Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хром определение колориметрическое

    Для определения хрома приводится колориметрический метод с дифенилкарбазидом, применимый при содержании хрома от 0,05 до 1 мг/л. При анализе проб, содержащих хром в больших кон- [c.146]

    Если первоначальный щелочной фильтрат окрашен в желтый цвет,, то можно считать вероятным присутствие хрома или урана, особенно при исследовании горных пород, и вести анализ дальше, исходя из предположения, что окрашивание вызвано хромом. С возможностью того, что желтое окрашивание происходит от органических веществ, извлеченных из фильтра, считаться не приходится, если фильтр был перед фильтрованием хорошо промыт горячим раствором щелочи. Если окрашивание слабое, то хром определяют колориметрически (стр. 595) и сохраняют раствор для определения ванадия. Действительное присутствие хрома или урана может быть впоследствии проверено после отделения фосфора, но лучше это делать непосредственно, определяя эти элементы из отдельной большой навески (стр. 596). Если окраска раствора слишком интенсивна для колориметрического определения хрома, то кипятят щелочной раствор, пока вся перекись водорода не разложится, подкисляют серной. [c.120]


    Определение окиси алюминия в хромовых рудах весовыми и объемными методами затруднено из-за большого количества хрома. Только колориметрическим методом можно с достаточной точностью выполнить это определение без отделения хрома. [c.290]

    Хром присутствует в сточных водах цехов металлообрабатывающих предприятий, в водах некоторых химических производств, кожевенных заводов и в загрязненных этими стоками поверхностных водах. В растворе хром может встречаться в виде трехзарядного катиона или в виде анионов — хромат- или бихромат-ионов. Хром (III) устойчив, и в обычных условиях нельзя предполагать окисления его до шестивалентного. В растворенном состоянии хром (III) находится только в кислой среде. В нейтральной и щелочной средах он гидролизуется с выделением гидроокиси хрома (III). Комплексообразующие вещества препятствуют гидролизу. Хром (VI) может встречаться в щелочных растворах в виде хромат-ионов, в кислых растворах — в виде бихромат-ионов, если же восстановители присутствуют, то происходит восстановление шестивалентного хрома до трехвалентного В твердой фазе находится преимущественно гидроокись хрома (III) В питьевых и поверхностных водах с низким содержанием хрома обычно определяют его общее содержание. В сточных водах в зависи мости от цели анализа определяют хром в растворе и в твердой фазе в растворе определяют и шестивалентный, и трехвалентный хром Для определения хрома приводится колориметрический метод с дифенилкарбазидом, применимый при содержании хрома от 0,05 до 1 мг л. При анализе проб, содержащих хром в больших концентрациях, пробу надо предварительно разбавить. Ниже описаны методы определения хрома (VI) и общего содержания хрома. Содержание хрома (III) находят по разности. [c.302]

    Отделение ванадия от хрома. Присутствие даже небольших количеств хрома мешает колориметрическому определению ванадия, создавая дополнительную желтую окраску. [c.82]

    Ванадий и хром мешают колориметрическому определению титана. Ванадий образует с перекисью водорода окрашенное соединение. Соединения хрома имеют свою собственную окраску. [c.97]

    Определение марганца в шлаках производят, как правило, из отдельной навески или совместно с определением хрома [441, 686]. Количество марганца < 1% определяют колориметрическим методом, при более высоком содержании марганца применяют титриметрические методы [136, 601]. Марганец определяют также потенциометрическим методом [97, 216]. [c.157]


    Метод колориметрического определения урана с 8-оксихинолином в растворах, содержащих железо, хром и другие мешающие [c.128]

    Для определения железа, меди, олова и хрома при содержании их 0,5—45% применяют разработанные для анализа резины иодо-метрические методы определения из отдельных навесок [213, 235, 236]. Соединения вышеперечисленных элементов могут-быть в резинах, изготовленных на основе каучуков общего назначения, и в резинах, изготовленных на основе каучуков специального назначения. Малые количества металлов лучше определять колориметрическим методом после сплавления с содой [234 [c.99]

    Каждое колориметрическое определение состоит из двух стадий получение окрашенного раствора и непосредственное измерение его оптической плотности. На первой стадии анализируемое вещество переводят в раствор, в который добавляют соответствующие реагенты, чтобы получить окрашенное соединение. Иногда при колориметрическом определении используют и окраску ионов (например, при определении хрома и марганца). Окрашенные соединения в большинстве случаев комплексные или внутрикомплексные. Интенсивность окраски растворов этих соединений зависит от их свойств и состава среды. [c.7]

    При колориметрическом определении марганца и хрома в стали окраска ионов [c.285]

    Колориметрическое определение, основанное на восстановлении бихромата калия в кислой среде в соль хрома (III) с переходом желтой окраски раствора в желто-зеленую. [c.96]

    Реакция восстановления бихромата калия в кислой среде в соль хрома (III) и колориметрическое определение по изменению желтой окраски на зеленую. [c.120]

    Колориметрическое определение ио реакции хрома (VI) с дифенилкарбазидом в кислой среде с образованием продукта, окрашенного в красновато-фиолетовый цвет. [c.198]

    Колориметрическое определение по реакции восстановления хромового ангидрида до окисн хрома (зеленого цвета). Концентрацию паров бензина определяют по изменению цвета индикаторного порошка и объему исследуемого воздуха. [c.204]

    В сплавах никель находится в виде твердого раствора в железе. Никель не образует карбидов и растворяется в соляной кислоте (1 1) и в разбавленной серной (1 4). Азотную кислоту при растворении добавляют для окисления железа и для разложения карбидов хрома, ванадия, вольфрама, молибдена и др. Для определения содержания никеля в железных и других сплавах применяют объемные, весовые, колориметрические и электрохимические методы. [c.304]

    Определение хрома колориметрическим методом. В кислой среде (pH 0,2—1) хромовая кислота окисляет дифенилкарбазид [c.335]

    Определить общее содержание хрома в таких водах можно относительно легко. В кислых неокрашенных сточных водах также легко можно определить содержание шестивалентного хрома и по разности найти содержание трехвалентного хрома. Но в нейтральных или щелочных водах раздельное определение шестивалентного и трехвалентного хрома затруднено тем, что при подкислении таких вод, если они (как это обычно бывает) содержат восстановители—соли двухвалентного железа, сульфиты, многие органические вещества,—происходит восстановление шестивалентного хрома до трехвалентного. В водах, окрашенных органическими веществами, нельзя непосредственно колориметрически определять шестивалентный хром и в тех случаях, когда эти воды имеют кислую реакцию. [c.163]

    Осадок гидроокиси хрома сорбируется на поверхности окиси магния. Последнюю отфильтровывают, затем или растворяют в серной кислоте и окисляют хром (III) до хрома (VI) персульфатом аммония, или прокаливают со смесью карбоната натрия и окиси магния, в результате чего происходит также окисление хрома до шестивалентного. Заканчивают анализ колориметрическим определением с дифенилкарбазидом. [c.166]

    Как видно из табл. 7, алюминон способен давать окрашенные соединения с большим количеством ионов, но регулируя pH среды, можно определять одни ионы в присутствии других. Так, например, молибден и хром могут быть определены в кислой среде в присутствии кобальта, цинка, никеля и некоторых других ионов. Помимо регулирования pH для колориметрического определения одного иона в присутствии других широко применяют реакции маскирования. [c.57]

    Применение колориметрического метода для анализа многих технических материалов нередко встречает затруднения в связи с наличием в растворе посторонних окрашенных соединений. Например, при определении ряда компонентов в стали испытуемый раствор сам бывает несколько окрашен вследствие присутствия железа, никеля, хрома и др. При определении аммиака в природной воде измерение окраски желтого продукта реакции иногда дает неточный результат вследствие наличия в воде гу-миновых соединений, окрашивающих воду в желтый цвет. Если собственная окраска испытуемого раствора не слишком интенсивна, то ее влияние можно с достаточной точностью устранить применением простого прибора — компаратора. [c.183]


    Используются также окрашенные внутрикомплексные соединения некоторых элементов с комплексоном III для их колориметрического определения. Такие методы описаны, нанример, для хрома (III) марганца (III) никеля и меди . [c.158]

    Хроматный метод. Определение хрома колориметрическим методом преимущественно проводят сравнением интенсивности окраски хромата с окраской стандартного раствора в щелочной среде. При анализе горных пород для этого обычно используют водную вытяжку плава анализируемого материала со смесью карбоната натрия и нитрата калия. Обычно встречающиеся в горных породах элементы определению не мешают. При сплавлении пробы в платиновом тигле пе следует вводить в плавень слишком больших количеств селитры и температура сплавления пе должна быть слишком высокой, чтобы не вызвать порчу тигля, так как раствор может окраситься в желтый цвет за счет переходящей в него платины. [c.595]

    Хром определяют колориметрически с днфезгалкарбаэ идом предварительно хром окисляют до r(Vl) персульфатом в кислой среде [570). Чувствительность определения хрома повышается почти на порядок при экстракции окрашенного соединения цик-логексанолоы и измерении оптической плотности экстракта при 530 нм в полумикрокювете (8530 = 3,4-10 ) [1325]. [c.270]

    Для определения хрома приводится колориметрический метод с дифенилкарбазидом, применимый при содержании хрома от 0,05 до 1 мг1л. При анализе проб, содержащих хром в больших концентрациях, пробу надо предварительно разбавить. Ниже описаны методы определения хрома (VI) и общего содержания хрома. Содержание хрома (III) находят по разнооти. [c.304]

    Наиболее удовлетворительными методами определения хрома являются колориметрические и объемный. Объемный метод основан на окислении хрома до хромата, прибавлении избуточного количества сульфата железа (II) и титровании избытка последнего перманганатом. Колориметрический метод пригоден для определения малых количеств хрома, какие обычно содержатся в горных породах. При значительном содержании хрома, когда колориметрические методы неприменимы, пользуются объемным методом. [c.592]

    Из новых работ отметим работу Сендэла и Перлиха но определению никеля и кобальта в силикатных породах. Определение никеля основано на осаждении его диметилглиоксимом из аммиачно-тартратного раствора анализируемой породы, экстрагировании полученного соединения хлороформом, взбалтывании хлороформного слоя с соляной кислотой для переведения никеля в воДную фазу и конечном его определении колориметрическим методом с диметилглиоксимом (см. стр. 468, сноска 2) при концентрации его, не превышающей 6 мкг в 1 мл. Этим методом можно обнаружить 0,0001% никеля в 0,5 г пробы медь, кобальт, марганец, хром и ванадий в количествах, в каких эти элементы встречаются в большинстве изверженных горных пород, определению никеля не мешают. [c.1034]

    Наиболее удовлетворительными методами определения хрома являются колориметрические и объемный. Объемный метод основан на окислении хрома до хромата, прибавлении избыточного количества сульфата железа (II) и титровании избытка последнего перманганатом. Колоримет- [c.540]

    Дифенилкарбогидразид (дифенилкарбазид) является важным аналитическим реактивом. Применяется он главным образом для колориметрического определения хрома и как индикатор при меркуриметрическом определении галоидов. [c.92]

    Фосфор в силоксановой резине определяют в сернокислом растворе колориметрически в виде фосфорномолибденовой сини при Х = 680 нм [234, 235] после отделения двуокиси кремния. Бор определяют также в сернокислом растворе путем титрования ш елочью с маннитом [247]. Хром определяют сразу после выщелачивания содового плава в воде колориметрическим методом в виде хромата натрия. Определение олова основано на обратном комплексонометрическом титровании хлоридом цинка в среде с pH = 5 [223, 230]. Этот метод применим, если отсутствуют элементы, которые тоже титруются в этой среде. В противном случае необходимо олово отделить (см. разд. П. 10.3). [c.113]

    Имеется другой вариант колориметрического метода определения фосфора в хроме [1215]. После растворения навески в смеси царской водки и H IO4 Сг переводят в r(VI). Фосфор осаждают аммиаком с А1 (ОН)з в качестве коллектора. As и Ge удаляют, до- бавляя НС1 и НВг во время нагревания раствора с H IO4. [c.138]

    Ход анализа. Навеску 2 г металла растворяют при нагревании в смеси. 25 мл серной (1 5) а 5 мл фосфорной кислот, после растворения навески окйсляют железо азотной кислотой, упаривают до дыма, охлаждают, прибавляют 50 мл воды, 5 мл 1%-ного раствора нитрата серебра, нагревают до кипения и окисляют хром и могущий присутствовать в пробе марганец 10 мл 10%-ного раствора персульфата аммония. Избыток персульфата удаляют кипячением, а марганцевую кислоту восстанавливают хлоридом натрия (5 мл 5%-ного раствора). После охлаждения титруют раствором соли Мора, концентрация которого определяется количеством хрома в титруемом растворе. Можно титровать либо весь раствор, либо, переведя его в мерную колбу, титровать только аликвотную часть (в зависимости от содержания хрома и от взятой навески). Из этого же раствора можно определять и ванадий, как указано в соответствующем разделе. Описанным методом определяют от 0,03 до 0,15% хрома в различных чугунах, сталях и в стандартном образце стали № 20-Г. Метод считается наилучшим (по сравнению с колориметрическим или обычным объемным) методом определения хрома. [c.339]

    Никель образует нерастворимую соль Ы12Р207 светло-зеленого цвета. В присутствии больших количеств никеля и железа (например, при анализе никелевых сплавов, сталей и т. п.) этот метод непригоден. В этом случае кобальт отделяют от сопутствующих элементов. Отделение кобальта от железа, никеля, хрома и других элементов производят нитрито калия, осаждая его в виде Кз[Со(Ы02)в]- Железо отделяют иногда при помощи гидроокиси цинка, большие количества никеля — осаждением совместно с гидроокисью никеля в присутствии окислителя. Однако эти методы дают менее надежные результаты и требуют много времени. В данном случае значительно проще экстрагировать роданидный комплекс кобальта амиловым спиртом, связывая железо фторидом. Присутствие меди, особенно в больших количествах, мешает колориметрическому определению кобальта, так как образуется роданид меди (II) бурого, почти черного цвета. Влияние меди (П) устраняют, восстанавливая ее сульфитом, до одновалентной. Однако большой избыток сульфита тоже вреден, так как ослабляет окраску ро- [c.130]

    Хром может быть определен различными методами. Наиболее важными из них являются персульфатно-серебряный (феррометрический), колориметрический и потенциометрический. Колориметрический метод очень чувствителен и применяется для определения малых количеств хрома (до 0,2%). Потенциометрический метод по своей точности является арбитражным и применяется для определения хрома в чугунах, сталях и ферросплавах. [c.330]

    Разделения с применением ртутного катода при постоянной силе тока, хотя и непригодны для электрогравиметрических определений, однако часто используются как вспомогательное средство при выполнении анализа другими методами. Касто приводит обзор различных методов электролитического удаления примесей металлов из урана. Особенно интересная методика, разработанная Фурманом и Брикером, заключается в количественном осаждении различных металлов на небольшом ртутном катоде. Ртуть удаляют дистилляцией, а остаток анализируют полярографическим или колориметрическим методом. Такая же методика может быть применена для выделения следов примесей из других металлов, например алюминия, магния, щелочных и щелочноземельных металлов, которые, подобно урану, при электролизе в кислом растворе не образуют амальгам. Паркс, Джонсон и Ликкен применяя несколько небольших порций ртути, удаляли из растворов большие количества тяжелых металлов, а именно меди, хрома, железа, кобальта, никеля, кадмия, цинка, ртути, олова и свинца, и сохраняли в нем полностью даже небольшие количества алюминия, магния, щелочных и щелочноземельных металлов для последующего определения этих элементов подходящими методами. [c.350]

    Определение суммарного содержания шестивалентного и трехвалентного хрома. Отбирают такой объем профильтрованной сточной воды, чтобы в нем содержалось 1,0—50,0 мкг хрома в обеих его формах, шестивалентной и трехвалентной, разбавляют до 50 мл, нейтрализуют (необходимое для нейтрализации количество едкой щелочи находят титрованием другой порции пробы такого же объема, как и взятой для анализа), прибавляют 2—3 капли 2 н. серной кислоты, 10 мл раствора персульфата аммония И кипятят 20—25 мин. Весь хром при этом окисляется до шестивалентного, избыток персульфата разлагается. (Последнее очень важно, так как даже следы нер аз ложившегося персульфата аммония мешают последующему колориметрическому опоеделе-нию с дифенилкарбазидом.) [c.165]

    Эта схема предусматривает прежде всего выделение остаточной кремнекислоты. Затем отделяют железо, титан и редкоземельные металлы, осаждая их едким натром в присутствии окислителя и карбоната натрия. В фильтрате остаются алюминий, фосфор, ванадий, хром и бериллий. Из осажденных элементов железо выделяют в виде сульфида осаждением сульфидом аммония в присутствии тартрата аммония титан определяют в фильтрате колориметрически, после разрушения винной кислоты цирконий о< аждают в растворе, содержащем перекись водорода, употребленном для определения титана, и, наконец, редкоземельные металлы осаждают вместе с гидроокисью титана в фильтрате от осаждения циркония и отделяют от титана в виде фторидов. Окраска фильтрата, после осаждения едким патром указывает па присутствие хрома или урана, если последние содержатся в количествах, достаточных, чтобы окрасить раствор. Дальше веду-т анализ следующим путем. Сначала, определяют ванадий объемным методом, затем выделяют фосфор в виде фосфоромолибдата аммония и, наконец, осадок, полученный осаждением аммиаком фильтрата от фосформолйбдата, испытывают на алюминий, бериллий и другие элементы. [c.119]

    Для колориметрического определения ртути применяются также дифенилкарбазид и дифенилкарбазон . В обоих случаях получается окрашенное в синий или пурпурный цвет производное дифенилкарбазона, переходящее в коллоидный раствор. Определению мешают цинк, свинец, медь, железо, хром, никель и кобальт, от которых ртуть надо нредвари- [c.255]

    Наилучшим колориметрическим методом определения малых количеств оло1 а, по-видимому, является метод, основанный на реакции его с дитиолом (1-метил-3,4-димеркаптобензолом). Этот реактив образует с оловом (II) розово-красный осадок, а при малых количествах олова— коллоидный раствор, для стабилизации которого прибавляют агар-агар. Мешают висмут, медь, серебро, ртуть, молибден, ванадий, теллур, мышьяк, сурьма, германий, большие количества хрома, никеля и кобальта. Доп. ред.  [c.344]

    Небольшие количества урана можно определить колориметрически, способом, подобным способу определения хрома (стр. 595) в растворах, содержаш их едкий натр и ггерекись натрия, сравнением окраски раствора с окраской обработанного таким же способом стандартного раствора урана или фотометрическим измерением светопоглощения раствора при 425 ммк .  [c.532]

    Известен колориметрический метод определения хрома с комплексоном III (этилендиаминтетраацетатом натрия ). Метод специфичен, мешают только окрашенные катионы (своей окраской), но сравнительно мало чувствителен (оптимальные концентрации хрома 5—80 мг1л). Светопоглощение получаемого красно-фиолетового раствора измеряют, применяя зеленые светофильтры (длина волны 550 ммк). Доп. ред.  [c.597]

    На возможность колориметрического определения ниобия по его реакции с роданидом в солянокислых растворах, содержащих хлорид олова (II) и винную кислоту, впервые указали Л. Н. Моньякова и П. Ф. Федоров По их наблюдениям образующееся в этих условиях соединение экстрагируется эфиром, и содержание ниобия можно определить по интенсивности желтой окраски эфирного слоя. Механизм этой реакции и влияние на нее различных факторов, подробно изученные И. П. Алимариным и Р. Л. Подвальной , рассмотрены ниже. Титан также дает окрашенный в желтый цвет роданидный комплекс, но чувствительность реакции на титан во много раз меньше, чем на ниобий, и при соотношении ] Ь Т1 = 1 30 еще возможно достаточно точное определение ниобия при условии, если концентрация Т10г в анализируемом растворе не превышает 0,3 мг в 10 мл. Тантал в условиях определения ниобия дает с роданид-ионами бесцветный комплекс. Определению ниобия мешают молибден, фольфрам, уран, ванадий, железо, хром, кобальт, медь, золото и платина, образующие в этих условиях окрашенные соединения с роданидом. При экстрагировании эфиром устраняется влияние хрома, урана, железа и меди, которые остаются в водном слое. Совместно с ниобием эфиром извлекаются окрашенные роданиды молибдена, вольфрама, титана, кобальта и йлатины. Соединения золота, селена и теллура восстанавли-. ваются до элементарного состояния и покрывают стенки сосуда, что мешает наблюдению окраски ниобиевого комплекса. [c.689]


Смотреть страницы где упоминается термин Хром определение колориметрическое: [c.541]    [c.168]    [c.669]   
Комплексоны в химическом анализе (1955) -- [ c.88 ]

Комплексоны в химическом анализе (1960) -- [ c.184 , c.186 ]




ПОИСК





Смотрите так же термины и статьи:

Колориметрическое определение



© 2025 chem21.info Реклама на сайте