Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Естественный отбор клеток

    Третьей областью применения теории саморазвития открытых каталитических систем может стать моделирование и перенесение в промышленные реакторы моделей ферментативных систем, представляющих если не всю, то часть живой клетки, обеспечивающей стабильную работу биокатализаторов. Речь идет об освоении каталитического опыта живой природы в том отношении, которое касается стабилизации ферментов и их синтетических аналогов не путем искусственной иммобилизации, а посредством закономерностей, присущих естественному отбору в ходе химической эволюции. [c.210]


    Чрезвычайно важным является то обстоятельство, что интегрированная в хромосому конъюгативная плазмида (например, F-фак-тор Е.соН) не теряет способности инициировать конъюгацию клеток и перенос ДНК из донора в реципиент. При этом ДНК плазмиды, составляющая одно целое с хромосомной ДНК, затаскивает в реципиент хромосому бактерии-донора. Между ДНК донора и реципиента может происходить общая рекомбинация, что приводит к обмену гомологичными генами между клетками бактериальной популяции. Этот процесс — бактериальный аналог полового размножения. Наличие механизма обмена генами очень важно для эволюции бактерий, поскольку, как и в случае патового размножения эукариот, нарушает абсолютную сцепленность генов одной хромосомы и позволяет естественному отбору находить благоприятные комбинации уже присутствующих в популяции бактерий аллельных вариантов генов. [c.128]

    Каким образом увеличивался размер генома клеток при эволюции организмов от низших форм к высшим Изменения формы и поведения организмов обусловлены мутациями, меняющими последовательность аминокислот в белках. Однако такие мутации не могли увеличить количества генетического материала в процессе эволюции. Вполне возможно, что в ряде случаев в клеточное ядро случайно включалась копия одного илн нескольких генов [32а]. Тогда при наличии дополнительной копии гена клетка могла выжить, даже если в результате мутации в одном из парных генов нарушались структура и функция кодируемого им белка если парный ген оставался неповрежденным, организм был способен расти и размножаться. Дополнительный, несущий мутацию ген мог оставаться в нефункционирующем состоянии много поколений. До тех пор, пока этот ген продуцировал безвредные, нефункционирующие белки, он не элиминировался под давлением естественного отбора и со временем мог опять мутировать. Вполне возможно, что в конце концов белок, кодируемый этим многократно мутировавшим геном, оказывался в каком-то отношении полезным для клетки. [c.38]

    Таким образом, для того, чтобы процесс распада органического вещества в живой клетке был наиболее энергетически выгодным, необходимо образование в ходе процесса максимально возможного количества молекул АТФ или восстановленных пиридиновых нуклеотидов. Известные нам процессы распада углеводов, несомненно, являются результатом биохимической эволюции — естественного отбора по эффективности использования энергии для жизненных процессов. Это и определяет высокую энергетическую целесообразность процессов распада углеводов. [c.364]


    Центральной идеей Ру в этих произведениях является представление о функциональном приспособлении эта идея должна, по мысли Ру, служить дополнением к учению Дарвина об эволюции путем естественного отбора особей, выживающих или погибающих в борьбе за существование. Ру сделал механистическую попытку распространить учение о естественном отборе с целых организмов на их структурные компоненты — органы, ткани, клетки и даже молекулы органических веществ. По мнению Ру, все эти компоненты организма находятся в состоянии непрерывной борьбы друг с другом за пищу, место и использование идущих извне раздражений. В результате этой борьбы частей организма, как считал Ру, выживают самые приспособленные компоненты, и, таким образом, создается наиболее целесообразная внутренняя организация живых существ. Источником усовершенствования частей организма, приводящего к их победе в борьбе с другими частями, является, по мысли [c.141]

    Интересный подход к проблемам применения термодинамических методов в биологии разработал Б. Гудвин [14]. Отметив, что понятие организации не имеет четкого определения, и указав, что физическая энергия, физическая энтропия и т. п. почти ничего не дают для понимания биологической организации , этот автор утверждает, что и в этом случае можно с пользой применить формальный математический аппарат статистической физики, если ввести новые величины, которые только аналогичны термодинамическим. Далее он утверждает, что в молекулярной биологии из свойств внутриклеточных элементарных частиц должны быть выведены характерные свойства живой клетки. При этом элементарными частицами Гудвин считает цистрон, репликон и т. п. В популяционной генетике, по его мнению, рассмотрение генов в качестве элементарных частиц обеспечило Р. Фишеру крупный успех, так как естественный отбор удалось рассмотреть как явление, основанное на вариации частот генов в популяции организмов. По этим причинам гены следует трактовать, как макроскопические единицы, для которых можно вывести и соответствующие количественные законы. [c.116]

    В результате естественный отбор оставит те клетки, для которых Таким образом, возникнет штамм с новой [c.331]

    Инстинкты преобладают у беспозвоночных, например у насекомых, короткий жизненный цикл которьгх не оставляет времени на научение методом проб и ошибок. Обеспечивая организм набором готовых поведенческих реакций, инстинкты у насекомых и позвоночных позволяют экономно использовать нервные клетки. Эти реакции передаются из поколения в поколение и, с успехом проходя испытание естественным отбором, очевидно, способствуют сохранению видов. [c.354]

    Гипотеза естественного отбора, постулированная Дарвином и Уоллесом, основывалась на исторических данных. Дарвин считал, что промежуток времени, необходимый для эволюционного изменения популяции, должен быть слишком большим, чтобы такое изменение можно было наблюдать непосредственно. Происходящие в последнее время изменения, связанные с промышленной, технической и медицинской революцией, создают столь сильные давления направленного и дизруптивного отбора, что теперь мы можем наблюдать резкие изменения в генотипе и фенотипе популяций, происходящие достаточно быстро. Открытие в сороковых годах антибиотиков создало сильное давление отбора в пользу бактериальных штаммов, обладающих генетической устойчивостью к антибиотикам. Бактерии очень быстро размножаются и дают ежедневно много поколений и миллионы особей. В результате случайной мутации может появиться устойчивая клетка, потомки которой будут процветать благодаря отсутствию конкуренции со стороны других бактерий, уничтожаемых данным антибиотиком. В ответ на это приходится создавать новые антибиотики для уничтожения устойчивых бактерий, и цикл продолжается. Селективное давление создается также в результате использования таких веществ, как ДЦТ для борьбы с платяной вошью и комарами и антикоагулянт варфарин для уничтожения крыс. После возникновения устойчивости она быстро распространяется по всей популяции. [c.327]

    Этими словами мы хотим подчеркнуть, что особенные, исключительные свойства нейрона — модификация свойств, присущих и другим клеткам организма, В ходе естественного отбора молекулярные машины и разные клеточные устройства приобретают в разных клетках несколько разные функции, при этом сами устройства могут либо несколько меняться, либо использоваться в том же виде, но для другой цели. Раньше мы уже говорили, что ионные насосы и потенциалы покоя имеются у всех клеток организма, а в нервных и мышечных клетках используются для передачи сигналов. [c.177]

    Разнообразные клетки организма выделяют в окружающую среду разные вещества прежде всего, это клетки желез. Существуют специальные клеточные приспособления для выброса секретируемых веществ эти вещества упакованы в мембранные контейнеры, а их выброс регулируется ионами Са , которые входят в клетку через специальные кальциевые каналы. В результате естественного отбора этот механизм используется нервными клетками в конструкции химических синапсов в кон- [c.177]


    В гл. 7 мы говорили о мозаике каналов , которая обеспечивала разным клеткам нужные им свойства, У инфузорий такая мозаика особенно богата, так как она должна обеспечить этой клетке разнообразное поведение. Так что инфузория — интереснейший пример мозаики каналов . С другой стороны, изучение инфузорий дает нам еще один урок. Совместная работа ионных каналов туфельки весьма затрудняет их изучение. Мы так много поняли о туфельке потому, что до этого были изучены клетки других разнообразных животных. Очень полезно сравнивать разные объекты. Оказалось,, что каналы и органеллы туфельки работают в общему на тех же принципах, что и каналы и органы других организмов. Очень интересно было бы выяснить, какие черты этого сходства объясняются наследством, полученным от общего предка, а какие являются результатом естественного отбора, который привел по разным путям к сходным результатам, [c.264]

    Каждый день появляются все новые данные, свидетельствующие о большом разнообразии систем репарации ДНК, функционирующих как в прокариотических, так и в эукариотических клетках. Эволюция этих систем несомненно обусловлена особым значением метаболических путей, обеспечивающих сохранность и точность передачи наследственной информации. В то же время ясно, что никакая система передачи информации не может быть совершенной и допускает возникновение мутаций, которые могут выступать в роли сырья для естественного отбора. [c.127]

    Среда обитания любых организмов подвержена постоянным изменениям. Поэтому можно полагать, что в результате естественного отбора значительные преимущества получили организмы, которые оказались способны регулировать свою генетическую активность для того, чтобы приспосабливаться к изменяющимся условиям окружающей среды. Регуляция генетической экспрессии придает организмам необходимую гибкость в выборе способов утилизации доступных в данной ситуации ресурсов, что позволяет поддерживать максимальную скорость репродукции и обеспечивать устойчивость по отнощению к действию неблагоприятных факторов окружения. Так, бактерии, растущие на богатой среде, содержащей удобный источник углерода, например глюкозу, а также все 20 аминокислот, могут размножаться быстрее, если они не расходуют своих ресурсов на синтез многочисленных ферментов, необходимых для утилизации менее удобных источников углерода или для биосинтеза самих аминокислот. Использовать эти метаболические функции клетке необходимо только тогда, когда вышеназванные компоненты отсутствуют в окружающей среде. Наиболее простой и эффективный контроль генетической активности у прокариот осуществляется на уровне транскрипции. Многочисленные примеры использования регуляции этого типа были обнаружены и изучены для Е.соИ и других бактерий. [c.167]

    Бактерии малы и способны быстро размножаться путем простого бинарного деления. При избытке питательных веществ выживание наиболее приспособленных обычно означает выживание тех, которые быстрее всех делятся. В оптимальных условиях прокариотическая клетка может делиться каждые 20 минут и, таким образом, образовать до 5 млрд. клеток (что приблизительно равно населению земного шара) менее, чем за 11 часов. Благодаря способности быстро делиться бактериальные популяции с легкостью адаптируются к изменениям окружающей среды. Папример, в лабораторных условиях популяция бактерий, поддерживаемая в большом сосуде, за несколько недель благодаря спонтанным мутациям и естественном отбору приобретает способность использовать в качестве источника углерода новые типы Сахаров. [c.22]

    В начале 40-х годов генетики окончательно доказали, что единицы последовательности, называемые генами, определяют структуру индивидуальных белков. Поэтому мутация гена, вызванная изменением последовательности его ДНК, может инактивировать ключевой белок, и клетка тогда погибнет. В результате измененная последовательность ДНК потеряется. Мутация может произойти в несущественном участке и не будет иметь эффекта такие мутации называют молчащими. Очень редко в результате мутации образуется ген с улучшенными или новыми полезными функциями. В этих случаях несущий мутацию организм будет иметь преимущества и мутантный ген может в конце концов путем естественного отбора заменить исходный ген в большей части популяции. [c.129]

    Тем не менее разные сериновые протеиназы имеют совершенно различные функции. Некоторые из аминокислотных замен, обусловивших различия ферментов этой группы, по-видимому, были отобраны в процессе эволюции, потому что привели к изменениям субстратной специфичности и регуляторных свойств белков, что в свою очередь породило все многообразие современных функциональных свойств. Другие аминокислотные замены могли быть нейтральными , т. е. сохранились, потому что не повлияли ни на структуру, ни на функции белка. Поскольку мутирование - процесс случайный, должны были происходить и вредные замены, изменяющие пространственную структуру фермента достаточно сильно, чтобы его инактивировать. Эти измененные варианты были потеряны в процессе эволюции, так как производившие их индивидуальные организмы должны были оказаться в невыгодных условиях и исчезнуть в результате естественного отбора. Поэтому совершенно неудивительно, что клетки содержат целый набор структурно родственных полипептидных цепей, имеющих общих предков, но выполняющих разные функции. [c.147]

    Итак, сохранение вида требует, чтобы половые клетки организмов были защищены от быстрых генетических изменений, но сохранение каждого конкретного индивидуума требует такой же защиты и для всех прочих клеток многоклеточного организма (соматических клеток). Нуклеотидные замены в соматических клетках могут способствовать естественному отбору в пользу тех или иных лучше приспособленных клеток и привести к их неконтролируемому размножению, т. е. развитию рака, на долю которого в Западном полушарии приходится около 20% всех преждевременных смертей. Убедительные данные подтверждают, что гибель людей в данном случае вызвана главным образом накоплением изменений в нуклеотидных последовательностях ДНК соматических клеток. Десятикратное повышение частоты мутаций привело бы, вероятно, к катастрофическому росту раковых заболеваний вследствие того, что чаще возникали бы различные вариантные формы соматических клеток. Таким образом и сохранение того или иного вида с его 60000 белков (стабильность половых клеток), и предотвращение рака, возникающего как следствие мутаций в соматических клетках (стабильность соматических клеток), зависят у эукариот от чрезвычайно высокой надежности сохранения нуклеотидных последовательностей ДНК. [c.279]

    Возможно, что первые РНК-плазмиды напоминали собой вироиды, встречающиеся в некоторых растительных клетках. Эти небольшие кольцевые молекулы РНК (не более 300-400 нуклеотидов) размножаются, хотя они и не кодируют никаких белков (см. рис. 10-61). Не имея капсида, вироиды существуют лишь как голые молекулы РНК и переходят от растения к растению только в том случае, когда и донорная клетка, и клетка-реципиент оказываются поврежденными, т. е. когда межд ними не существует мембранного барьера, который вироид не способен преодолеть. Иод давлением естественного отбора гакие независимо реплицирующиеся элементы могли, очевидно, включать в себя те нуклеотидные последовательности клетки-хозяина, которые облегчали их самостоятельное размножение, в том числе и некоторые последовательности, кодирующие белки. Некоторые известные нам плазмиды действительно достаточно сложны в них закодированы белки и молекулы РНК, регулирующие их размножение, а гакже белки, регулирующие их распределение между дочерними клетками Самые крупные среди известных плазмид представляют собой кольцевые [c.324]

    Исследования на раковых клетках усиливают этот парадокс. Больщинство таких клеток, в том числе и трансформированные хорошо изученными онкогенами, представленными на рис. 13-34, отличаются от их нормальных двойников тем, что для деления им не нужно прикрепляться к субстрату. Поскольку такая независимость от прикрепления дает возможность трансформированным клеткам расти в новых условиях, где нормальные контакты клеток между собой и с матриксом установить нельзя (разд. 13.3.6), можно предполагать, что она явилась результатом естественного отбора клеток, формирующих опухоли. Но почему многие раковые клетки не просто делятся независимо от прикрепления, но не прикрепляются прочно к внеклеточному матриксу лаже тогда, когда такая возможность существует Намек на ответ следует из наблюдений над трансформированными клетками, которые искусственно заставляют прикрепиться к культуральной чашке. Как отмечалось выше, фибробласты куриного эмбриона, трансформированные с помощью v-sr , вьщеляют в больших количествах активатор плазминогена, который ослабляет их прикрепление к чашке. Если такие клетки растут в присутствии антитела, блокирующего активность этой протеазы, го они более прочно прикрепляются к чашке и в го же время становятся более подверженными нормальному социальному контролю клеточного деления вместо образования многослойной структуры они проявляют тенденцию прекращать деление при взаимном контакте. Таким образом, прочное сцепление с внеклеточным матриксом, видимо, тормозит рост этих трансформированных клеток [c.434]

    Организм животного можно рассматривать как сообщество или экосистему, где в роли особей оказываются клетки, размножающиеся делением и организованные в объединенные совместной деятельностью конгломераты или ткани. Ранее, при обсуждении функционирования тканей мы выступали в роли экологов нас интересовали рождение и смерть клеток, места их обитания, территориальные ограничения, поддержание размеров популяции и т. п. Речь шла лишь об одном важном экологическом понятии - естественном отборе о мутациях и [c.445]

    В предыдущем разделе мы рассмотрели два весьма различных примера, которые иллюстрируют данное ноложение в общем виде развитие рака можно описать как процесс, в ходе которого первоначальная популяция незначительно измененных клеток, потомков единственной мутантной клетки-предшественницы, движется от плохого к худшему , проходя через последовательные циклы мутаций и естественного отбора. Элемент случайности в этой эволюции очень велик, поэтому обычно она охватывает многие годы большинство людей умирает от других заболеваний до того, как у них успевает развиться рак. Для понимания причин его возникновения необходимо выяснить факторы, которые могут ускорить этот процесс. [c.455]

    Открытие онкогенов и. совсем недавно, генов-супрессоров опухолевого роста ознаменовало конец эры блужданий во тьме в поисках биохимической основы рака. Однако предстоит еще пройти путь от упрощенных лабораторных моделей, сделавших эти триумфальные успехи возможными, к пониманию реальной сложности раковых заболеваний человека. Нока мы далеки от успеха, прогресс до обидного невелик и в отношении разработки эффективного рационального лечения. Мы знаем последовательности ДНК многих онкогенов и протоонкогенов, но в то же время точные физиологические функции нам известны лишь для некоторых из них. Необходимо более глубокое понимание того, как эти и другие молекулы взаимодействуют между собой, управляя поведением отдельной клетки нужно хорошо разбираться в популяционных механизмах, которые определяют возникновение раковых клеток через мутации и естественный отбор. [c.480]

    Мутационный процесс, рекомбинация и поток генов определяют генотип особей, составляющих популяцию. В результате согласованного действия этих генотипов в клетках данного организма и в рамках условий данной среды обитания в каждой популяции создается некоторый набор фенотипов. Суть естественного отбора заключается в дифференциальном выживании этих фенотипов в популяции, т. е. в относительной успешности, с которой отдельные организмы преодолевают неблагоприятные условия среды, конкурируют с другими организмами за ресурсы и, наконец, производят потомков. Поэтому наилучший способ изучения и описания мутационного процесса и рекомбинации состоит в том, чтобы проводить их на уровне генов и генотипов, т. е. выражать их посредством изменений генных частот во времени и факторов, вызывающих изменения. Естественный отбор лучше всего изучать на уровне фенотипов, т. е. изучать изменения численности особей во времени. [c.261]

    Пусть для конкретности речь идет о диффузии кислорода и поглощении его митохондриями, вырабатывающими АТФ. В принципе можно рассчитать, сколько митохондрий необходимо для оптимальной работы и как они должны быть расположены (на каких расстояниях друг от друга, от поверхности клетки, от потребителей АТФ, например, миофибрилл (рис. 10). Для дедуктивного построения было бы желательно получить аналитическое выражение, связывающее коэффициент диффузии, каталитическую активность митохондрий, расстояние от границы клетки и т. п. с необходимым числом митохондрий и расстояниями между ними. Задача эта, однако, очень сложна. Можно не сомневаться, что именно такие оптимальные решения были найдены во всех конкретных случаях под давлением естественного отбора. [c.84]

    Центральный метаболизм (домен) клетки включает пути, общие для большинства организмов. Они развивались в течение миллиардов лет, оптимизированы селекцией, отрегулированы и закреплены естественным отбором. Примеры таких консервативных путей - цикл трикарбоновых кислот, Р-окисление и др. В этом домене быстрая эволюция маловероятна. [c.315]

    Не ярляясь существенно необходимыми для жизни компонентами живой клетки, антибиотики в значительно меньшей степени подрергались естественному отбору, поэтому их структуры отличаются большим разнообразием и содержат, в частности, остатки многих необычных моносахаридов. Эти необычные моносахариды в данной главе рассматриваться не будут. [c.383]

    Новые наследственные признаки возникают в генофонде в результате генных мутаций. Последние создают фонд наследственных изменений, служащих исходным материалом (сырьем) для эволюции. Вероятно, мутации являются и самым первым видом наследственной изменчивости, возникшим одновременно с началом функционирования ДНК как информационной молекулы, поскольку для них не нужно никаких дополнительных структур и механизмов. Способность к мутированию заложена в химическом строении молекулы ДНК, а проявление мутационных изменений идет по тем же каналам, что и обычная генетическая информация клетки. Возможно, в течение длительного времени мутационные изменения были единственной формой изменчивости. На протяжении миллионов лет мутации в сочетании с естественным отбором сыфали решающую роль в появлении тех видов бактерий, которые известны сейчас. [c.153]

    Традиционная общая схема клеточной эволюции основывается на следующих предположениях из популяции первичных клеток в результате целого ряда событий, приведших к повышению уровня клеточной организации, под давлением естественного отбора возникла популяция предковых прокариотных клеток, из которых в конечном итоге произошли разные группы прокариот. Маловероятно, чтобы предковые прокариотные клетки все были на одно лицо . Единственная их общая черта — прокариотная организация (см. табл. 1). Эукариотная клетка возникла в результате эндосимбиоза, в котором ядерно-цитоплазматическим компонентом, т. е. клет-кой-хозяином, и эндосимбионтами, превратившимися впоследствии в митохондрии и хлоропласты, были существенно различающиеся между собой прокариотные клетки (рис. 41, А). Следствием такого взгляда на общий ход эволюции явилось признание двух основных царств живых организмов — Prokaryotae и Eukaryotae. [c.162]

    Рекомбинация у эз кариотических клеток была выявлена генетическими методами, а в отдельных случаях и путем наблюдения форм хромосом. Этот процесс происходит при созревании половых клеток, на первой фазе которого две пЪры хромосом, образовавшиеся в результате предшествующей репликации, вместо того чтобы разойтись по двум дочерним клеткам, как это имеет место при обычном клеточном делении — митозе, предварительно объединяются в единую структуру некоторыми гомологичными сегментами. Это создает благоприятные условия для гомологичной рекомбинации, которая у эукариот, в первую очередь у дрозофилы, была открыта задолго до выяснения рекомбинации у бактерий и получила название кроссинговера. Рекомбинация сама по себе не создает новых генов, однако в результате нее возникают новые комбинации признаков, которые могут оказаться весьма существенными как при естественном отборе, так и в селекционных работах. [c.171]

    В начале этой главы была высказана мысль, что организм можно рассматривать как сообщество или экосистему, отдельными членами которой являются клетки и далее нас в первую очередь интересовали проблемы, изучаемые также экологами рождаемость, смертность, местообитания, территориальные ограничения, поддержание размеров популяции и т. п.-применительно к клеткам организма. Но при этом один экологический аспект явно отсутствовал это вопрос о естественном отборе. Ничего не говорилось о конкуренции или мутациях соматических клеток. Причина этого в том, что здоровый организм гфедставляет собой в этом отношении очень своеобразное сообщестю-такое, в котором абсолютный альтруизм служит высшим законом поведения для всех групп индивидуумов, кроме одной. Все соматические клетки должны погибнуть, не оставив потомства, для того чтобы половые клетки имели шанс на выживание. В этом, однако, нет ничего загадочного. Хотя соматические клетки гибнут, онн помогают сохранению генов, которые они несут сами, так как организм-это клон, и гены в соматических клетках те же, что и в половых клетках. Геном, порождающий тупиковые линии смертных дифференцированных клеток, успешно воспроизводится потому, что наряду с ними он порождает половые клетки, выживающие благодаря самопожертвованию их сородичей. [c.181]

    Конечно, отдельные клетки клона могут и не придерживаться стратегии специализации и альтруизма тысячи генетически идентичных бактерий . oli, происходящих от одной родительской клетки, конкурируют между собой, вместо того чтобы сотрудничать. Но если стратегия сотрудничества, предназначенная для распространения данного генома, уже возникла, тогда всякая мутация, приводящая к неальтруистичному поведению отдельных членов сообщества, становится особенно опасной. Эгоистичное поведение мутантной, клетки в организме подвергает риску будущее всего многоклеточного коллектива. Иными словами, мутации и естественный отбор, действующие внутри популяции соматических клеток, могут привести к гибели. Насколько велика опасность в этом случае и какого рода защита от иее выработалась в процессе эволюции  [c.182]

    Строго говоря, эволюционирует генотип, а естественный отбор и все изменения окружающей среды действуют только на фенотип. Чтобы стать объектом естественного отбора, однако, изменение фенотипа требует определенной уникальной последовательности изменений генотипа. И естественный отбор не будет эффективен до последнего изменения в этой последовательности. Одна цепочка ДНК животной клетки содержит около Ю нуклеотидов и легко посчитать, что вероятность случайного выбора определенной последовательности, выбора, например, десяти правильных мутаций ( правильных изменений генотипа) составляет около 10 . Случайное изменение в генотипе приводит в лучщем случае к изменению одного кодона, т. е. к изменению одной аминокислоты в одном белке. [c.135]

    Другой тип мутантов, сыгравших большую роль в развитии генетики фагов, был открыт Лурия, который еще в период зарождения генетики бактерий как науки изучал мутации Е. соН Топ - Ton т. е. от чувствительности к устойчивости по отношению к фагу Т1 (гл. VI). Аналогичные спонтанные мутации приводят к тому, что из чувствительных к фагу Т2 клеток Е. соН (Tto ) дикого типа образуются мутанты Tio ". Устойчивость этих бактериальных мутантов обусловлена структурной модификацией их клеточной оболочки, в результате которой не происходит стерео-специфической фиксации органов адсорбции отростка фага Т2 на соответствующих рецепторах клетки. В результате фаг уже не может присоединиться к клетке, и, следовательно, ДНК фага не может быть инъецирована внутрь клетки хозяина. Почему же тогда, несмотря на то что бактерии могут мутировать в устойчивую к фагу форму, в природе до сих пор существуют чувствительные к бактериофагу штаммы Почему в результате естественного отбора чувствительные формы не заменились устойчивыми Почему бактериальные вирусы до сих пор не лишились всех подходящих хозяев и не вымерли в результате этого Ответить на эти вопросы, как и на многие другие вопросы, касающиеся проблем эволюции, не так просто, однако одной из причин сохранения в природе бактериальных штаммов, чувствительных к фагу, могут быть открытые Лурия в 1945 г. мутанты с измененным спектром литического действия. Такие мутантные фаги с измененным спектром литического действия способны преодолеть устойчивость нечувствительных к фагу мутантов бактерий благодаря небольшим изменениям структуры органа адсорбции (по сравнению с фагом дикого типа). Эти структурные изменения позволяют мутантным органам адсорбции осуществлять стереоспецифическую реакцию с рецепторами мутантной фагоустойчивой бактерии, несмотря на модификацию клеточной оболочки, препятствующей присоединению фага дикого типа. Однако появление мутантов с измененным спектром литического действия ни в коей мере не может положить конец борьбе за существование, так как бактериальный штамм, устойчивый к фагу дикого типа и чувствительный к мутантному фагу с измененным спектром литического действия, может образовывать сверхустойчивый бактериальный мутант, устойчивый к обоим фагам. На появление сверхустойчивого бактериального штамма фаг, чтобы не оказаться побежденным, может ответить образованием мутанта со сверхизмененным спектром литического действия. Таким образом, сосуществование в природе бактерий и бактериальных вирусов поддерживается за счет тонкого мутационного равновесия, спасающего обоих антагонистов от полного вымирания. [c.280]

    Подобные наблюдения нетрудно объяснить. Рассмотрим процесс возникновения в ходе эволюции новой анатомической особенности, скажем удлиненного клюва. Случайная мутация изменяет аминокислотную последовательность белка и. следовательно, его биологическую активность. Измененный белок может повлиять на клетки, ответственные за образование клюва таким образом, что в результате получится более длинный клюв. Но мутация должна быть совместима с развитием остальных частей организма - лишь в этом случае она будет подхвачена естественным отбором. Удлинение клюва вряд ли окажется выгодным, если оно сочетается с утерей языка или отсутствием ушей. Такие катастрофические последствия более вероятны в случае мутаций, затрагивающих ранние стадии индивидуального развития, чем в случае мутаций, влияющих на его поздние этапы Ранние эмбриональные клетки подобны картам в основании карточного домика - от них зависит слишком многое, и даже незначительное изменение их свойств скорее всего приведет к печальным последствиям. Ранние стадии индивидуального развития оказались замороженными - так же точно, как в биохимической организации клеток заморожены генетический код и механизмы биосинтеза белка. В отличие от этого клетки, образующиеся на последних стадиях развития, имеют больше возможностей для изменений. Вероятно, именно по этой причине на ранних стадиях развития эмбрионы разных видов столь часто бывают похожи друг на друга и в процессе индивидуального развития, вршимо. нередко повторяют пройденные ими этапы эволюции. [c.48]

    Итак, в отличие от свободноживущих клеток (например, бактерий), между которыми происходит постоянная конкуренция в борьбе за выживание, клетки многоклеточного организма обречены на сотрудничество. В этой ситуации любая мутация, которая порождает отход от альтруистического поведения у отдельных членов подобного кооператива , ставит под угрозу само его существование. Поэтому мутации, конкуренция и естественный отбор, начинающие работать внутри популяции соматических клеток -нризнаки патологии. Как раз такой тип патологии и имеет место при раке последний нредставляет собой заболевание, при котором отдельные клетки стремятся лишь к собственном процветанию в ущерб соседям, но в конце концов разрушают все клеточное сообщество и погибают вместе с ним. [c.446]

    Известно, что в соматических клетках иногда возникают случайные мутации. Полезные мутации, т. е. мутации, благоприятные для несущей их клетки, могут распространиться, так как они дают возможность своим носителям делиться быстрее, чем другие клетки это в особенности относится к клеткам, участвующим в борьбе с инфекцией. Чем больше они преуспевают, тем более многочисленными они могут оказаться. Таким образом, мутантный ген размножается, а при этом повышаются его шансы на то, что он будет захвачен вирусами и перенесен в другие клетки, возможно в том числе и в клетки зародышевой линии. По-видимому, у любого индивидуума существует период отбора соматических мутаций, предшествующий прохождению мутаций сквозь фильтр дарвиновского естественного отбора. Стеель считает, что этот процесс должен ускорять эволюцию и позволяет легче объяснить эволюцию таких сложных и координированных органов, как глаз. [c.39]

    В 1960-е годы была обнаружена громадная генетическая изменчивость на уровне белков и соответственно ДНК. С помощью методов определения аминокислотных последовательностей удалось выявить различия между гомологичными белками разных видов, а также между родственными белками одних и тех же видов. Изучение генетического кода вскрыло новые источники изменчивости, нуждающиеся в дальнейшем исследовании. Огромное количество ДНК, обнаруженное в эукариотической клетке (разд. 2.3.1.1), породило вопрос о функции избыточной ДНК и возможной причине этого феномена. Связаны ли большое количество ДНК и ее значительная изменчивость с естественным отбором, как это предполагалось неодарвинов-ской теорией эволюции, или же на молекулярном уровне большее значение имеют случайные процессы Если бы решающим фактором был, как это предполагалось общепринятой синтетической теорией, отбор, то его действие испытывало бы огромное число сайтов ДНК. [c.21]

    В результате применения указанного подхода получили научное обоснование и объяснение ряд особенностей строения, функционирования и происхождения известных биоструктур. Так, при рассмотрении механизма передачи энергии по ССИВС авторы приходят к выводу об эффективности существования и преимуществах естественного отбора дуплицированных систем сопряженных связей, обладающих вращательной симметрией структур и оптической активностью составляющих их компонентов, а при рассмотрении возможного механизма действия ферментов с учетом принципа дупликации работающих структур ими объяснена причина известного явления половинной реакционной способности от общего числа активных центров ферментов. При построении модели биологических мембран обосновано происхождение их многоуровневого зонно-блочного строения с периодической повторяемостью блоков, с образованием каналов йереноса электронов и синхронного сдвига протонов по системам сопряженных ионно-водородных связей и с колебательным режимом их работы, согласующегося с известными свойствами мембран и рядом других фактов. Эффективным оказалось применение указанного подхода и при рассмотрении происхождения структурных особенностей и функционирования мультиферментных комплексов и метаболонов, объединяющих разные ферменты метаболических путей со структурными элементами клетки, в случае процессов гликолиза и цикла трикарбоновых кислот. Все это описано в работе хорошо, убедительно и представляет самостоятельную ценность. Очевидна также перспективность применения такого подхода для изучения связи особенностей строения и функционирования с происхождением и других типов надмолекулярных структур биообъектов и их эволюционных предшественников. [c.5]


Смотреть страницы где упоминается термин Естественный отбор клеток: [c.224]    [c.37]    [c.465]    [c.16]    [c.40]    [c.31]    [c.104]    [c.121]    [c.109]    [c.208]    [c.133]   
Молекулярная биология клетки Том5 (1987) -- [ c.182 ]




ПОИСК







© 2024 chem21.info Реклама на сайте