Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подвижная фаза при газо-жидкостной хроматографии

    Подвижная фаза — газ (пар). Газо-жидкостная хроматография. Для каждого из четырех видов хроматографии возможны три методики анализа. [c.16]

    Как следует из названия, в этом хроматографическом методе используют газовую подвижную фазу и жидкую стационарную фазу. Газо-жидкостную хроматографию часто объединяют с газовой адсорбционной хроматографией, и имеется немалое число книг под названием Газовая хроматография , в которых дается обзор обоих методов. [c.566]


    Мы рассматриваем диффузию растворенного вещества в направлении потока. Величины коэффициентов диффузии молекул растворенного вещества в жидкостях примерно на пять порядков меньше, чем в газах. В газовой хроматографии размывание полосы, вызываемое продольной молекулярной диффузией, фактически полностью обусловлено диффузией в подвижной фазе. В жидкостной хроматографии, где используются жидкие подвижные фазы, ситуация более сложна. [c.33]

    В газовой хроматографии свойства газа-носителя, как правило, значительно отличаются от свойств исследуемого вещества. Поэтому пламенно-ионизационный детектор, детекторы по удельной теплопроводности или плотности могут непосредственно применяться для определения малых концентраций исследуемого вещества в газе-носителе. К сожалению, подвижная фаза в жидкостной хроматографии по физическим свойствам весьма схожа с исследуемым веществом. Поэтому для детектирования в жидкостной хроматографии необходимо или предварительно удалять растворитель (пла-менно-ионизационный детектор), или использовать такие свойства исследуемого вещества, на которые не влияет подвижная фаза (ультрафиолетовый детектор), или измерять одно из общих физических свойств раствора в последнем случае необходимы тщательная компенсация различий и температурный контроль (рефрактометрический детектор). Единого универсального детектора для жидкостной хроматографии не существует, но для каждого конкретного случая можно подобрать наиболее подходящий детектор. Не создан и такой детектор, который бы измерял сразу несколько физических свойств, но в случае необходимости можно использовать ряд детекторов. [c.75]

    Метод хроматографического разделения, основанный главным образом на различии в адсорбционном сродстве компонентов по отнощению к активному твердому веществу Метод хроматографического разделения, основанный преимущественно на различии в растворимости (абсорбции) компонентов в неподвижной фазе (газо-жидкостная хроматография) или различием в растворимости (абсорбции, распределении) компонентов в подвижной и неподвижной фазах (жидко-жидкостная хроматография) [c.215]

    Если подвижная фаза — газ, то хроматография называется газовой, если подвижная фаза — жидкость, хроматография называется жидкостной. [c.41]

    Существует несколько разновидностей хроматографического анализа, но все они основаны на том же принципе распределения компонентов анализируемой смеси между двумя несмешивающимися фазами неподвижной и подвижной. Неподвижной фазой является твердый или жидкий сорбент, а подвижная фаза (газ или жидкость) пропускается через колонку с сорбентом, участвуя в переносе разделяемых компонентов. Если подвижная фаза — газ, то хроматография называется газовой, если подвижная фаза — жидкость, хроматография называется жидкостной. [c.29]


    В зависимости от агрегатного состояния подвижной фазы хроматографию подразделяют на газовую (подвижная фаза — газ), жидкостную (подвижная фаза — жидкость) и сверхкритическую флюидную, где в качестве подвижной фазы используется флюид. [c.16]

    Газо-жидкостная хроматография обладает двумя преимуществами по сравнению с обычной распределительной хроматографией (в системе жидкость—жидкость). Во-первых, скорость распределения вещества между подвижной газовой фазой и стационарной жидкой фазой (в виде пленки) намного выше, чем в случае жидкой подвижной фазы. Эффективность разделения в связи с этим существенно повышается, так как процесс может быть проведен с достаточно высокой скоростью даже при использовании очень длинных колонок. Во-вторых, могут быть разработаны (во многих случаях это уже весьма остроумно сделано) чувствительные и точные методы детектирования и автоматической регистрации фракций газового элюата. Однако применение метода ограничено устойчивостью разделяемых веществ при температурах, необходимых для создания достаточного давления пара. В одной из недавних работ [17] было показано, что на усовершенствованных [c.23]

    Классические хроматографические методы, которые известны уже в течение нескольких десятилетий,— хроматография на колонке с окисью алюминия (Цвет, 1906 г. Кан, Винтерштейн и Ледерер, 1931 г.), хроматография на бумаге (Мартин и Синг, 1941 г.) — основаны на принципе распределения компонентов смесей между подвижной и неподвижной фазами. Последней при адсорбционной хроматографии является активная поверхность твердого адсорбента, а при распределительной хроматографии — тонкая пленка жидкости, удерживаемая твердым носителем и ограниченно смешивающаяся с подвижной фазой. Разновидность распределительной хроматографии, при которой подвижной фазой является газ, называется газовой хроматографией [134а]. Этот метод пригоден для разделения газов, а также жидких или твердых веществ, которые могут быть превращены в пары без разложения. В зависимости от системы, в которой проводится разделение, различают две принципиальные разновидности газовой хроматографии хроматографию в системе газ — твердое вещество (адсорбционная газовая хроматография) и хроматографию в системе газ — жидкость (газо-жидкостная хроматография). В первом случае разделение происходит за счет адсорбции веществ на активной поверхности твердого адсорбента, во втором — за счет их растворения в тонкой пленке нелетучей жидкости с достаточно большой поверхностью. Практически далеко не всегда можно провести четкую грань между обоими принципами разделения. Так, при хроматографии в системе газ — адсорбент пленка адсорбированного вещества может иметь такие свойства, что на некоторых этапах работы возникают условия для хроматографии в системе газ — жидкость. Вследствие этого происходит дезактивации- некоторых активных центров адсорбента, которую иногда вызывают умышленно [74—76]. С другой стороны, при хроматографии в системе газ — жидкость носитель, на котором закреплена жидкая фаза, может обладать и некоторыми адсорб-цйонными свойствами. Это, как правило, мешает разделению и поэтому нежелательно. [c.487]

    Метод газо-адсорбционной хроматографии (ГАХ) основан на различной адсорбируемости веществ на поверхности твердых неподвижных фаз. В газо-жидкостной хроматографии (ГЖХ) разделение основано на различной растворимости анализируемых веществ в жидкой стационарной фазе, нанесенной на твердый пористый носителЕ). Возможна также комбинация подвижная жидкая фаза — твердый сорбент — жидкостная адсорбционная хроматография (ЖАХ). Вариантами ЖАХ являются тонкослойная и бумажная хроматография. Прн использовании в качестве подвижной и неподвижной фазы жидкости реализуются различные варианты жидкостной хроматографии. [c.289]

    Газо-жидкостная хроматография. Если стационарная фаза в хроматографических системах должна быть либо твердой, либо жидкой, то подвижная фаза может быть и газообразной. Соответственно существуют две системы газовая хроматография на твердой фазе и газо-жидкостная хроматография (ранее эти методы называли газовой хроматографией).Метод газо-жидкостной хроматографии, который получил более широкое применение в органической химии, состоит в следующем. Образец вводят в нагреваемую систему, откуда вещества в виде паров выносятся инертным газом (подвижная фаза — азот, гелий, аргон) и проходят через стационарную жидкую фазу, покрывающую частицы твердого носителя кизельгур, целит) или располагающуюся в виде поверхностных пленок в капиллярах. Распределение происходит между жидкой и газовой фазами, и компоненты смеси передвигаются только за счет движения газовой фазы. При постоянных условиях опыта (носитель, стационарная фаза, скорость потока, давление и температура) время удержания, т. е. время от момента введения образца до выхода вещества из колонки, является характерным для каждого соединения. Площадь пика служит мерой количества вышедшего соединения. [c.23]


    В жидкостно-жидкостной рас- Рис. 5. Блок-схема хроматографа пределительной хроматографии подача подвижно Фазы (газ, и ид-получил распространение метод двт - [c.17]

    В распределительной (абсорбционной) хроматографии используется различие в растворимости компонентов разделяемой смеси в подвижной фазе (газ или жидкость) и несмешивающейся с ней ЖИДКОСТИ, неподвижно закрепленной на пористом инертном носителе, В равновесных условиях различие в растворимости приводит к различному соотношению концентраций в обеих фазах, определяемому коэффициентом распределения отсюда и название этого варианта хроматографии — распределительная. В сущности, разделение при этом достигается за счет многократно повторенных актов экстракции. Широко применяемыми вариантами распределительной хроматографии являются бумажная и газо-жидкостная. [c.48]

    Газо-жидкостная хроматография. Разделение компонентов газовой смеси в газо-жидкостной хроматографии основано на их различном распределении между неподвижной жидкой фазой и подвижной газообразной. [c.37]

    Член С определяется недостаточной скоростью массопереноса и возникающей вследствие этого не-равновесностью хроматографического процесса. Причинами этого могут быть медленная диффузия в неподвижной жидкой фазе, медленная адсорбция или десорбция с поверхности. В случае газо-жидкостной хроматографии постоянная С зависит от толщины неподвижного слоя жидкости, коэффициента диффузии растворенного вещества в этой жидкости и объема жидкости по сравнению с объемом подвижной фазы. Наибольщее влияние, по-видимому, оказывает толщина неподвижного слоя жидкости. Заметное повышение эффективности наблюдается на колонках с очень тонкими слоями жидкой фазы. Достижению равновесия способствует высокая температура и низкая вязкость растворителя. В общем случае зависимость ВЭТТ от V для газовой и жидкостной хроматографии имеет вид, представленный Яа рис. 28.5. [c.592]

    В газо-жидкостной хроматографии подвижной фазой также служит газ, а неподвижной — нелетучая жидкость, нанесенная на твердый носитель и растворяющая компоненты анализируемой смеси (распределительная хроматография). [c.93]

    В газо-жидкостном хроматографе веш ество вносят в колонку — длинную узкую трубку с нелетучей жидкой фазой, нанесенной на пористый инертный твердый материал, Через колонку пропускают струю газа-носителя при определенной, регулируемой температуре. Вещество в виде паров движется по колонке с током газа, непрерывно подвергаясь распределению между газовой (подвижной) и жидкой (неподвижной) фазами. Время, в течение которого данное вещество проходит колонку (так называемое время удерживания) зависит от летучести вещества и его способности абсорбироваться данной жидкой фазой. Оба свойства определяются тонкими особенностями структуры конкретного соединения, так что время удерживания весьма характерно и индивидуально для каждого вещества в конкретных условиях разделения. Поэтому, если в колонку внесена смесь веществ, то ее компоненты появляются на выходе из колонки в разное время достигается их разделение. После выхода из колонки газовый поток попадает в детектор, регистрирующий появление вещества, а сигналы с детектора через усилительную схему посту- [c.74]

    Для исследования смесей высокополярных и труднолетучих веществ успешно применяют сочетание высокоэффективной жидкостной хроматографии и масс-спектрометрии. Объединение этих двух методов сопряжено еще с большими, чем при газовой хроматографии, трудностями, поскольку для сохранения вакуума в ионном источнике необходимо удаление растворителя (подвижная фаза), поступающего из хроматографа со скоростью 0,5-5 мл/мин. В пересчете на газ это составляет 100-300 мл/мин. Для этой цели разработан ряд устройств, которые, однако, не всегда универсальны. [c.45]

    Газовая, или парофазная, хроматография представляет собой самое последнее достижение хроматографии, а ее открытие вызвало колоссальный интерес среди аналитиков, технологов и исследователей [1, 35, 38, 44, 51, 68]. Термин газовая хроматография включает все хроматографические методы, в которых подвижная газовая фаза несет вещества, предназначенные для разделения, через неподвижную фазу, помещенную в подходящий контейнер. Если неподвижная фаза является твердым адсорбентом, то метод называют газо-адсорбционной хроматографией. Если неподвижная фаза — абсорбирующая жидкость, нанесенная на инертный материал, то метод называют газо-жидкостной хроматографией. [c.315]

    Газо-жидкостная хроматография — разделение газовой смеси вследствие различной растворимости компонентов пробы в жидкости или различной стабильности образующихся комплексов. Неподвижной фазой служит жидкость, нанесенная на инертный носитель, подвижной — газ. [c.331]

    В настоящее время распределительная хроматография широко используется для анализа газов. Такой вид хроматографии получил название газо-жидкостной хроматографии. В газо-жидкостной хроматографии распределение компонентов анализируемой смеси происходит между газообразной и жидкой фазами. Неподвижной фазой является жидкость, нанесенная на твердый инертный носитель. Подвижной фазой — газ-носитель, в котором содержится анализируемая смесь. При пропускании газа-носителя через колонку протекают многократные процессы растворения и выделения газа в жидкой пленке. Разделение сложной смеси здесь также определяется коэффициентом распределения анализируемых веществ между фазами. [c.310]

    В газо-жидкостной хроматографии неподвижной фазой служит нелетучая жидкость (силиконовое масло, высококипящие углеводороды), смачивающая частицы твердого инертного носителя (керамика, стекло, полимеры и пр.), которым заполнена хроматографическая колонка. Последняя представляет собой длинную и тонкую металлическую трубку и-образной или спиральной формы, изготовленную из нержавеющей стали, алюминия или меди (рис. ХП1.7). Подвижной фазой (элюентом) яв-ля ется газ (гелий, аргон, водород, азот или диоксид углерода), пропускаемый через колонку с постоянной скоростью. С помощью термостата в колонке можно поддерживать высокую постоянную температуру, выбранную исходя из данных о температуре кипения определяемых компонентов, и их термической устойчивости. Обычно эта температура чуть выше точки кипения самого высококипящего компонента в анализируемой смеси. [c.422]

    Газо-жидкостная распределительная хроматография — метод, в котором неподвижной фазой является нелетучая жидкость, распределенная на твердом инертном носителе. Метод газо-жидкостной хроматографии основан на различии в коэффициентах распределения разделяемых веществ между неподвижной жидкой фазой (растворителем) и подвижной фазой (газом-носителем). [c.154]

    Колонку заполняют инертным пористым материалом (кизельгур, пемза, специально отработанные кирпичи и др.), пропитанным растворителем. Этот растворитель, имеющий большую поверхность и служащий неподвижной фазой , должен обладать малой летучестью при температуре колонки. Подвижной фазой в газо-жидкостной хроматографии является газ, применяемый в качестве элюента (гелий, водород, азот и др.). [c.279]

    В настоящее время существует множество хроматофафиче-ских приборов, используемых для конфоля и автоматизации производственных процессов, а также для научных целей. Это газовые (подвижная фаза - газ), жидкостные и газожидкостные хроматографы все они обычно колоночного типа. [c.293]

    Флюидиая К. X. основана на использовании в качестве подвижной фазы СО2, N30 и др. газов, сжатых до сверхкритич. состояния (флюиды), и полых капиллярных колонок с внутр. диаметром 25-100 мкм. Растворяющая способность флюида сопоставима с растворяющей способностью подвижной фазы в жидкостной хроматографии, а значение коэф. диффузии растворенных во флюиде в-в на 2-3 порядка выше, чем в жидкостной хроматографии. Это св-во флюида в сочетании с относительно низкой его вязкостью позволяет увеличить эффективность разделения. При разделении многокомпонентных смесей в-в коэф. распределения и время элюирования регулируют программированием плотности флюида. Для детектирования применяют универсальный к орг. в-вам пламенно-ионизац. детектор, оптич. спектральный детектор или масс-спектрометр. [c.309]

    В соответствии с агрегатным состоянием подвижной фазы различаю жидкостную хроматографию (ЖХ) и газовую хромато1тэафию (ГХ). Кроме того, по совокупности возможных комбинаций разделения различают следующие виды хроматографии жидкость — твердая фаза (ЖТХ), жидкость — жидкость (ЖЖХ), газ — твердое тело (ГТХ) и газожидкостную (ГЖХ). [c.55]

    Газохроматографические детекторы для жидкостной хроматографии. Целая группа детекторов, разработанных для газоноГ . хроматографии, с успехом применяется в жидкостной хроматографии, так как в принципе почти любой газохро.матографиче-ский детектор можно нспользовать в жидкостной хроматографии. При этом возникает задача предварительного удаления растворителя из потока перед детектором. При жидкостной хроматографип нз колонки, так же как и из газохроматографической колонки, выходит бинарная смесь подвижная фаза — анализируемый компонент. В то время как газ-иоситель в газовой хроматографии сам по себе не детектируется высокочувствительными ионизационными детекторами, подвижная фаза в жидкостной хроматографии, обычно представляющая собой одно из органических веществ илн их смесь, детектируется. Так как само анализируемое вещество содержится в подвижной фазе в очень незначительном количестве, то ионизационный детектор будет определять в основном только поток подвижной фазы. Поэтому при жидкостной хроматографии обязательным условием является предварительное удаление подвижной фазы, что обеспечивается главным образо.м путе.м исиарения подаваемого на детектирование потока. Благодаря большой разнице в те.л1-пературах кипения легколетучая подвижная фаза испаряется, а анализируемые вещества остаются и подвергаются детектированию. [c.348]

    Подача растворителя. В газовой хроматографии подача подвижной фазы —газа-носителя —осуществляется сравнительно просто подключением к установке баллона с сжатым газом. В жидкостной хроматографии для непрерывной подачи растворителя под давлением требуются специальные приспособления, создающие необходи- [c.85]

    Механизм распределения компонентов смеси между фазами может быть различным по этому признаку различают адсорбционную и распределительную (различная растворимость в неподвижной жидкой фазе) хроматографию. Механизм распределения непосредственно связан с агрегатным состоянием подвижной и неподвижной фаз различают газовую или газоадсорбционную хроматографию (подвилшая фаза — газ, неподвижная — твердое тело, механизм — адсорбционный), га-зонсидкостную (подвижная фаза — газ, неподвижная — вы-сококипящая жидкость, механизм распределительный), жидкостную (подвижная и неподвижная фазы — жидкости, механизм распределительный). Два первых типа хроматографии наиболее широко применяются в современной аналитической практике, особенно для анализа сложных органических смесей. Способы размещения неподвижной жидкой фазы также разнообразны. Наиболее широко распространенный, классический способ — колоночная хроматография. Стеклянная или металлическая колонка наполняется слоем однородных по раз- [c.232]

    Основные виды хроматографии. В зависимости от агрегатного состояния подвижной фазы различают газовую, флюидную (или сверхкритич. X. с флювдом в качестве элюента см. Капиллярная хроматография) и жвдкостную X. В качестве неподвижной фазы используют твердые (или твердообразные) тела и жвдкости. В соответствии с агрегатным состоянием подвижной и неподвижной фаз различают следзтощие ввды X. 1) газо-твердо( ную X., или газоадсорбционную хроматографию 2) газо-жидкостную хроматографию (газо-жвд- [c.314]

    Для анализа синтетических и природных высокомоле1 Шф-ных соединений чаще всего используется получивший в последние 1 оды наибольшее развитие метод жидкостной хроматографии [1,2]., Положения, установленные для газовой хроматографда, можно без каких-либо изменений использовать в жидкостной хроматографии, если при этом учесть количественное различие свойств газов и жидкостей (табл.5.1 ). Так, коэффициенты взаимодиффузии в жидкостях примерно в раз меньше, чем в газах. Вязкость подвижной жидкой фазы примерно в 100 раз больше, чем вязкосгь газа. Кроме того, в газовой хроматографии пренебрегают взаимодействием между подвижной и неподвижной фазами в жидкостной хроматографии такие взаимодействия играют важную роль. Тем не менее теоретическая Трактовка жидкостной хроматографии проще, чем газовой, так как жидкие подвижные фазы несжимаемы. Таблица 5.1 [c.83]

    Хроматографические методы (обьтчно это газо-жидкостная хроматография—ГЖХ, высокоэффективная жидкостная хроматография— ВЭЖХ, тонкослойная хроматография—ТСХ) относятся к наиболее общим способам идентификации и, хотя уступают ИКС по специфичности, но зато применимы практически для всех лекарственньтх средств. В USP ХХПТ имеется даже общая статья Идентификация с помощью тонкослойной хроматографии (<201>,с.1724). Согласно этой статье, идентификация проводится на силикагеле в подвижной фазе хлороформ-метанол-вода (180 15 1). Очевидно, что данная подвижная фаза не может применяться во всех случаях, но она может служить отправной точкой при исследованиях. [c.460]

    Жидкостная распределительная хроматография была предложена в 1942 г. биохимиками А.Дж. П. Мартином и Р. Л. Синджем. Эти ученые разработали первую общую теорию хроматографии и предположили, что сочетание газовой подвижной фазы с жидкостной стационарной фазой имело бы важные преимущества. За этим в хроматографии последовал еще один пробел, и хотя некоторые из ее разновидностей стали уже популярными, однако ни одна из работ по использованию сочетания газа с жидкостью не была опубликована вплоть до 1952 г., когда Мартин совместно с А. Т. Джеймсом описали такой метод. Эта работа словно взрывная волна дала толчок развитию хроматографии, которое продолжается до настоящего времени. Метод имел настолько большое значение, что уже к 1956 г. лаборатории органической химии во всем мире использовали газо-жидкостную хроматографию. В настоящее время каждый год литература по хроматографии насчитывает тысячи работ и еще больше по применению этого метода. Ретроспективно, ранние работы Мартина и Синджа явились решающими в развитии распределительной хроматографии, и в 1954 г. они были удостоины Нобелевской премии по химии. [c.530]

    Объем пробы. Во всех рассуждениях о размывании зоны мы основывались на предположении о бесконечно тонкой исходной зоне. Практически всякое введение пробы характеризуется некоторым конечным объем пробы . Это происходит по следующим причинам. Если пробу смешивают и разбавляют необходимым объемом подвижной фазы, а затем вводят в колонку, вводимый объем может быть очень большим, независимо от фактического количества пробы. Если фактическое количество пробы велико, то вводимый объем с пробой также может быть значительным. Это особенно характерно для газо-жидкостной хроматографии, где жидкую пробу испаряют в камере ввода хроматографа (испарителе). Три микролитра метанола, после испарения при 250 °С и прн [c.545]

    Газовая хроматография представляет собой процесс, в котором разделение смеси производится с помощью подвижной газовой фазы, проходящей над сорбентом. Метод подобен широко применяемой жидкостной распределительной колоночной хроматографии, за исключением того, что подвижная жидкая фаза заменена движущейся газовой фазой. Газовая хроматография (ГХ) подразделяется на газо-адсорбцио нную хроматографию (ГАХ), где сорбентом является твердое тело с большой поверхностью, и газожидкостную хроматографию (ГЖХ), где сорбент — нелетучая жидкость, нанесенная на инертный твердый носитель. Подвижная фаза, или газ-носитель, представляет собой инертный газ, который пропускается с постоянной скоростью через насадочную колонку — трубку небольшого диаметра, содержащую сорбент. Аналитическая колонка длиной около , Ъ м ж внутренним диаметром 4 мм может иметь эквивалент от 700 до 4000 теоретических тарелок (смотри ниже) в зависимости от типа и равномерности заполнения насадки. То, что говорится о газо-жидкостной рома-тографии, об ее аппаратуре, детекторах, взятии пробы газа и т. д., в основном применимо к газо-адсорбционной хроматографии, которая является исторически более ранним методом и применяется преимущественно в случае анализа газов или относительно неполярных веществ с высокой летучестью. Область применения газо-жидкостной хроматографии значительно шире, так как этот метод применим к более широкому многообразию веществ и вместе с тем допускает применение не только насадочных, но и капиллярных колонок. В этой главе рассматривается только газо-жидкостная хроматография. [c.43]

    Принцип распределения вещества между двумя фазами, находящимися в равновесии, лежит в основе всех важнейших процессов разделения, осуществляемых в области экстракции, дистилляции, противоточного распределения и в различных методах хроматографии. В колоночной хроматографии одна фаза находится в неподвижном состоянии внутри колонки, а другая совершает поступательное движение. При этом происходит перенос вещества вдоль колонки со скоростью, кото]в ая лищйеделяете равнов есие распределения вещества между-двумя фазами. В газожидкостной хроматографии стационарной фазой является жидкость, нанесенная в виде пленки на тонкоизмельченном, инертном, твердом носителе, а подвижной фазой — газовый поток, протекающий над неподвижной жидкой пленкой. Поведение вещества, проходящего через такую колонку, описывается теорией теоретических тарелок, первоначально разработанной для жидкостной хроматографии Мартином и Синджем [7 ]. Эта теория была позднее применена к газо-жидкостной хроматографии Джеймсом и Мартином [5 ]. Многие расчеты, произведенные на основе теории, хорошо согласуются с экспериментально найденным распределением вещества в статических системах. Кроме того, расчет эффективности колонки на основе теории распределения позволяет вычислять различные экспериментальные параметры колонки и сравнивать их влияние на разделение. Рассматриваемая теория имеет еще и то преимущество, что она делает возможным сопоставление газо-жидкостной хроматографии с другими методами разделения, которые могут быть описаны на основе концепции теоретических тарелок. [c.75]


Смотреть страницы где упоминается термин Подвижная фаза при газо-жидкостной хроматографии: [c.92]    [c.9]    [c.40]    [c.466]    [c.20]    [c.116]    [c.553]   
Смотреть главы в:

Хроматография газов -> Подвижная фаза при газо-жидкостной хроматографии




ПОИСК





Смотрите так же термины и статьи:

ГазЬ-жидкостная хроматография

Газо-жидкостная хроматографи

Жидкостная хроматография подвижной фазы

Жидкостная хроматография хроматографы

Подвижные фазы в жидкостной

Фаза подвижная

Фазы п хроматографии

Фазы п хроматографии подвижные

Хроматография газо-жидкостная

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте