Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент в подвижной и неподвижной

    Ионообменная хроматография — сорбционный динамический метод разделения смесей ионов на сорбентах, называемых ионо-обменниками. При пропускании анализируемого раствора электролита через ионообменник в результате гетерогенной химической реакции происходит обратимый стехиометрический эквивалентный обмен ионов раствора на ионы того же знака, входящие в состав ионообменника. Ионообменный цикл состоит из стадии поглощения ионов (сорбции) ионообменником (неподвижной фазой) и стадии извлечения ионов (десорбции) из ионообменника раствором, который проходит через сорбент (подвижная фаза или элюент). Разделение ионов обусловлено их различным сродством к ионообменнику и происходит за счет различия скоростей перемещения компонентов по колонке в соответствии с их значениями коэффициентов распределения. [c.223]


    Газо-хроматографическое исследование растворения газов и паров в подвижных жидкостях позволяет легко и очень точно (точнее, чем в статических методах) определить коэффициенты активности растворов. Рассмотрим здесь простейший пример определения предельного (ири малых концентрациях) значения коэффициента активности данного летучего компонента, растворимого в неподвижной жидкости, путем исследования отклонения реальной кривой равновесия газ—раствор от закона Рауля. Согласно закону Рауля давленне р пара данного компонента над раствором равно  [c.592]

    Коэффициент перевода неподвижных извлекаемых запасов в подвижные. [c.17]

Рис. 1.5. Гистограмма эффективности МУН от коэффициента перевода неподвижных извлекаемых запасов в подвижные Рис. 1.5. Гистограмма эффективности МУН от <a href="/info/1220984">коэффициента перевода</a> неподвижных извлекаемых запасов в подвижные
    Это обусловливает обратную пропорциональность между изменениями коэффициента диффузии О и ньютоновской вязкости в системе (ср. рис. 1.10 и 4.16). Очевидно при других температурах будет наблюдаться та же тенденция. Определенный таким образом коэффициент диффузии характеризует лишь подвижность молекул растворителя относительно материала сополимера. Однако последний не является неподвижным, а в процессе диффузии, как было отмечено ранее, изменяет свою структуру вследствие гибкости макроцепей. Большая гибкость макроцепей сополимера приводит к нарушению ближнего порядка в областях, примыкающих непосредственно к гибкому участку, и проявляется в положении эффективной локальной вязкости в окрестностях участка цепи. Это локальное снижение вязкости обусловливает проникновение растворителя в сополимер еще и за счет подвижности макроцепей (см. связи г, 4 — 1, 7 (г = 1, 2,. . . , Л ) на рис. 4.5). [c.327]

    В распределительной жидкостной хроматографии обе фазы — подвижная и неподвижная — жидкие, несмешивающиеся друг с другом. Разделение веществ основано на различии в их коэффициентах распределения между этими двумя фазами. Для того, чтобы зафиксировать неподвижную жидкую фазу в колонке (или в тонком слое), применяют тонкоизмельченный твердый пористый носитель, который удерживает эту фазу на своей поверхности. Подвижная фаза движется через колонку и вступает в контакт с неподвижной фазой. Поскольку поверхность раздела между двумя фазами очень большая, то имеет место быстрое установление равновесия распределения компонентов смеси менаду этими двумя фазами. Если компоненты имеют хотя бы небольшое различие в коэффициентах распределения между подвижной и неподвижной фазами, то они движутся в колонке с неодинаковой скоростью и при достаточной длине колонки происходит их полное разделение. [c.333]


    Последнее уравнение показывает, что величина смещения зоны Р) находится в обратной зависимости от коэффициента распределения, не зависит от концентрации вещества и от присутствия других компонентов в растворе. Можно считать, что величина Я характеризует поведение данного компонента в колонке. Если в подвижной фазе находится практически весь компонент, то = 1, и, следовательно, это вещество не задерживается на колонке, а движется вместе с подвижным растворителем. Например, если в распределительной колонке отношение площадей поперечного сечения подвижной, неподвижной и инертной фаз равно Л Л Л = [c.69]

    В работе [145] проведено экспериментальное определение зависимости коэффициента присоединенной массы шара, колеблющегося в жидкости с большой частотой (Ке>10 ) в окружении неподвижной упорядоченной системы шаров. В интервале значений от 0,05 до 0,45 экспериментальные данные хорошо описываются уравнением ф) = = /г (1 + 3,52(р ). По данному уравнению значение коэффициента присоединенной массы в стесненном потоке при <,г = 0,45 превышает значение этого коэффициента для одиночной частицы в 1,8 раза. Остается неясным, однако, в какой мере закрепленная решетка шаров может моделировать подвижную дисперсную систему. [c.85]

    Эго смещение Дд можно связать далее с происходящей в то же время х диффузией %юлекул газа через границу между подвижным газом и неподвижной его пленкой у стенок капилляра. Это можно сделать также с помощью уравнения Эйнштейна, введя соответствующий этому процессу коэффициент динамической диффузии ОдГ [c.587]

    Здесь а и с — концентрации адсорбата в неподвижной и подвижной фазах Г] = X при параметре формы зерна К = О — для призматического или цилиндрического зерна длиной 2/ , боковые поверхности которого непроницаемы (пластина) т) = / —радиальная координата для цилиндрического зерна с непроницаемыми торцами (/С = 1) или сферического зерна (К = 2) / — время D — аффективный коэффициент диффузии. Насыщение идет с внешней поверхности гранулы, на которой поддерживается постоянная концентрация с = Со. [c.35]

    Коэффициент распределения зависит от природы определяемого вещества, природы подвижной и неподвижной фаз, темпе- [c.186]

    Разделение методом газовой хроматографии, так же как и методом жидкостной хроматографии, основано на различии в коэффициентах распределения компонентов смеси между неподвижной и подвижной фазами. За ходом разделения наблюдают, непрерывно исследуя газ, выходящий из хроматографической колонки с помощью прибора-детектора. Последний непрерывно измеряет концентрацию компонентов у выхода из колонки и преобразует ее в электрический сигнал, регистрируемый потенциометром. На ленте самописца получается выходная кривая, которую называют хроматограммой. Основными типами детекторов являются детекторы, основанные на измерении теплопроводности, плотномеры, ионизационные и термохимические детекторы. Наиболее распространенным детектором, реагирующим на изменение теплопроводности, является катарометр, действие которого основано на разности теплопроводностей компонента смеси и газа-носителя. [c.353]

    Известно, что любая механическая система стремится занять наиболее устойчивое равновесие с минимумом потенциальной энергии. Например, частицы сыпучего материала стремятся перемещаться либо в направлении силы тяжести, либо в направлении действия приложенных к ним нагрузок. Сопротивление частиц сдвигу обусловлено действием множества элементарных сил внутреннего трения в точках контакта, направленных в сторону, противоположную сдвигающей силе и определяемых коэффициентом (или углом) внутреннего трения, который характеризует границу подвижного и неподвижного состояния сыпучего мате-рпала. Трепне частиц на границе двух сред (зернистый слой — стенка емкости) характеризуется углом внешнего трения. Угол естественного откоса определяет свободную поверхность сыпучего материала. [c.26]

    Разделение элементов группы платины основано на использовании различных значений коэффициентов распределения их хлоридных комплексов между подвижной и неподвижной фазами. [c.213]

    Разделение фиолетовых чернил Радуга-2 на красители кислотный ярко-красный и кислотный фиолетовый С основано на различии их коэффициентов распределения между подвижной и неподвижной фазами. Кислотный фиолетовый С продвигается вместе с фронтом растворителя. После высушивания хроматограммы зону красителя кислотного фиолетового С вырезают, экстрагируют и определяют его содержание фотометрически по собственной окраске. [c.222]

    Распределительная хроматография на колонках аналогична адсорбционной колоночной хроматографии. Однако в данном случае роль сорбента играет неподвижный растворитель. Распределение веществ между двумя фазами в распределительной колоночной хроматографии обычно определяют отношением количества вещества в неподвижном растворителе к количеству вещества в подвижном. Такое распределение концентраций называется коэффициентом распределения данного вещества  [c.154]


    Сыпучесть кокса. Сыпучесть материалов определяет подвижность кусков (зерен) относительно друг друга и по поверхности твердых тел и характеризуется коэффициентами внутреннего и внешнего трения. Определение коэффициентов внутреннего и внешнего трения р ё-комендуется проводить по методу Р. Л. Зенкова [47]. График предельных касательных напряжений строится по результатам испытаний фракций кокса на специальном приборе - трибометре (рис. 6). По направляющим неподвижного желоба 1 в этом приборе движется ко- [c.28]

    Была предложена [97 ] методика распределительной хроматографии с использованием карбамида в качестве неподвижной фазы для разделения парафиновых углеводородов нормального строения, входящих в состав твердых нефтяных парафинов. Основой дл] разработки методики послужило принципиальное положение, заключающееся в том, что хроматографическое распределение происходит вследствие различия коэффициентов распределения компонентов разделяемых смесей между двумя несмешивающимися жидкостями, одна из которых прочно удерживается твердым носителем [99], а вторая — свободно перемещается по колонке. Благодаря многократности перераспределения компонентов смеси с различной растворимостью по длине колонки в первую секцию колонки выносятся наиболее растворимые в подвижной жидкой фазе компоненты разделяемой смеси. Твердой фазой служил карбамид, фиксированный на твердой фазе жидкостью — [c.71]

    Ранее указывалось, что допускается существование различных коэффициентов кинематического трения на подвижной пластине (1ш1) и неподвижных стенках (/ о). [c.243]

    Расход в прямоугольном канале. Профиль давления, обусловленный сдвигом при транспортировке материала в прямоугольном канале, задается уравнением (8.13-7). Канал имеет размеры W = 6,35 см и Н == 1,27 см. Давление в точке, расположенной выше по движению, равно 68947,6 Па, а в точке, расположенной ниже по движению, — 384038,1 Па расстояние между точками 25,4 см. Коэффициенты трения на подвижной стенке 0,5, а на неподвижных стенках 0,2. Верхняя стенка движется под углом 15° к продольной оси канала со скоростью 25,4 см/с. Насыпная плотность материала 480 кг/м , = 0,5. Рассчитайте массовый расход. (Ответ 1,27X X 10 2 кг/с.) [c.250]

    Поскольку вначале мы приняли, что коагуляция является быстрой, скорость ее определяется только частотой соударений между частицами, которая в свою очередь зависит от концентрации частиц и интенсивности броуновского движения. Последняя, как известно, характеризуется коэффициентом диффузии. Принимая это во внимание, вычислим константу Т , предположив, что сближение частиц обусловлено диффузией и что они имеют сферическую форму. Прежде всего решим эту задачу для одной неподвижной частицы. Любая другая частица, которая приблизилась бы к ней настолько, что расстояние между их центрами стало бы равным их удвоенному радиусу, слипнется с нею. Условие слипания двух частиц, радиус каждой из которых равен г, не может измениться, если неподвижную частицу заменить другой частицей с радиусом 2г, а подвижную рассматривать как точку. Тогда вопрос сведется к диффузии точечных масс к сфере радиусом Я = 2г. [c.199]

    Разница между рассмотренным и реальным случаями заключается в том, что частица, по отношению к которой исследуется диффузия, на самом деле не неподвижна, а имеет ту же подвижность, что и диффундирующие к ней частицы. Поэтому необходимо трактовать эту проблему как относительное движение двух подвижных частиц. Если х — среднеквадратичное перемещение одной из них, а л 2 —другой (за одинаковое время 1), то, согласно формуле Эйнштейна для броуновского движения, соответствующие коэффициенты диффузии равны [c.201]

    Своего расцвета хроматография достигла после разработки А. Мартином и А. Джеймсом газо-жидкостной распределительной хроматографии, в основе которой лежит различие в коэффициентах распределения компонентов анализируемой смеси между жидкой неподвижной фазой и подвижной газообразной. Этот вариант хроматографии оказался наиболее универсальным, чувствительным и селективным методом анализа. [c.11]

    В жидкостно-адсорбционной хроматографии вследствие медленности процессов доставки вещества из объема подвижной фазы (малое значение коэффициента диффузии в жидкости) к поверхности неподвижной фазы (адсорбента) вклад в размывание, обусловленный малой скоростью массопередачи, может быть значительным. Особенно ои возрастает вследствие медленности диффузии в адсорбенте, т. е. определяется внутренней массопередачей. [c.72]

    Коэффициент диффузии в применяемых жидких фазах в большей степени влияет на эффективность работы колонки, чем на длительность анализа. Высокая скорость диффузии в неподвижной фазе оказывает благоприятное действие на быстрое установление равновесия между анализируемыми веществами и несмешивающимися фазами и, таким образом, уменьшает высоту тарелки. В то же время большая скорость диффузии в подвижной фазе оказывает противоположное действие. [c.216]

    Если неподвижной фазой является жидкость, то элементарным актом, как правило, является акт растворения (абсорбции) анализируемого вещества в растворителе — жидкой фазе и распределение его между подвижной и неподвижной фазами. В этом случае мы имеем дело с распределительной хроматографией. В основе разделения смеси анализируемых компонентов лежит различие в коэффициентах распределения веществ между жидкими неподвижной и подвижной фазами или же между жидкой и газообразной фазами. Первый вариант называется жид-костно-жидкостной, второй — газо-жидкостной распределительной хроматографией. Последняя нащла наибольшее распространение и имеет значительное число различных видоизменений. [c.13]

    Здесь 5 — площадь сечения колонки и 5 — площади поперечных сечений подвижной и неподвижной фаз соответственно О — коэффициент распределения. [c.334]

    Для математического описания функции распределения введем следующие обозначения h — высота, эквивалентная теоретической тарелке Fs — поперечное сечение неподвижной фазы F,n — поперечное сечение подвижной фазы F=FJ+Fm, V — объем растворителя, необходимый для развития хроматограммы /С — коэффициент распределения  [c.235]

    Хроматографией называется физико-химический метод разделения смеси веществ, заключающийся в перемещении смеси потоком подвижной фазы вдоль слоя сорбента (неподвижная фаза). Вследствие различия коэффициентов распределения для отдельных компонентов смеси между подвижной и неподвижной фазами происходит селективное замедление движения компонентов, что приводит при достаточной длине слоя сорбента к образованию зон отдельных компонентов смеси. [c.45]

    Распределительная хроматография основана на количественном различии в коэффициентах распределения компонентов разделяемой смеси между неподвижной и подвижной несмешивающимися жидкими фазами. Вещество присутствует в обеих фазах в виде раствора. Неподвижная фаза удерживается сорбционными силами на поверхности [c.153]

    Прежде чем начать опыты с данной трубкой, необходимо измерить катетометром расстояние h , от вершины столбика до среза трубки. После этого налить в трубку исследуемую жидкость и поместить ее в прибор для измерения коэффициентов ди( )фузии и создать желаемые условия. Навести одно из неподвижных делений шкалы окулярмикрометра на вершину столбика, а подвижную черту — на нижнюю точку мениска жидкости. Измерить расстояние от столбика до мениска Д) о делениях окуляр-микрометра. Измерение А1 повторить через равные промежутки времени восемь — десять раз за время опыта. Опыт закончить, когда Л уменьшится по сравнению с первоначальной величиной не менее чем на 50 малых делений окуляр-микрометра, отсчитываемых по барабану. Определить снижение уровня жидкости в трубке Ак см), равное изменению Д за время опыта, [c.433]

    В основе распределительной хроматографии лежит поглощение разделяемых веществ жидкостью, т. е. растворимость главное условие для разделения — различие в растворимости. Природа сил межмолекулярного взаимодействия имеет тот же характер, что и в адсорбционной хроматографии. Но в первую очередь это вандерваальсовы силы. Однако, поскольку разделение протекает на границе двух фаз, несмешивающихся между собой — неподвижной (жидкости) и подвижной (жидкости или газа), — то правильнее сказать, что в данном случае процесс разделения определяется различием коэффициентов распределения разделяемых веществ между обеими фазами. Отсюда происходит и само название данного варианта хроматографии — распределительная. [c.13]

    Согласно сделанным допущениям составим уравнение материального баланса для некоторого слоя в хроматографической колонке (рис. 21). Пусть 5 — объемная скорость проявляющего растворителя или газа-носителя при поперечном сечении колонки 5, занятого подвижной фазой а — скорость потока на единицу поперечного сечения колонки, занятого подвижной фазой Са — концентрация введенного компонента в колонку в неподвижной фазе с — концентрация компонента в подвижной фазе К = сд/с — коэффициент распределения (при линейной зависимости Сд от с) Уа — [c.37]

    В специальной колонке для распределительной хроматографии отношение объемов подвижной, неподвижной и инертной фаз A,n. As A = = 0,20 0,05 0,75, а ВЭТТ = 0,005 см. Нужно разделить вещества с коэффициентами распределения, равными 1,50 и 1,55. Рассчитайте а) значение Rf для обоих веществ б) объем элюанта, необходимый на перемещение пиков полос каждого из веществ на 10 сж по колонке сечением 1 см-, в) объем элюанта, необходимый для вымывания 0,13% менее сорбируемого компонента из колонки длиной 30 см г) процентное содержание более сорбируемого компонента, вышедшего из колонки при условиях, заданных в п. в . [c.574]

    Усилия, действующие па звенья и кинематические пары дро бнлки, определяют силовым расчетом через усилие дробления, при ложенное к подвижной щеке. Экспериментально установлено, что прн дроблении в щековых дробилках материалы разрушаются пре имущественно от возникновения напряжений растяжения (раскалы вания). Это объясняется воздействием рифлений дробящих плит причем удельная нагрузка распределяется равномерно ио всей поверхности дробящих плит и может быть принята при дроблении гранита ((Т,,,к "= 300 МПа) q 2,7 МПа. Для предотвращения сра-бать[вания предохранительных устройств или элементов при работе дробилок усилие рассчитывают с учетом коэффициента превышения номинальной нагрузки k = 1,5 следовательно, усилие дробления, действующее на подвижную и неподвижную щеки, Рд,, = kqFp , где, Рдр — площадь поверхности дробящей плиты. При силовом расчете силы тяжести и силы инерции звеньев не учитывают, так как они па несколько порядков меньше усилия дробления. [c.167]

    Если и подвижная и неподвижная фазы являются жидкостями, хроматография называется жидкостно-окидкостной. Если подвижной фазой служит газ, хроматография является газо-жид костной. К этому виду хроматографии относятся все ее видоизменения, разделение смеси веществ в которых основывается на различии в коэффициентах распределения компонентов разделяемой смеси между двумя фазами. [c.12]

    Как следует из уравнения (1.15), эффективный коэффициент вихревой диффузии определяется двумя факторами размерами зерен адсорбента и коэффициентом нихр, учитывающим степень равномерности и плотности упаковки. Регулярность набивки, размеры частиц, их форма и изодисперсность могут способствовать уменьшению различий в скоростях потока подвижной фазы и тем самым уменьшению вклада вихревой диффузии в размывание. Таким образом, вихревая диффузия определяется в первую очередь не природой подвижной фазы, а геометрической характеристикой неподвижной фазы. Учитывая обычные размеры зерен в высокоскоростной жидкостно-адсорбционной хроматографии ( з 10 см) линейную скорость подвижной фазы (а—Ю см с- ) и коэффициент молекулярной диффузии в жидкой фазе (5 —10- см -с- ), можно рассчитать примерный вклад вихревой диффузии в ВЭТТ. Он оказывается равным 10 см, т. е. на порядок больше, чем вклад продольной диффузии. [c.72]

    При проявлении хроматограммы происходит разделение смешанных зон на зоны, в которых находятся индивидуальные веш,ества, и перемещение этих зон вдоль колонки (рис. 6.2). Те вещества, которые имеют большие значения коэффициентов распределения между подвижной и неподвижной фазами, пермещаются быстрее вдоль колонки и, при достаточном промывании колонки подвижной фазой, будут первыми выходить из нее. Можно собрать фракции фильтрата (элюата), содержащие отдельные компоненты смеси, и проанализировать их подходящими методами конечного определения. [c.321]

    Бумага адсорбирует разделяемые ионы, вследствие чего хроматограммы часто получаются нечеткие, с размытыми краями зон. Для подавления сорбции определяемых ионов к органическому растворителю, например к бутиловому спирту, прибавляют соляную кислоту. Тогда бумага насыщается сильно сорбирующимся ионом водорода и сорбция разделяемых катионов резко снижается, а их разделение происходит только вследствие различий в коэффициентах распределения между подвижной и неподвижной фазами. Оптимальное соотношеиие соляной кислоты и органического растворителя можно выбрать, хроматографируя стандартные растворы известного состава. Для последующей работы с исследуемыми растворами неизвестного состава выбирают тот растворитель, с которым получены наиболее четкие результаты. [c.337]

    Важной характеристикой в бумажной хроматофафии является величина Л/ = f Jfx, где / - смещение зоны компонента Л -смещение фронта растворителя (рис. 24.1). В начальный момент времени хроматофафируемая проба Л наносится на начальную (стартовую) линию бумажной полоски, которую погружают нижним концом в подвижную фазу (растворитель). При движении по бумаге растворитель увлекает компоненты пробы, и они движутся с разной скоростью, определяемой коэффициентом распределения вещества между подвижной и неподвижной жидкими фазами. Если компоненты окращены, через некоторое время на хроматограмме можно будет увидеть отдельные цветные пятна. Компонент 1 будет иметь Л/, = / /Л. компонент 2 - [c.293]

    Разделение двухкомпонентной смеси обусловлено в основном двумя факторами а) различием коэффициентов распределения б) фактором размывания- хроматографических полос разделяемых веществ, обусловленным влиянием вихревой и мЬ 1екулярной диффузии, а также конечностью скорости массопередачи между подвижной и неподвижной фазами. [c.62]


Смотреть страницы где упоминается термин Коэффициент в подвижной и неподвижной: [c.105]    [c.215]    [c.32]    [c.690]    [c.243]    [c.17]    [c.218]    [c.154]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент подвижности



© 2024 chem21.info Реклама на сайте