процессе окисления каучуков. Аналогичный эффект наблюдался при введении в высокомаслонапол-ненный бутадиен-стирольный каучук, содержащий повышенное количество меди и железа, таких антиоксидантов, как п-гидрокси- фенил-р-нафтиламин (параоксинеозон) или меркаптобензимидазол [31]. Достаточно эффективными пассиваторами меди в процессе окислительной деструкции каучуков является щавелевая кислота, аминобензойные кислоты, продукт конденсации бензальдегида с гидразином [41]. [c.631]

    При нагревании ПВХ в растворах ДМФ происходит дегидрохлорнрование, образуются системы сопряженных двойных связей и возникают поперечные связи между цепями макромолекул. Все процессы взаимосвязаны и ускоряются с увеличением содержания примесей в ДМФ и кислорода воздуха в реакционной среде. Чем жестче условия приготовления растворов и больше концентрация остаточного растворителя в волокне, тем ниже термо-и светостойкость поливинилхлоридных волокон. При добавлении к растворителю многоосновных кислот и солей металлов, способных к комплексообразованию с аминами, деструкция ПВХ в растворах ДМФ замедляется и соответственно повышается устойчивость волокон, полученных из этих растворов, к световым и тепловым воздействиям. [c.326]

    Применение электрохимического метода фторирования к углеводородам имеет то нроимущество, что реакция протекает спокойно и ее можно регулировать. Недостатком я] ляется плохой выход. Однако нрименение ] ].ачестве исходных веществ кислот, спиртов, эфиров пли аминов едет к образованию фторпарафинов с более высокими выходами в результате деструкции реагирующей молекулы и потери функциональной группы. П01шшеиие эффективности процесса ] этом случае, возможно, обусловлено го])аздо большей их растворимостью во фтористом водороде по сравнению с углеводородом, 1 результа те чего )1о.чр . Стает проводимость реакционной смеси. [c.73]

    Следующая технологическая стадия — дезактивация катализатора имеет целью обрыв реакции полимеризации и превращение компонентов катализатора в соединения, не вызывающие при дальнейшей об ботке полимеризата структурирования или деструкции гюлимера. Для дезактивации катализатора применяются соединения, реагирующие с компонентами катализатора с образованием водорастворимых комплексов. К таким соединениям, в частности, относятся алифатические спирты, кислоты, амины и др. ---------------- [c.221]

    Обобщение опыта зксплуатации установок очистки газа растворами аминов показывает, что надежность их работы снижается при следующих условиях деструкции аминов из-за побочных реакций и термического разложения осмолении коррозии оборудования и продук-топроводов вспенивании в системе осушки газа осаждении твердых примесей на поверхностях труб и оборудования. Основные причины указанных явлений и ряд рекомендаций по снижению отрицательных последствий при очистке сероводородсодержащих газов приводятся в работе [1]. [c.51]

    Применение ряда современных методов исследования, например метода электронного парамагнитного резонанса, позволяющего определять структуру и концентрацию свободных радикалов, образующихся при окислении, термическом, фотохимическом, радиационном, механическом распаде полимеров, метода ядерного магнитного резонанса и других дало возможность изучить механизм старения и стабилизации полимеров н разработать эффективные методы стабилизации различных классов полимеров. Для многих из них предложены меры комплексной защиты от теплового, термоокислительного, светоозонного, радиационного старения. При этом оценка эффективности противостарителей осуществляется не только по активности в химических реакциях, но и по растворимости в полимере, летучести, термостабильности и другим факторам. Полиэтилен, например, хорошо защищается от термоокислительной деструкции в присутствии небольших количеств (0,01 /о) фенольных или аминных антиоксидантов, что важно для его переработки. При эксплуатации полиэтилен достаточно стабилен, тогда как полипропилен нуждагтся в защите от старения при эксплуатации. Здесь более эффективны такие антиоксиданты, как производные фенилендиаминов. Для защиты полиэтиленовых пленок от действия ультрафиолетового света применяют <5г < -фенолы. Весьма важна проблема стабилизации ненасыщенных полимеров (каучуков), где достаточно эффективны аминные про-тивостарители или их сочетание с превентивными антиоксидантами. [c.273]

    Первые воздействуют на угли при температурах главным образом ниже 200° С и не вызывают их термическую деструкцию. Наиболее активными и изученными из них являются ароматические амины (например, пиридин), алифатические амины (диаминэтилен) и кислородсодержащие соединения (диметилформамид). С помощью указанных растворителей можно извлечь около 15—20% органической массы малометаморфизованных углей, в некоторых случаях и до 40%. Растворимость углей уменьшается с возрастанием степени их метаморфизма она становится незначительной для углей с выходом летучих веществ 25—30% и почти приближается к нулю при выходе летучих веществ из углей ниже 20%. Отметим, что углеводороды являются малоэффективными растворителями углей при относительно низкой температуре их обработки. [c.22]

    При использовании в качестве катализатора серной кислоты скорость ацетилирования в уксуснокислой среде удваивается при повышении температуры на 10 фад в интервале от 30 до 50 °С. Обычно в ацетилирующую смесь вводят до 15% H2SO4 (от массы целлюлозы).Увеличение содержания в реакционной смеси серной кислоты и повышение температуры усиливают гидролитическую деструкцию целлюлозы. Скорость реакции ацетилирования резко возрастает также в присутствии аминов. [c.322]

    Многочисленными экспериментальными исследованиями уста иовлепо, что наряду с реакцией поликонденсации протекают про цессы, вызывающие деструкцию образующихся макромолекул по длине их цепи. Эти деструктивные процессы являются резуль гатом взаимодействия макромолекул полимера с исходными ве ществами и низкомолекулярными побочными продуктами поли конденсации. В зависимости от типа исходных компонентов п начальных продуктов поликонденсации процессы деструкции могут происходить по принципу ацидолиза (деструкция под действием кислот), аминолиза (деструкция полимера под действием аминов), алкоголиза (деструкция под действием спиртов). Деструктирующее действие перечисленных низкомолекулярных веществ распространяется прежде всего на макромолекулы, достигшие наибольших размеров. Вследствие меньшей стабильности и более легкой деструкции макромолекул высших фракций про- [c.167]

    Озонное старение—деструкция каучуков под действием озона. Озон очень быстро реагирует с двойными С = С-связями с образованием озонидов. Распад озонидов приводит к снижению молекулярной массы. На поверхности резины появляются трещины, разрастание которых приводит к разрушению резины. В качестве анти-озонантов применяются ароматические амины, в частности пара-фенилендиамин и его производные. [c.246]

    Жесткий материал, пригодный для изготовления изделий, труб и листов, выпускают под названием винипласт (игелит РСИ, винидур). Прессовать изделия из порошка полимера можно только в стадии его пластичности, которая для полихлорвинила лежит выше температуры начала термической деструкции его, ускоряемой образующимся при этом хлористым водородом. Для предотвращения автокаталитической деструкции во время формования изделий в полихлорвинил вводят стабилизаторы (стеарат кальция, бария или свинца, амины) в количестве не более 4—5%. Эти вещества соединяются с выделяющимся хлористым водородом, снижая на 65—80 мин. скорость термической деструкции (нри 165—170 ), и позволяют за этот период времени отформовать изделие. [c.796]

    В составе нефтей, как уже отмечалось, содержатся в основном циклические АС, большая часть которых представлена ареновыми и наф-тено-ареновыми структурами. Азот может встречаться в мостиках , со-единяюш их циклические структуры. Первичные амины в нефтях практически отсутствуют и могут появляться лишь в продуктах переработки нефти в результате деструкции АС. Поэтому мы рассмотрим нреимущ ест-венпо молекулярные спектры циклических АС. В спектрах АС можно идентифицировать полосы поглощения, которые обусловлены колебаниями связей N—И, N—С, =N, Х=С=К, N = N и гетероциклических колец. [c.141]


Смотреть страницы где упоминается термин Амины деструкция: [c.408]    [c.408]    [c.516]    [c.78]    [c.81]    [c.21]    [c.67]    [c.76]    [c.361]    [c.279]    [c.517]    [c.607]    [c.632]    [c.94]    [c.165]   
Органическая химия (1964) -- [ c.400 ]

Органическая химия (1964) -- [ c.400 ]




ПОИСК





Смотрите так же термины и статьи:

Амины при деструкции азидов по Курциусу



© 2025 chem21.info Реклама на сайте