Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма восстановление свинцом

    Наибольшее значение в электроэкстракции цинка имеют примеси первой группы. К ним относятся кобальт, никель, сурьма, мышьяк, свинец, медь, железо, германий и др. Из этих примесей железо, кобальт и никель, выделившись на цинке, образуют участки катода с меньшим перенапряжением на них водорода, что приводит к снижению выхода по току цинка. Помимо этого, железо вызывает снижение выхода по току за счет протекания реакции окисления у анода Ре + в Ре + и восстановления у катода Ре + в Ре " . Заметное снижение выхода по току за счет окисления и восстановления железа наблюдается при содержании его свыше 300 мг/л. [c.58]


    В [107] описывается возможность восстановления характеристик аккумуляторов, емкость которых снизилась до 80 % от начальной, при циклировании с зарядом пульсирующим током (время импульса порядка 100-200 мс, соотношение времени импульса и паузы 1 3). Эта возможность проверялась на аккумуляторах с решетками из сплавов свинец-сурьма и свинец-кальций-олово. Несмотря на то, что механизмы, вызывающие преждевременную потерю емкости, различаются, эффект от заряда пульсирующим током наблюдался у обоих типов источников тока. [c.211]

    Определение в виде металлической рту и. В описываемом ниже методе ртуть взвешивают в виде металла после, восстановления ее хлоридом олова (II) в солянокислом растворе. По данным авторов железо, кадмий, висмут, медь, свинец, сурьма, нитраты и сульфаты определению не мешают. [c.251]

    Определению не мешают двухвалентные катионы, даже когда они присутствуют в больших концентрациях. (Например, свинец может быть в концентрации, в 5000 раз превышающей концентрацию висмута.) Мешают железо (П1), ртуть, сурьма (П1), цирконий и торий. Мешают также хлориды, фосфаты, тартраты, цитраты, оксалаты, фториды. Мешающее влияние ртути устраняется восстановлением ее муравьиной кислотой. Железо (HI) восстанавливают аскорбиновой кислотой следующим способом. [c.735]

    Осаждение металлической сурьмы. Сурьму можно осадить в виде металла из 0,4 н. раствора соляной кислоты восстановлением порошком железа. Вместе с сурьмой осаждаются медь, висмут и частично свинец и мышьяк. Так сурьма отделяется от олова (П), кадмия и др. [c.1017]

    Подобно карбонильному железу карбонильный никель С успехом может применяться для изготовления как прецизионных сплавов, так и различных изделий методами порошковой металлургии. Карбонильный порошковый никель обладает большой удельной поверхностью и значительным количеством дефектов кристаллической решетки, вследствие чего он отличается высокой активностью по сравнению с порошками электролитического, распыленного и восстановленного из руд никеля [107]. Углерод легко удаляется из карбонильных никелевых порошков термообработкой в водороде. По данным института ГИПРОНИКЕЛЬ, в порошке карбонильного никеля содержится не более 0,006% железа и 0,0007% (в сумме) алюминия, магния и кремния. Такие металлы, как медь, марганец, кобальт, свинец, олово, висмут, сурьма, кадмий, цинк и мышьяк, практически отсутствуют [107]. Карбонильные никелевые порошки после обезуглероживающего отжига хорошо прессуются при давлении до 5 тс/см и после прессования имеют плотность от 5,2 до 5,8 г см . [c.161]

    Восстановление солей никеля протекает лишь на металлах, катализирующих этот процесс (железо, никель, кобальт, алюминий, палладий). Выделение никеля на меди и ее сплавах возможно только при контакте их с электроотрицательными металлами алюминием, цинком и другими, или же после кратковременной обработки покрываемой поверхности раствором хлорида олова (сенсибилизация) и в разбавленном растворе хлорида палладия (активирование). На таких металлах, как свинец, кадмий, цинк, олово, сурьма, процесс вообще не идет. [c.173]


    Интересный способ определения содержания кобальта в солях никеля состоит в предварительном окислении o + до Со " перборатом натрия в аммиачном буферном растворе [16]. После разрушения избытка окислителя сульфатом гидроксиламина раствор полярографируют в пределах от —0,2 до —0,8 в. Потенциал полуволны Со + равен —0,4 в. Определению не мешают мышьяк, кадмий, сурьма, олово, цинк и, если находятся в умеренных количествах, висмут, медь, железо, марганец, молибден. Свинец н хром, присутствующие в больших количествах, удаляют путем осаждения хлоридом бария или сульфатом натрия. При содержании кобальта около 0,1% ошибка определения не превышает 2,6%. В 0,01 М растворе триэтаноламина и 0,1 М растворе КОН было определено содержание свинца и железа в пергидроле и меди, свинца и железа в плавиковой кислоте и фториде аммония в количестве 1.10 —5.10 % [17]. В растворе фторидов проводилось также определение олова, основанное на получении его комплексных ионов [18]. Разработан метод определения растворимой окиси кремния в уранилнитрате, основанный на полярографическом восстановлении кремнемолибденового комплекса [19]. Можно определить 2 мкг ЗЮг с точностью до 10%. Мешают ванадий и железо. [c.83]

    Свинец можно также определять полярографическим методом по высоте его волны. Чтобы устранить влияние катионов меди, железа, сурьмы, висмута, раствор обрабатывают железом, восстановленным в токе водорода. Двухвалентное олово окисляют перекисью водорода, а затем удаляют в виде тетрахлорида кипячением с концентрированной соляной кислотой. [c.244]

    Си — 8п(4) — 8Ь(5) с помощью СгС]. . Комбинация определения 8п по методу 6 (стр. 533), 8, 9 (стр. 534), определения Си по методу 9, сурьмы по методам 6 и 7 (стр. 532) условия см. определение 8п по методу 6. Сначала восстанавливается 8Ь (5) в 8Ь(3), затем Си (2) в Си(1), затем 8п(4) в 8п (2), затем 8Ь (3) до 8Ь. В случае, если при восстановлении 8Ь(5) в 8Ь (3) резкого скачка не получается, содержание 8Ь вычисляют по реакции восстановления 8Ь (3) до 8Ь. Свинец не мешает.  [c.521]

    Практически восстановлением окислов водородом можно получить следующие металлы железо, кобальт, никель, молибден, вольфрам, сурьму, висмут, германий, олово, свинец, галлий, индий, таллий, кадмий, медь. Из неметаллов этим методом иногда получают теллур. [c.22]

    Дель работы. Получить восстановлен,нем соответствующих окислов один из следующих металлов железо, кобальт, никель, молибден, вольфрам, сурьму , висмут, олово, свинец, кадмий, медь. Металлокерамическим методам получить образец металла. [c.22]

    Хромотроповая кислота - образует с титаном ряд окрашенных комплексов. Для спектрофотометрии используется красный комплекс = 470 вм), имеющий постоянную оптическую плотность в в интервале pH 2-3,3 и = 1,2.10 . В этих условиях с реактивом ве взаимодействуют следующие ионы алюминий, барий, берилл й> висмут, кальций, кадмий, кобальт, хром (Ш), медь (1,П), железо (П), галлий, ртуть (1,П), индий, магний, марганец (П), никель, свинец платина (1У), сурьма (Ш), селен (У1), олово <П,1У), теллур,торий, таллий (Ш), цинк, цирконий, серебро образуют окраску железо (Ш), хром (У1). ванадий (У), молибден (У1), вольфрам (У1). Мешающее действие первых четырех элементов устраняется их восстановлением аскорбиновой кислотой. Реактив применим для анализа разнообразных объектов. [c.22]

    Металлический барий применяется для металлотермического восстановления америция и кюрия, в антифрикционных сплавах на основе свинца, а также в вакуумной технике. Сплавы свинец — барий вытесняют полиграфические сплавы свинец — сурьма. [c.243]

    Металлическая сурьма, полученная цементацией на цинке или железе, содержит 84—94,5% чистого металла, а сурьма, полученная восстановлением окиси сурьмы, содержит 95—97% чистого металла. Полученная электролитическим путем сурьма наиболее чиста. Самые распространенные примеси в металлической сурьме — это железо, мышьяк, свинец, медь, цинк и сера. [c.479]

    В качестве примесей в свинцовом сурике присутствуют кремнезем, медь, мышьяк, сурьма, олово, цинк, железо, висмут, сернокислый свинец. Количество этих примесей незначительное (0,001—0,006%). В сурике содержится 0,025—0,08% кремнезема и 0,3% сернокислого свинца. В эмалировочном производстве чаще используют свинцовый сурик 3 и 4-й марок. Плавку эмалей на свинцовом сурике следует вести в окислительной атмосфере, чтобы избежать его восстановления. [c.45]

    Полярографическому определению хрома в сильнощелочной среде мешает главным образом свинец, так как волна восстановления плюмбита совпадает с волной восстановления хрома (VI). В меньшей степени мешают определению кадмий, сурьма (III) и олово (II). [c.88]

    Влияние свинца устраняется добавлением в раствор сульфита натрия, который одновременно с удалением растворенного кислорода и восстановлением четырехвалентного свинца осаждает свинец (II) в виде труднорастворимого сульфита. Сурьма (III) олово (II) окисляются при сплавлении с перекисью натрия до высших валентностей и не мешают определению. Ванадий, молибден, уран и церий, которые мешают колориметрическому определению хрома (VI), в щелочном растворе не влияют на полярографическое определение его. Все сказанное позволяет полярографически определять хром в рудах упрощенным методом [4, 15]. [c.88]


    По первому варианту, 2 капли исследуемого раствора объемом 0,05 мл обрабатывают на часовом стекле 20% раствором едкого натра. Фильтрат подкисляют 1—2 каплями концентрированной соляной кислоты и отбрасывают выпавший осадок хлорида свинца (или сохраняют его для испытания на свинец). Затем каплю раствора помещают на предметное кварцевое стекло и прибавляют каплю 20%-ного раствора иодида калия и каплю раствора аскорбиновой кислоты (для восстановления в растворе свободного иода и следов железа). В присутствии ионов сурьмы раствор окрашен под ультрафиолетовым микроскопом в красный цвет. [c.78]

    Определению свинца мешают сурьма, висмут и мышьяк. В ходе анализа все эти три металла устраняются при восстановлении трехвалентного железа до двухвалентного порошком железа, восстановленного водородом. Висмут, сурьма и мышьяк цементируются железом в виде металлической губки. Олово, присутствие которого мешает определению свинца, отгоняют из солянокислого раствора в виде летучих хлорида или бромида и свинец определяют на фоне буферного виннокислого раствора . [c.306]

    Метод основан иа титровании индия (111) при pH 1,0 раствором динатриевой соли этилендиаминтетрауксусной кислоты (комплексон III). Точку эквивалентности устанавливают по исчезновению диффузионного тока восстановления 1п Ч-иона на ртутном капельном электроде при потенциале от —0,7 до —0,8 в относительно насыщенного каломельного электрода. Определению не мешают многие элементы, с которыми обычно приходится встречаться при анализе индийсодержащих продуктов, а именно 2п, Мп, Сс1, Со, А1. Титрованию не мешают также значительные количества Ре++ ( 10 мг). Железо (111) восстанавливают до Ре++. Влияние олова (-<5 мг) и сурьмы (-<2. мг) устраняют введе-ннем винной кислоты. Определение возможно в присутствии небольших количеств (-<0,5 мг) ионов медн, если их замаскировать тномочевиной, и ионов свинца, а также мышьяка (-<2 мг). Большие количества этих элементов затрудняют установление точки эквивалентности вследствие того, что медь, свинец и мышьяк дают диффузионный ток. Однако эти элементы легко отделяются от индия в ходе анализа мышьяк и свинец удаляются при разложении пробы смесью хлористоводородной и серной кислот и упаривании раствора до появления паров Н2504 медь — при осаждении гидроокиси нндия избытком аммиака. Определению мешает висмут. [c.369]

    Осаждение в виде металлической сурьмы. От Sn, d и ряда других эломентов Sb можно отделить осаждением в виде металла в среде 0,4 М НС1 восстановлением железным порошком. Вместе с Sb осаждаются Си, Bi и частично РЬ и As [1362]. Для выделения Sb в элементном виде в качестве восстановителя применяют также другие металлы, в том числе губчатый свинец [714], кадмий в виде порошка [660] и алюминий в виде опилок [587]. С применением губчатого свинца одновременно с Sb выделяются Си и Bi. При выделении Sb с использованием порошка кадмия цементацию проводят в среде 6 М НС1 при нагревании. Из растворов с концентрацией Sb > 1,5 г-ион л она выделяется количественно. С применением алюминия можно количественно выделять Sb, проводя цементацию при 60° С в 3%-ном растворе тартрата натрия. В этих условиях As(III) не выделяется. Однако в присутствии даже небольших количеств As(III) сурьма выделяется уже не полностью присутствие равных или больших количеств As подавляет цементацию Sb. В 0,5 М НС1 происходит количественная цементация Sb, в то время как As остается в растворе. Если же в растворе присутствует Си, то алюминий восстанавливает As до арсина [587]. При определении Sb в галлии и сплавах индия с галлием и индия с цинком выделяют Sb цементацией ее на оловянном электроде из раствора, 0,5 М по НС1 [662]. [c.100]

    А. И. Бусев [39] нашел, что небольшие количества висмута индуцируют восстановление свинца формалином в присутствии избытка едкой щелочи. В отсутствие висмута свинец восстананливается очень медленно и неполно. Разработанный на реакции индуцирования метод позволяет открывать еще 10 г Bi. Открывать такое количество висмута реакцией с формалином и едкой щелочью в отсутствие свинца не удается. Открытию висмута не мешают небольшие количества олова, сурьмы, железа. Мешают серебро, медь, большие количества железа. Метод позволяет открывать небольшие количества висмута И солях свинца (до 0,1 мг Bi в 10—15 г нитрата спинца). [c.277]

    Согласно табл. 11 олово и свинец занимают смежные места, В нейтральных растворах свинец не восстанавливает полностью катионЫ) двухвалентного олова, а оло-во не восстанавливает полностью катионы двухва- №Н Тного свиица. В реакционной смеси устанавливается рав1новесие, когда концентрация ионов двухвалентного олова за-метно превысит концентрацию ионов свинца в присутствии кислоты не происходит осаждения ни олова, ки свинца по той причине, что ионы водорода восстанавливаются легче, чем катионы свинца или олова, как это видно из табл. 11. С другой стороны, восстановление четырехвалентного олова до двухвалентного, как показывает таблица, протекает легче, че.м восст ановление водородных иОнов поэтому в качественном анализе свинец может быть применен для восстановления кислого раствора соли четырехвалентного олова до двухвалентного, не вызывая восстановления его до металла. Для этой же цели пользуются также и сурьмой, хотя из табл. 11 это не вполне ясно видно, потому что степени ионизации и комплексообразования недостаточно известны в отношении солей сурьмы и олова. [c.60]

    Свинец, олово и другие металлы реагируют точно так же, как и циик. Однако тоследний в противоположность железу, олову и свинцу произ водит восстановление быстрее, частично превращая сурьму в сурьмянистый водород ЗЬНз  [c.184]

    К- и N,N-зaмeщeнныe алифатические амиды и все три типа ароматических амидов восстановлены до соответствующих аминов (см. работу [901, а также табл. 84, стр. 398). При этом применяли католит, содержащий серную кислоту, и свинцовый катод. Показано, что при восстановлении М,Ы-диметил-валерамида единственным активным катодом является свинец. Амиды, которые не являются Ы- или N,N-зaмeщeнными, при этих условиях не восстанавливаются. Попытки восстановить п-аминобензанилид на ртутных катодах оказались безуспешными [91]. Как указывалось выше, найдено, что добавление небольших количеств окислов мышьяка и сурьмы к католиту при восстановлении некоторых амидов улучшает выход амина. Эти реакции восстановления проведены с успехом только прп помощи электролитического метода. [c.338]

    Проблема строения медных рубиновых стекол в-1945 г. была разрешена Дитцелем он изучал влияние концентрации ионов кислорода на созревание стекол таких типов. Можно непосредственно измерить электрохимический потенциал окисления стекла и ячеек восстановления (см. А. П, 184) и рассчитать концентрацию ионов кислорода по наблюдаемым электродвижущим силам. Этот точный метод показал, что типичный рубиновый цвет не может быть вызван реакцией разложения типа Каннидзаро. Восстанавливающий агент, как, например, окись олова или железа или трехокись мышьяка или сурьмы, должен всегда присутствовать в стекле. Нельзя пренебрегать влиянием вязкости стекла, так как слишком) большая текучесть расплава мешает созреванию суспензий коллоидов и они быстро укрупняются и флоккулируют. Особенно медистые ионы при закалке быстро переохлаждаются и застывают в стекле медные. иойы во время созревания рубинового стекла не образуются. В золотом рубиновом стекле обнаружено также влияние химического состава самого стекла свинец или барий образуют в стекле стойкие супероисиды, которые имеют существенное значение для эволюции рубинового цвета.. [c.268]

    Элементарный иод можно легко определить после предварительного восстановления на холоду гидразином. Определению не мешают элементы, не осаждаемые родамином С. Висмут, железо, цинк, никель, индий, свинец, медь и ртуть могут присутствовать в большом избытке. Мешает определению иодид-ионов сурьма (П1), которая концентрируется на электроде одновременно с иодом в виде аналогичного соединения. Влияние сурьмы можно устранить, восстановив ее до элементарного состояния или связав в электронеак-тивный комплекс. Так, в присутствии 10% цитрата калия 100-крат-ные количества сурьмы(П1) не мешают определению иодид-ионов (концентрации Sb + и I-—6-10 и 6-10 г-ион/л). Максимальный ток электрохимического растворения осадка, содержащего иод, в этом случае несколько ниже, чем в отсутствие цитрат-ионов. При использовании калибровочных графиков или метода добавок это не имеет значения. [c.104]

    Выполнение реакции в отсутствие сурьмы. К 1—2 каплям исследуемого раствора объемом 0,05 мл на часовом стекле прибавляют 1 каплю раствора хлорида калия и 2—3 капли воды. Выпавший осадок хлорокиси висмута переносят после промывания на предметное кварцевое стекло и обрабатывают 1—2 каплями концентрированной соляной кислоты (если в растворе присутствуют серебро, ртуть и свинец, то соляная кислота прибавляется к раствору в количестве 3 капель). К капле фильтрата прибавляют каплю 20%-ного раствора иодида калия и каплю 0,1 н. раствора аскорбиновой кислоты (для восстановления могуш его присутствовать в растворе свободного иода и следов железа). При рассматривании под УФ-микроскопом в присутствии висм та раствор имеет красный цвет. [c.160]

    Комплексное соединение сурьмы КЗЬЦ сильно поглощает УФ-лучи, поэтому при обнаружении ионов висмута ионы сурьмы предварительно удаляют из раствора. В случае обнаружения ионов сурьмы, наоборот, удаляют висмут. Ниже описаны два варианта проведения анализа, при которых другие катионы не мешают обнаружению ионов сурьмы. По первому варианту 2 капли исследуемого раствора объемом 0,05 мл обрабатывают на часовом стекле 20%-ным раствором едкого натра. Фильтрат подкисляют 1—2 каплями концентрированной соляной кислоты и отбрасывают выпавший осадок хлорида свинца (или сохраняют его для испытания на свинец). Затем каплю раствора смешивают с каплей 20%-ного раствора иодида калия и каплей раствора аскорбиновой кислоты (для восстановления в растворе [c.164]

    В 1845 г. А. Дюфло описал иодометрический метод определения железа. Он добавлял иодид калия к раствору соли трехвалентного железа и титровал выделяющийся иод стандартным раствором хлорида олова. На 12,5 г иода при этом расходовался 1 л стандартного раствора, содержащего один эквивалент (равный атомному весу) олова (5,90 г) [295]. Таким образом, это был нормальный — в современном понимании — раствор. В 1846 г. Ф. Гольтье де Клобри разработал независимо от Дюфло иодометрический метод определения олова. Он растворял образец олова в соляной кислоте, восстанавливал его железом или цинком и титровал двухвалентное олово спиртовым раствором иода, используя в качестве индикатора крахмал. В ходе предварительного восстановления мышьяк, сурьма, свинец, ртуть и медь осаждались в виде металлов и не метали определению олова [296]. [c.149]

    Отдых и рекристаллизация не наблюдаются лишь у тех электролитически осажденных металлов, у которых рекристаллизация происходит в короткий срок при комнатной или более низкой температуре. Поэтому такие легкоплавкие электролитически осажденные металлы, как цинк, свинец, кадмий, олово и индий, вообще не рекристаллизуются. Однако более тугоплавкие металлы могут рекристаллизоваться и восстанавливать свой объем уже при комнатной температуре. Таким образом, у серебра высокой чистоты, упрочненного при низкой температуре, можно наблюдать в результате длительного хранения при комнатной температуре частичный отдых от последствий холодной обработки и рекристаллизацию. Гейльман наблюдал падение твердости у гальванических покрытий блестящим серебром даже после относительно короткого времени хранения. Напротив, твердость покрытий твердым серебром, содержащих посторонние металлы (напри-мер, сурьму), остается без изменения при длительном хранении и комнатной температуре. При термической обработке электролитных металлов, кроме изменений, вызываемых рекристаллизацией, восстановлением объема, присутствием водорода, металлических и неметаллических включений, могут наблк>даться и другие изменения свойств. [c.92]

    Если же на катоде протекает какой-либо электрохииический синтез, то, помимо перенапряжения водорода, существенную роль играет каталитическая активность электродной поверхности. Для проведения электрохимических синтезов с использованием трудновосстанавливаемых органических веществ используют электроды с высоким перенапряжением водорода. В лабораторной практике в качестве катода часто применяют ртуть, а в техническом электролизе — преимущественно свинец или более твердый сплав свинца с сурьмой. Хорошие результаты получены при использовании электродов из кадмия. Некоторые органические вещества хорошо восстанавливаются на электродах-катализаторах— никеле Ренея или платинированной платине. На этих электродах процесс восстановления протекает через стадию образования на поверхности катода хемосорбированного атомарного водорода. [c.16]

    Неочищенное олово, полученное восстановление.л концентратов оловянных руд, содержит 94—98 о металла и в качестве примесей небольшие количества свинца, железа,. rышьякa, висмута, сурьмы, серы, меди, серебра, кобальта, вольфрама и молибдена. Примеси железа и серы делают олово хрупкп.м мышьяк, сурьма и висмут уменьшают ковкость олова, а свинец придает ему серый цвет. [c.400]

    N VI Н, N-замещенные алифатические амиды и все три типа ароматических амидов восстанавливались в соответствующие амины-с выходами 10— 92% [135—137]. Католит содержал серную кислоту применяли свинцовый катод. При восстановлении 1, N- диме-тилвалерамида свинец оказался единственным активным катодом. Алифатические амиды, не замещенные при азоте, в этих условиях не восстанавливаются. Восстановление л-аминобенз-анилида пытались осуществить на многих катодах, но безуспешно [138]. Как отмечалось раньше, было найдено, что небольшие добавки окисей мышьяка и сурьмы к католиту при восстановлении некоторых амидов улучшают выход амина. Реакции восстановления проводились успешно только электрохимическим методом [136]. N- этил-о-толуидин получен с лучшим выходом, 70 —72 %, из о-толу-идина и хлористого этила [139]. Также более высокий выход, 89,4%, достигнут при получении бензиламина каталитическим [c.35]

    Метод авторов. Солянокислый раствор, свободный от нитратов И сульфатов, содержащий 20—25 мл концентрированной НС1 в 100 мл. слабо кипятят 20—30 минут с 5 г чистого гранулированного свинца или свинцовой фольги. Раствор сначала окрашивается в зеленовато-синий цвет, который постепенно лереходит в бурый вследствие восстановления молибденовой кислоты, в то время как сурьма осаждается в виде металла. После полного восстановления жидкость разбавляют кипящей водой и быстро фильтруют, промывая затем фильтр горячей водой. Фильтрат кипятят с небольшим избытком азотной кислоты, чтобы вновь окислить молибден частично нейтрализуют аммиаком и нагревают до кипения. Добавлением 50 мл 25%-ного раствора уксуснокислого аммония осаждают молибдат свинца, который отфильтровывают, промывают, прокаливают и взвешивают (см. разд. IV, А). Осадок сурьмы растворяют вместе со свинцом в 10 мл азотной кислоты и 40 мл 20%-ного раствора винной кислоты свинец удаляют в виде сульфата, а сурьму осаждают в фильтрате сероводородом. [c.301]

    Определению индия мешают медь, свинец, кадмий, мышьяк, олово, сурьма, висмут, селен, теллур и большие количества кремневой кислоты и железа. Для устранения мешающего влияния этих металлов при определении индия разработаны различные схемы химической подготовки пробы. В ходе анализа свинец выделяют в виде сульфата медь, кадмий и цинк отделяют в виде растворимых аммиачных комплексов, олово и сурьму—в виде летучих хлоридов или бромидов в присутствии окислителя. Мышьяк, селен и теллур отделяют от индия из солянокислого раствора в присутствии восстановителя—солянокислого гидразина. Мышьяк при этом улетучивается в виде А8С1д, а селен и теллур выпадают в осадок в элементарном состоянии. Небольшие количества меди и сурьмы отделяются в виде губки при восстановлении трехвалентного железа (восстановление проводится порошком железа, восстановленного водородом). [c.262]

    Сурьма мешает определению свинца. Поэтому ее удаляют в виде SbBrg путем 4—5-кратного выпаривания с бромистоводородной кислотой и бромом. Затем бромид свинца переводят в хлорид (для чего к раствору приливают соляную кислоту) и выпаривают его досуха. Сухой остаток растворяют в соляной кислоте, восстанавливают трехвалентное железо и остатки сурьмы железом, восстановленным водородом, и полярографируют свинец на фоне разбавленной (1 3) соляной кислоты. [c.302]

    Выделение сурьмы в металлическом состоянии. Сурьму в солянокислом растворе можно высадкть на меди (реакция Рейнша). Этот метод служит для выделения сурьмы из меди, сплавов на основе меди и из олова. Сурьму, содержащуюся в меди в количестве 0,001%, можно достаточно полно выделить этим способом. Предварительное восстановление меди (II) до меди (I) и осаждение мышьяк можно эффективно осуществить с помощью гипофосфита (см. ). Сурыму можно также выделить методом внутреннего электролиза из растворов э горячей разбавленной соляной кислоте, содержащих солянокислый гидразйн при этом катодом служит спираль из медной проволоки, анодом — железо или свинец . При проведении электролиза в раствор следует добавить около 1 мг мышьяка, иначе процесс идет медленно. [c.228]


Смотреть страницы где упоминается термин Сурьма восстановление свинцом: [c.217]    [c.283]    [c.669]    [c.1053]    [c.338]    [c.400]    [c.161]    [c.179]    [c.568]   
Практическое руководство по неорганическому анализу (1966) -- [ c.323 , c.360 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.294 , c.328 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановление сурьмы



© 2025 chem21.info Реклама на сайте