Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий от анионов

    Цирконий и гафний взаимодействуют с кислотами лишь в тех слу-ча 1х, когда создаются условия их окисления и образования анионных комплексов Э (IV). Так, мелкораздробленные Zr и Hf, как и Ti, относительно легко растворяются в плавиковой кислоте  [c.530]

    Получены гибридные неорганические сорбенты с привитыми органическими функциональными группами. На таких сорбентах сорбция достаточно полно протекает в статических условиях. Амфотерные гидратированные оксиды — оксид алюминия, диоксиды циркония, титана, олова и др. — в зависимости от pH раствора проявляют способность обменивать катионы или анионы. В щелочной среде они ведут себя как катиониты, а в кислой среде — как аниониты. [c.317]


    Амперометрическое титрование применяют часто для определения анионов. Практическое значение имеет также определение катионов по методу осаждения с применением органических реактивов. Так, раствором купферона титруют титан, цирконий, раствором оксихинолина — кадмий, цинк, алюминий. Известны, кроме того, методы определения катионов посредством титрования раствором комплексона. [c.439]

    При увеличении числа связей, образуемых данным ионом металла с соседями, возрастает прочность металла и повышается энтальпия испарения (сублимации). Полинг, рассматривавший структуры решеток металлов с позиций теории ВС, отметил, что прочность металлов возрастает при переходе от металлов, имеющих малое число валентных электронов, к металлам переходного характера с его точки зрения металлы, имеющие частично незаполненные d-зоны, располагают большим числом электронов для осуществления межионных связей, а потому и должны быть прочнее. Энтальпия сублимации, отнесенная к одному электрону, действительно изменяется в ряду металлов от I до V группы таким образом, что ее максимальное значение приходится на титан, цирконий и гафний, а энергия, отнесенная к одному электрону, колеблется в пределах 84—168 кДж/моль, что близко к обычным энергиям химической связи. Необходимо, конечно, учитывать, что распределение энергии по большему числу связей скажется на падении ее значения на одну связь. Значение энтальпии испарения металлов имеет, в общем, тот же порядок, что и у ионных кристаллов, однако проводить сравнения трудно из-за влияния природы анионов. Соответствующие значения для хлоридов калия, натрия, магния лежат в пределах 125—168 кДж/моль, а энтальпия испарения металлического натрия равна 100,3. [c.285]

    Титан, цирконий и гафний практически никогда в соединениях не присутствуют в виде одноатомных ионов и не образуют типичных ионных связей. Их соединения имеют преимущественно неионный характер и в большинстве случаев являются комплексными. Т1, Zr и Hf могут быть центральными атомами как сложных катионов, так и сложных анионов, [c.213]

    Склонность циркония к образованию внешнесферных комплексов еще более характерна с такими анионами-слабыми комплексообразователями, как С1 и СЮ4 . [c.290]

    Комплексообразование. Цирконий и гафний образуют большое число комплексных соединений с анионами и нейтральными молекулами. По сути дела, подавляющ,ее большинство соединений Zr и Hf комплексные. Относительная устойчивость комплексных соединений с различными анионами зависит от заряда и радиуса аниона. Если исходить из ионных радиусов, то порядок, в котором должны быть расположены одновалентные анионы по склонности к комплексообразованию, следующий  [c.305]


    ОН и соответствующие анионы. 2г и НГ образуют комплексные соединения одинакового типа, но комплексы циркония более устойчивы, чем гафния. Исключение составляют роданидные комплексы. В табл. 78 даны для сопоставления константы образования и константы устойчивости комплексных ионов циркония и гафния [12, 15, 61, 71]. [c.306]

    Основной структурной единицей всех силикатов является ортосили-катный ион 8104 , схематически изображенный на рис. 14-29. Каждый атом кремния связан ковалентными связями с четырьмя атомами кислорода, занимающими вокруг него вершины тетраэдра. Анион 8104 встречается в простых минералах-цирконе (гг8104), гранате и топазе. Два кремнекислородных тетраэдра могут иметь общий мостиковый атом кислорода и образовывать дискретные анионы 8120 " кроме этого, три тетраэдра могут образовывать замкнутый цикл, изображенный на рис. 14-30. Наиболее известным примером этого малораспространенного типа сили- [c.633]

    Из нитратных сред экстрагируются координационно-сольва-тированные сульфоксидами соли, поэтому экстракция большинства металлов из нитратных сред с небольшой и постоянной ионной силой не зависит от варьирования концентрации водородных ионов. При экстракции циркония, гафния с ростом концентрации водородных ионов происходит увеличение коэффициента распределения (Д), что связано, по-видимому, с плохой экстракцией присутствующих гидролизованных форм катионов данных м< .таллов при низких концентрациях водородных ионов. При извлечении из хлоридных растворов сульфоксиды, по аналогии с ТБФ, могут экстрагировать хлориды ме- аллов по двум механизмам в виде координационио-сольватированных соединений МеХ и комплексных анионов, входящий, в состав ионных ассоииатов. [c.39]

    Неорганический ионит — гидратированный диоксид циркония (ГДЦ) — в зависимости от pH раствора проявляет способность к катионному ил анионному обмену. Селективность ГДЦ к молибдат- и вольфрамат-ионам настолько высока, что эти анионы сорбируются даже в слабощелочной среде (примерно рН= 11) из минерализованных растворов. В то же время селективность ГДЦ к указанным анионам переходных металлов различается, что позволяет использовать данный сорбент для их разделения и выделения иэ минерализованных растворов. При этом разделение молибдена(VI) и вольфрама (VI) на ГДЦ производится более простым стпособом, чем на органических анионитах. [c.332]

    Другие реакции имеют более широкий диапазон применения. Например, малорастворимая в воде хлораниловая кислота, растворы которой интенсивно поглощают свет в зеленой области спектра, образует осадки с такими катионами, как кальций, стронций, барий и цирконий. Уменьшение оптической плотности раствора при образовании осадков можно использовать для определения катионов. Этот реагент пригоден и для колориметрического определения анионов. Например, малорастворимый хлоранилат бария в присутствии следовых количеств сульфата переходит в нерастворимый в воде сульфат бария, а эквивалентное количество хлораниловой кислоты переходит в раствор. Содержание ее можно определить по увеличению светопоглоще-ния раствора. Аналогично можно проводить анализ хлоридов и фторидов в растворе, используя хлоранилаты ртути или лантана. [c.366]

    Впервые этот метод был использован в 1951 г. Бийво для определения абсолютной конфигурации аниона винной кислоты в двойной натрийрубидиевой соли Na, КЬ-С4Н40б-4Н20. В качестве источника использовалось ТСа-излучение циркония с 0,0784 нм. При этом атом Rb давал аномальное рассеяние, так как поглоще- [c.223]

    Очень часто бидентатно координируемый оксо-анион занимает позицию в узле координационного полиэдра, характерного для низкого КЧ. Например, нитрат-ионы в анионе соединения (МО)2[У( Оз)5] расположены в вершинах тригональной бипирамиды. Это приводит к появлению специфических (далеких от идеализированных) конфигураций для истинного удвоенного КЧ. Такое поведение особенно характерно для комплексов крупных высокозарядных катионов (тория, циркония, лантана и др.). [c.126]

    Титан и его аналоги покрываются на воздухе чрезвычайно прочной защитной пленкой ЭО2. Поэтому при обычной температуре они коррозионно-устойчивы в атмосферных условиях и химически устойчивы во многих агрессивных средах. Так, коррозионная стойкость титана превышает стойкость нержавеющей стали, В азотной кислоте Ti, Zr и Hf пассивируются. Цирконий и гафний (титан в меньшей степени) устойчивы в растворах щелочей. Концентрированная H I растворяет при нагревании только титан (образуется Ti b), цирконий и гафний в соляной кислоте не растворяются. Они растворяются лишь в тех кислотах, с которыми образуют в процессе взаимодействия анионные комплексы . Например, Zr и Hf можно растворить в плавиковой кислоте или в царской водке  [c.316]

    Хроматографические методы занимают особое место среди физико-химических методов анализа, являясь прежде всего универсальным способом разделения элементов. Они выгодно отличаются от всех других известных методов разделения высокой специфичностью (избирательностью действия), позволяют осуществить разделение весьма близких по свойствам неорганических или органических веществ. Так, например, хроматографическим путем разделяют смеси катионов металлов щелочной группы, щелочноземельных металлов, редкоземельных элементов, элементов-двойников, таких как цирконий и гафний разделяют смеси геометрически изомерных комплексных соединений (например, цис-транс-язомерных комплексов платины или кобальта) отделяют микроколичества трансплутониевых элементов от основной массы урана или плутония, а также от продуктов деления разделяют смеси анионов галидов, кислородных кислот галогенов, фосфорных кислот, аминокислот, смеси органических соединений, являющихся пред- [c.9]


    Наиболее изучены ионообменные свойства гидроксида циркония. Это соединение нерастворимо и устойчиво к действию кислот, оснований, окислительных и восстановительных агентов оно рассматривается как положительно заряженный полимер, состоящий из цепей, частично сшитых в сетку. Из кислых растворов амфотерный гидроксид циркония обменивает на ионы ОН анионы С1", Вг , НОз и особенно 80Г и СГО4. При повышении температуры сушки до 300° С обменная способность 2г(ОН)4 уменьшается незначительно. Из опытов по дегидратации и термогравиметрических измерений следует, что гидроксиды циркония не образуют гидратов определенного состава, и можно допустить, что при осаждении оксидов полимерный ион (2гООН) образует следующую структуру [13]  [c.46]

    К числу металлов с низкой электронной проводимостью окислов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 6 этой главы). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоянного потенциала анодной ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка Ь "а/см . Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии следует рассматривать как довольно условные величины, относящиеся к какой-либо определенной выдержке металла при заданном потенциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что такой переход протекает в три последовательные стадии. Одной из них является переход катионов металла в окисную пленку. Далее следует миграция ионов под действием электрического поля катионов — к раствору, а анионов кисло-юда или ионов гидроксила — к границе раздела окисел — металл. Наконец, последняя стадия представляег переход катионов из окисной пленки в раствор, т. е. самый процесс растворения пленки. Скорость каждой из трех этих стадий зависит от потенциала, и на этом основании процесс растворения металла в пассивном состоянии можно рассматривать как электрохимический. В противоположность этому в классической теории пассивности принимается, что ионы пассивного металла поступают в раствор в результате химического растворения материала пассивирующей окисной пленки в окружающем электролите. [c.202]

    Г идроокиси. Гидроокиси циркония и гафния — гелеобразные осадки, содержащие после промывки и фильтрации от 60 до 95% воды. Выпадение осадков гидроокисей из растворов оксиперхлоратов, оксихлоридов и оксинитратов начинается при добавлении 0,8—0,9 г-экв NaOH или аммиака на 1 г-атом 2г или Hf. Осаждение завершается после добавления 1,75—1,96 г-экв щелочи при pH 1,9—2,5 для циркония и при pH 2,1—2,9 для гафния. Если щелочи добавлено меньше, чем 2 г-экв на 1 г-атом металла, то осадки содержат переменное число анионов. Свежеосажденные гидроокиси стареют при сушке на воздухе, нагревании или стоянии осадков в соприкосновении с раствором, что выражается в потере ими воды и уменьшении растворимости в кислотах. [c.281]

    Ионы [Ме(Н20) ,] не имеющие координированных ОН "-групп пли анионов, существуют только в определенных условиях, например в перхлоратных растворах с концентрацией металлов не более 10 г-атом/л и концентрацией водородных ионов 2 г-ион/л,и выше. В присутствии же анионов-комплексообазователей (N03 , С1 и др.) образуются комплексные ионы типа [Me(NOз)] [Ме(МОз)21 и т. д. С понижением кислотности в растворе появляются ионы [Ме(ОН)] +, Аналогично ведет себя и гафний, хотя степень гидролиза его растворов несколько ниже, чем у циркония первые константы гидролиза для них 1,33-10 и 2,10-10 . При растворении солей 2г и Н в воде равновесие устанавливается крайне медленно. Например, pH раствора оксихлорида циркония становится более или менее постоянным только через сутки после его растворения. В разбавленных растворах солей цирконий преимущественно находится в виде ионов [2г(ОН)з]  [c.282]

    В растворах соединений циркония и гафния с концентрацией более 10 —10 моль/л наряду с гидролизом протекают процессы гидролитической полимерЦзации и образования оловых соединений. В отличие от титана эти процессы ие заходят так глубоко. Наиболее вероятно существование ди-, три- и тетрамерных ионов, имеющих определенную структуру, хотя наряду с ними могут быть и ионы цепочечного строения с молекулярной массой до нескольких тысяч, т. е. приближающиеся по размерам к коллоидным частицам. При гидролизе растворов солей 2г в большинстве случаев даже при нагревании не образуются осадки и Только в нитратных растворах наблюдаются опалесценция и частичное выпадение циркония в осадок. Кислоты препятствуют гидролизу и гидролитической полимеризации, однако и при высокой их концентрации (6 моль/л и выше) в растворах обнаруживаются полиядерные комплексы. Присутствие в растворах анионов — сильных комплексообразователей, например Р", может в значительной мере препятствовать гидролизу и предотвращать образование полиядер- [c.282]

    Гидроокись циркония, высушенная не при очень высокой температуре, обладает ионообменными свойствами. В нейтральной и кислой средах она действует как анионообменник, в щелочной среде способна к катионному обмену. Ионообменные свойства гидроокиси усиливаются, если она содержит в структуре анионы многоосновных кислот НзЗ, Н2С2О4, Н2СЮ4, особенно Н3РО,. Иониты на основе гидроокиси и аморфной двуокиси циркония выгодно отличаются от органических ионообменных смол большей емкостью, высокой механической прочностью, устойчивостью к действию кислот, щелочей и радиации, селективностью и тем, что сохраняют ионообменные свойства до 200° [12, 15, 24, 59—63]. [c.284]

    Весьма прочные комплексы цирконий и гафний образуют с ионами SOf, HSO , С2ОТ и анионами оксикислот. Анионы по их способности координироваться с атомами Zr и Hf должны быть расположены так  [c.305]

    Большое практическое значение имеет электролиз хлоридно-фторидных ванн. Цирконий и гафний вводят в электролит (смесь Na l и K l) в виде K2ZrFe и K2HfPe. Механизм их электролиза полностью не изучен. Можно предполагать, что на катоде идут обратимые реакции диссоциации комплексных анионов, а восстановление идет ступенчато  [c.351]

    Приводятся следующие данные о поглощении катионов и анионов этими материалами а) фосфат циркония из 4-10 М раствора цезия при 310° С поглощает 1,85 ммоль г Сз б) двуокись циркония хорошо поглощает катионы из щелочных и анионы из кислых растворов при 310°С ее емкость по иону Р04 при концентрации НзРОз 0,1 М равна 5,4 ммоль г в нейтральных растворах и при высоких pH емкость 2гОг по анионам мала (см. табл. 41) в интервале температур 25—285° С из нейтральных и очень разбавленных растворов хорошо поглощались продукты коррозии и большинство продуктов деления вероятно, в таких растворах это обусловлено преимущественно явлениями комплексообразования и хемосорбции. [c.196]

    Дезодоранты и озоновый щит планеты. Каждый знает, что дезодоранты — это средства, устраняющие неприятный запах пота. На чем основано их действие Пот выделяется особыми железами, расположенными в коже на глубине 1—3 мм. У здоровых людей на 98—99 % он состоит из воды. С потом из организма выводятся продукты метаболизма мочевина, мочевая кислота, аммиак, некоторые аминокислоты, жирные кислоты, холестерин, в следовых количествах белки, стероидные гормоны и др. Из минеральных компонентов в состав пота входят ионы натрия, кальция, магния, меди, марганца, железа, а также хлоридные и иодидные анионы. Неприятный запах пота связан с бактериальным расщеплением его составляющих или с окислением их кислородом воздуха. Дезодоранты (косметические средства от пота) бывают двух типов. Одни тормозят разложение выводимых с потом продуктов метаболизма путем инактивации микроорганизмов или предотвращением окисления продуктов потовыделения. Действие второй группы дезодорантов основано на частичном подавлении процессов потовыделения. Такие средства называют антиперспира-нами. Этими свойствами обладают соли алюминия, цинка, циркония, свинца, хрома, железа, висмута, а также формальдегид, таннины, этиловый спирт. На практике из солей в качестве антиперспиранов чаще всего используют соединения алюминия. Перечисленные вещества взаимодействуют с компонентами пота, образуя нерастворимые соединения, которые закрывают каналы потовых желез и тем самым уменьшают потовыделение. В оба типа дезодорантов вводят отдушки. [c.107]

    В предыдущем разделе рассматривался вопрос о влиянии катиона, в частности его гидролизующей способности, на прочность водородных связей вода — анион в кристаллогидратах. Цирконий и гафний также являются легкогид-ролизующимися элементами, и более детальное изучение состояния воды и ее связи с анионом и катионом в соединениях 2г и Н может дать дополнительные сведения по структуре этих кристаллов. [c.76]


Смотреть страницы где упоминается термин Цирконий от анионов: [c.514]    [c.418]    [c.417]    [c.565]    [c.38]    [c.196]    [c.214]    [c.38]    [c.497]    [c.23]    [c.234]    [c.109]    [c.154]    [c.653]    [c.183]    [c.203]    [c.300]    [c.303]    [c.450]    [c.65]    [c.208]    [c.182]   
Ионообменные разделения в аналитической химии (1966) -- [ c.224 ]




ПОИСК







© 2024 chem21.info Реклама на сайте