Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфаты влияние па разложение

    Влияние фосфатов на разложение сульфата кальция. Опыты проводили с шихтой, в которой отношение РгОа к СаО изменялось от 2,5 до 6,2%. Содержание P Os в клинкере составляло от 1,5 до 3,5%. [c.64]

    Большое влияние на скорость разложения имеет природа фосфата (общая удельная поверхность элементарных зерен) 55-57 [c.102]

    Изменение степени разложения фосфата во времени в загустевающей пульпе определяется совместным влиянием активности ионов водорода раствора и свойств кристаллизующейся твердой фазы. Поэтому в течение некоторого времени, пока корка на зернах фосфата еще является рыхлой и достаточно проницаемой, про- [c.199]


    Существенное влияние на скорость разложения фосфатов оказывают консистенция пульпы и концентрации реагирующих компонентов. Оптимальная концентрация раствора характеризуется его плотностью, которая не должна превышать 1,55 г/см . Чтобы избежать изменения установившихся концентраций, осуществляют хорошее перемешивание фосфата и кислоты. Перемешивание обычно производят механическим способом. Применение для этого сжатого воздуха связано с усилением вспенивания раствора. Образование пены происходит вследствие выделения газообразных продуктов реакции — двуокиси углерода, фтористого водорода, паров воды и окислов азота, получающихся при частичном разложении азотной Кислоты органическими примесями, которые содержатся в природных [c.560]

    Большое влияние на степень разложения фосфата оказывают примеси, содержащиеся в экстракционной фосфорной кислоте. Поскольку примеси фосфатов алюминия, железа и магния высаливают фосфаты кальция из фосфорнокислотных растворов, то в их присутствии уменьшается теоретическая степень разложения природных фосфатов. [c.321]

    Взаимоотношения между влияниями этих переменных факторов часто весьма любопытны и сложны. Так, в одном случае добавка небольшого количества фосфатного стабилизатора к перекиси, хранившейся в алюминиевой таре, заметно увеличила скорость разложения. Впоследствии оказалось, что сосуд для перекиси был изготовлен из двух различных сортов алюминия добавка фосфата увеличила электропроводность перекиси водорода, а тем самым и скорость электролитической коррозии. В свою очередь это вызвало выделение примесей в раствор перекиси, что суш,ественно повысило скорость разложения. Такой эффект всегда возможен в случае использования разнородных металлов при монтаже аппаратуры для хранения и транспортировки перекиси. Например, при применении нержавеющей стали и алюминия на последнем в точках контакта образуется белый порошкообразный осадок. Дэвис и Киф [26] предлагают изолировать разнородные металлы один от другого подходящими пластиками или по меньшей мере для изготовления большей поверхности брать не катодный металл, а анодный эти авторы показали также, что склонность к электролитической коррозии при более концентрированных растворах уменьшается. [c.141]

    В этих исследованиях не учитывалось влияние фтора, содержащегося в апатите, на растворимость солей, получающихся при кислотном разложении фосфатов, на смещение полей кристаллизации фосфатов и на возникновение новых полей насыщения фтористыми солями. Для физикохимического обоснования процессов получения экстракционной фосфорной кислоты и двойного суперфосфата представляло интерес изучить растворимость а) кремнефторида кальция в водных растворах серной, фосфорной, кремнефтористоводородной, азотной кислот и в смесях фосфорной и кремнефтористоводородной кислот и б) кремнефторида и фосфатов кальция в фосфорной кислоте [7] и в смесях фосфорной и кремнефтористоводородной кислот. [c.32]


    В качестве примера исследования, проведенного с целью установить, какие именно концентрации промотора обеспечивают наибольшее увеличение каталитической активности, рассмотрим изучение влияния фосфата на каталитическую активность палладия при разложении перекиси водорода  [c.287]

    С ростом относительного количества азотной кислоты на единицу апатита уменьшается степень нейтрализации смеси азотной и фосфорной кислот, поэтому возрастает скорость разложения фосфата (рис. XI-6). Влияние начальной концентрации азотной кислоты невелико степень разложения стандартного апатитового концентрата практически не зависит от концентрации кислоты, поддерживаемой обычно в пределах 47—55% [c.397]

    Предварительное прокаливание таких фосфоритов при 850— 1050 °С уменьшает скорость растворения примесей соединений железа и алюминия в серной и фосфорной кислотах скорость разложения фосфатов при этом остается достаточно высокой. Однако даже длительное прокаливание не устраняет полностью отрицательного влияния примесей на качество готового продукта и технологические показатели производства. Поэтому в процессах сернокислотного разло-1Н [c.134]

    При совместном разложении фосфата серной и фосфорной кислотами скорость процесса приближается к оптимальной при концентрации серной кислоты в смеси не более 20%- Отрицательное влияние на кинетику процесса образующихся кристаллических пленок сульфата кальция на зернах фосфата сказывается тем в меньшей степени, чем ниже фактическая концентрация серной кислоты в реакционной смеси. [c.217]

    Улучшения качества различных типов Минеральных удобрений с помощью ионитов МОЖНО достичь либо удалением нежелательных элементов, либо их замещением на полезные элементы удобрений. Например, из фосфорных удобрений наиболее желателен фосфат аммония, который одновременно-является концентрированным азотно-фосфорным удобрением и хорошим компонентом для приготовления смешанных туков. Такие минеральные удобрения могут быть получены на основе обработки растворов азотнокислого разложения фосфоритов ионитами. Из калийных удобрений с высоким содержанием питательного элемента [40—60% КгО] необходимо удалить ионы хлора, оказывающие неблагоприятное влияние как на течение почвенных процессов, так й развитие растений. Метод ионного обмена впервые в СССР использовали в производстве калиевой селитры это позволило получить высококачественный продукт, содержащий 98% КНОз. [c.267]

    Широко известны апатитовые и фосфоритные руды, содержащие в дисперсном состоянии минерал апатит, недоступный растениям. Под влиянием почвенных кислот происходит разложение фторапатита с образованием водорастворимых фосфатов. Практически во всех почвах содержатся органические вещества — продукты [c.142]

    ПИРОФОСФОРНАЯ КИСЛОТА. См. Фосфорная кислота. ПИТАТЕЛЬНЫЙ РЕЖИМ ПОЧВЫ. Содержание в почве доступных растениям форм питательных веществ и изменение его в течение вегетационного сезона. Определяется валовыми запасами элементов и условиями их мобилизации и иммобилизации в почве. Мобилизация питательных веществ, т. е. переход их из недоступного растениям состояния в доступную форму, происходит при участии микроорганизмов под влиянием улучшения водно-физиче-ских свойств и структуры почвы, под влиянием удобрений. Например, известкование повышает доступность почвенных фосфатов и разложение азотсодержащих органических веществ и подвижность некоторых микроэлементов (молибден). Мобилизацш питательных веществ способствуют и сами растения с помощью корневых выделений. Но в почве происходят процессы иммобилизации, т. е. перехода питательных веществ из доступного растениям состояния в недоступную форму. Она сводится главньш образом к биологическому поглощению (связыванию) азота, фосфора и других элементов микрофлорой почвы и высшими растениями (пожнивные остатки и корни растений). Примером ее является разложение в почве соломистого павоза или бедных азотом растительных остатков, при котором микрофлора потребляет минеральный азот и связывает его в органическую (белковую) форму. О масштабах биологического связывания питательных веществ можно судить по тому факту, что большая часть азота и около половины фосфора в почве содержится в форме органических соединений. К иммобилизации относится и явление ретроградации питательных веществ, а также поглощение калия, аммонийного азота и фосфора минералами почвы. П. р. п. под растениями обусловливается потреблением ими элементов питания. Содержание азота зависит также от интенсивности процессов аммонификации и нитрификации в почве. Содержание доступных форм питательных веществ в начальный период роста растений бывает повышенным, затем оно снижается и к концу вегетационного сезона вновь возрастает. П. р. п. определяют периодическими анализами почвы на содержание доступных форм азота, фосфора, калия и других элементов, выражая его в мил.ти- [c.230]


    Известно, что уреазный метод является специфичным для мочевины. Цианамид, дицианамид и гуанилмочевина не оказывают никакого влияния. В присутствии кальциевых солей кальций должен быть удален при помощи углекислого натрия, а избыток карбоната разложен подкисле-нием и продуванием воздуха перед прибавлением уреазы. При анализах удобрительных смесей, содержащих растворимые фосфаты-, последние должны быть удалены гидратом окиси бария, а избыток бария — углекислым натрием. Избыток углекислого натрия затем удаляется подкис-лением. [c.113]

    Некоторые соединения дают различные продукты восстановления уже при небольших изменениях pH рас-тоора [4]. Точнрлй и непрерывный контроль за величиной pH осуществляют потенциометрически [39] Величину pH регулируют или пропусканием СОа или добавлением буферов Применение последних очень ограничено вследствие их каталитического влияния на разложение амальгамы Можно использовать только некоторые нз них, например гликокол, кислый фосфат иатрня Ка2НР04 н борную кислоту [c.56]

    Большое влияние на скорость разложения фосфата в начальный период ока ывает интенсивность и продолжительность перемешивания реагентов п смесителе. Интенсивное перемеиш-вание обеспечивает однородность пульпы, снижает степень пересыщения раствора в пограничном слос, что способствует об разованию более крупных кристаллов сульфата кальция и, следовательно, более проницаемых пленок на зернах фосфата. Это, в свою очередь, ускоряет разложение. Чтобы избежать затвердевания реакционной пульпы в смесителях, продолжительность перемешивания должна быть пе более 5—7 мип. [c.225]

    Отмечается, что в некоторых случаях скорость разложения зависит от сорта стеклопосуды, наличия фосфат-ионов, катионов металлов [227, 229], влияние последних на термодеструкцию ЭДТА будет рассмотрено отдельно в соответствующих разделах. [c.125]

    Образование сульфатной корки на зернах фосфата обусловлено прилипанием э" к ним значительно меньших по размеру (шламовых) кристаллов полугидрата сульфата кальция или ангидрита под влиянием межмолекулярных или электростатических сил притяжения Сульфатный покров образуется в результате прилипания кристаллов с размерами меньше 5—10 мк. Кристаллы крупнее 30—40 мк, близкие по размерам к зернам апатита, почти не прилипают к их поверхности и не образуют шламового покрова. Размеры же образующихся кристаллов сульфата кальция зависят от условий кристаллизации, прежде всего от степени пересыщения жидкой фазы. При периодическом смешении фосфатной муки й серной кислоты, в жидкой фазе в начальный момент имеется лишЯ серная кислота исходной концентрации. В этих условиях для разложения апатитового концентрата должна применяться серная [c.46]

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]

    При уменьшении нормы кислоты до стехиометрической величины и увеличении ее концентрации до 50% Р2О5 и-больше весовое отношение между фосфатом и кислотой Т Ж составляет 1 2. В этих условиях разложение фосфата в первой стадии (до образования насыщенного раствора) протекает в небольшой степени и в течение очень короткого времени (5—10 мин) В дальнейшем начинается кристаллизация новой твердой фазы и по мере израсходования кислоты количество жидкой фазы уменьшается, а количество твердой фазы увеличивается. В результате этого пульпа постепенно густеет и, наконец, полностью загустевает (схватывается), как и при получении простого суперфосфата. Кристаллизация новой твердой фазы и схватывание пульпы происходит тем быстрее, чем выше концентрация исходной фосфорной кислоты. Выделяющиеся кристаллы продукта реакции тесно соприкасаются с непрореагировавшими зернами фосфата и откладываются на их поверхности. Образующаяся корка по мере ее формирования оказывает все большее сопротивление диффузии ионов водорода. Вследствие этого скорость разложения фосфата определяется все нарастающим сопротивлением твердой фазы Суммарное влияние условий протекания процесса в первой стадии и в период образования корки на зернах фосфата предопределяет скорость разложения в загустевающей пульпе. [c.198]

    Процессы в пламенах. Пробу в виде аэрозоля вводят в пламя. Сначала происходит испарение растворителя, затем испарение, разложение, частичная атомизация вещества пробы и после этого возбзтадение атомов в пламени. Так как температура пламен ниже, чем в электрической дуге, то процессы испарения и диссодаации (см. с. 12) оказывают сильное влияние на интенсивность сигнала, поэтому в пламенной фотометрии сильно заметен анионный эффект. Например, излучение стронция сильно гасит РО вследствие образования в пламенах труднолетучих фосфатов и пирофосфатов. Сложность процессов в пламенах обусловливает в некоторых случаях помехи [c.16]

    Фосфор определяют также без отделения фотоколориметриче-скими методами, основанными 1) на образовании восстановленного синего фосфорномолибденового комплекса 2) на образовании желтого фосфорнованадиевомолибденового комплекса. В первом случае определению мешают V, H2S1O3, окислители и сильные восстановители. Кремний удаляют в виде SiF4 после разложения навески [82]. Мешаюш,ее влияние окрашенных катионов (Сг + и др.) компенсируют, применяя в качестве раствора сравнения тот же анализируемый раствор, но без добавления молибдата [И]. Во втором случае As в количестве до 30 мг в 50 мл конечного объема не мешает определению фосфата, Си и Сг мешают. [c.105]

    В присутствии кислорода воздуха термическое разложение сложно-эфирных продуктов (карбоксилатов, фосфатов и силикатов) протекает с возникновением перекисных радикалов, т.е. как термоонислительная деструкция. Образующаяся дри рекомбинации перекисных радикалов карбоновая (или другая органическая кислота) катализирует деструкцию. Аналогичное влияние способны оказывать металлы переменной валентности, вода или иные примеси, содержащиеся в смазочных или полимерных композициях, что сильно усложняет картину термодеструкции ССМ и пластификаторов в реальных условиях их эксплуатации [2-5,12]. [c.19]

    Условия кристаллизации твердых фаз имеют большое значение в производстве суперфосфата, так как они оказывают влияние на скорость процесса разложения природных фосфатов. По мере кристаллизации сульфата кальция реакционная масса затвердевает в результате образования микрокристаллов Са304, удерживающих большие количества жидкости. Затвердевание происходит [c.311]

    Стекло весьма инертно и с успехом применяется для хранения и транспортировки перекиси водорода различной концентрации. Основным недостатком его является хрупкость. Стекло с высоким содержанием силиката, например боросиликатное (стекло пирекс), вызывает меньшее разложение перекиси, чем более щелочное натриевое стекло сосуды из стекла щелочного типа не подходят для хранения высококонцентрированной перекиси. Эмалированные сосуды находят применение для разбавленной перекиси можно думать, что они ведут себя аналогично натриевому стеклу. Скорость разложения перекиси увеличивается при действии солнечного света для снижения влияния этого фактора часто применяют цветную стеклянную тару. Недавно проведено исследование влияния алюминийфюсфатного стекла (флуорекса) на 90%-ную перекись водорода [41]. В сосуде из этого стекла наблюдалось медленное падение концентрации перекиси (в пределах нескольких процентов) в течение месяца при дальнейшем трехмесячном выдерживании изменения концентрации больше не наблюдалось. Это свидетельствует о том, что медленное выщелачивание фосфата оказывает стабилизующее действие. Кварц по инертности незначительно превосходит стекло пирекс. Керамика и каменный товар с низким содержанием железа сравнительно инертны и с успехом применяются при изготовлении резервуаров для хранения перекиси, однако в настоящее время в этом случае предпочитают пользоваться алюминием. [c.149]

    Изучено также влияние различных анионов, например нитрата [254], фторида [161, 250, 255I, хлорида [161, 256[, сульфата [256], цитрата [257], фосфата [255, 258] и ацетата [255[, на каталитическое разложение перекиси водорода солями железа. Цитрат в различных концентрациях может вызывать и активирование реакции и торможение ее, а хлорид (в зависимости от кои-центрации иона окисного железа) может играть роль ингибитора или быть инертным. Другие ионы, например фторид, фосфат и ацетат, являются ингибиторами, так же как и ацетанилид [259]. На стр. 447 и 449 представлены иллюстративные данные, показывающие влияние фосфата и станната. Превосходными промоторами для этого катализа служат и другие добавки в этом отношении изучено влияние меди [161, 164[, молибдена [260], смеси молибдена и вольфрама [261] и одного вольфрама [262]. [c.412]

    Сопоставление степени разложения монокальцийфосфата при одинаковых весовых соотношениях соли и воды в системах СаО—Р2О5—Н О и СаО—РгОб— aSiFg — HgO, представленное на рис. 10, показало влияние фтора на сильное увеличение степени разложения монокальций-фосфата. Под воздействием фтора монокальцийфосфат почти полностью разлагается водой, выделяя в донную фазу дикальцийфосфат, а в раствор — Н3РО4. [c.45]

    На скорость разложения природных фосфатов кислотами влияет тeпeнь измельчения сырья с увеличением тонины помола фос-[зата процесс его разложения фосфорной кислотой ускоряется. Особенно большое влияние на скорость разложения имеет общая /дельная поверхность зерен фосфата кристаллический апатит об-тадает наименьшей удельной поверхностью, поэтому сн разла- ается медленнее, чем, например, желваковые фосфориты с развитой внутренней поверхностью зерен. [c.285]

    Существенное влияние на качество суперфосфата оказывает норма фосфорной кислоты. В начальный период реакции (рис. 17) степень разложения апатита мало зависит от нормы кислоты в пределах 50—130% стехиометрической, поскольку в первый момент реагирует только поверхностный слой зерен и при всех указанных нормах кислоты имеется большой ее избыток. Некоторое увеличение нормы кислоты позволяет несколько увеличить скорость процесса в течение более длительного промежутка времени, однако рост степени разложения фосфата не пропорционален повышению нормы кислоты вследствие неполного ее использования. С увеличением нормы фосфорной кислоты возрастает содержание свободной кислотности в суперфосфате, что потребует в дальнейшем ее специальной нейтрализации для улучшения качества готового продукта. Это экономически нецелесообразно, так как стоимость Р2О5 в фосфорной кислоте значительно дороже, чем в фосфатном сырье. [c.62]

    Влияние температуры на процесс разложения фосфата аналогично влиянию при поточном способе с применением распылительных сушилок. Процесс разложения фосфата фосфорной кислотой сопровождается одновременным образованием насыщенных растворов и кристаллизацией из них солей. Процессы насыщения и кристаллизации ускоряются в случае применения фосфорной кислоты, содержащей более 35% Р2О5. Основная задача стадии смешения фосфатного сырья в данном способе заключается в достижении максимальной степени разложения фосфата и получении пульпы, обладающей минимальной вязкостью, максимальной растворимостью солей в ней и минимальной степенью пересыщения растворов. [c.127]

    Присутствие фосфатов в шихте также не оказывает заметного влияния на процессы разложения сульфата кальция ири обжиге фосфоангидритовой шихты в условиях оптимального содержания углерода. [c.25]


Смотреть страницы где упоминается термин Фосфаты влияние па разложение: [c.220]    [c.331]    [c.328]    [c.591]    [c.262]    [c.451]    [c.178]    [c.74]    [c.266]    [c.528]    [c.528]    [c.331]    [c.286]    [c.108]    [c.337]    [c.316]   
Перекись водорода (1958) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние различных факторов на процесс разложения фосфатов

Природные фосфаты влияние степени измельчения на разложение

Сульфат кальция влияние на разложение фосфатов

Фосфаты разложение



© 2025 chem21.info Реклама на сайте