Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикалы понятие

    Раскройте сущность понятий радикал, нуклеофил, электрофил, карбкатион, карбанион. Объясните, какая связь между ними и механизмом реакции. [c.277]

    Распад целого (молеку.чы, иона, радикала, агрегата и т.д.) на два или несколько составляющих. Термин противоположен по смыслу понятию ассоциация, [c.70]

    У. Одлинг отметил, что наряду с элементами, характеризующимися переменной валентностью (например, железо и олово), имеются и такие элементы, которые отличаются неизменной степенью валентности. К ним относятся, например, водород и кислород. Он впервые (1855) стал изображать валентность соответствующим количеством штрихов, например 1Г, К, О" С1, В1 . Двухвалентное железо он изображал символом Ре", а трехвалентное — символом Ре". Но главное в работе У. Одлинга заключалось в том, что понятие валентности или атомности радикалов он распространил на атомы элементов. Более последовательно эту идею развил А. Кекуле. К концу 50-х годов XIX в. ученые уже четко различали понятия атом и эквивалент . Это помогло А. Кекуле установить валентность элементарных атомов. В 1857 г. он сформулировал следующие положения Число атомов одного элемента или... радикала, связанное с атомом другого элемента, зависит от основности или величины сродства составных частей. [c.173]


    Укажите, имеются ли различия в понятиях катион водорода и протон, катион натрия и атом натрия, молекула диоксида азота и радикал нитроил, слож1юе вещество и химическое соединение, простое вещество и элемент. Ваши ответы сопроводите необходимыми пояснениями. [c.11]

    Свободным радикалом называется частица, обладающая ненасыщенными- валентностями (ниже, в разд. 2.5 дано определение этого понятия на основе электронных представлений).) Такими частицами являются, например, -СНз и -МНг. В обычных условиях свободные радикалы, как правило, не могут существовать длительное время, так как они весьма реакционноспособны и реагируют друг с другом, образуя инертные частицы. Например, два метильных радикала -СНз соединяются в молекулу этана СгНе Протекание многих реакций невозможно без участия свободных радикалов. При очень высоких температурах (например, в атмосфере Солнца) единственными двухатомными частицами, которые могут существовать, являются свободные радикалы ( N, -ОН, СН и некоторые другие). Много свободных радикалов присутствует в пламени. [c.52]

    Наряду с понятием атом в настоящее время в химии широко используется более обобщающее понятие — атомная частица. Под атомной частицей понимают не только изолированный атом, но и производные от него атомный радикал, атомный (одноатомный) ион, атомный ион-радикал, образующиеся вследствие ионизации или возбуждения атома и способные к самостоятельному существованию. [c.7]

    Понятие, используемое для описания смещения электронной плотности по цепи атомов, имеющих а- или тс-орбитали за счет их перекрывания. При этом происходит делокализация (перераспределение) электронной плотности, стабилизирующая или дестабилизирующая частицу (молекулу, ион, радикал и т.д.). [c.244]

    При фотополимеризации используют понятие квантовый выход инициирования. Это величина, равная числу пар радика--1юв, образовавшихся при поглощении одного кванта света. [c.7]

    Термин свободный радикал происходит от введенного в органической химии понятия радикала как некоторой части молекулы, являющейся носителем определенных свойств. Например, радикал ОН придает молекуле свойства спирта или в сочетании с С=0 — свойства карбоновой кислоты (радикал СООН-карбоксил). Если же радикал тем или иным путем отделен от остальной части молекулы, то он становится свободным радикалом. [c.53]

    Само понятие радикал , отмечал Я. Берцелиус, показывает, что оно означает вещество, которое, соединяясь с кислородом, образует окисел. [c.157]

    В процессе своего развития атомно-молекулярное учение обогатило естествознание фундаментальными законами (закон Авогадро. закон атомной теплоемкости) и такими важными понятиями, как изомерия, гомология, валентность, химическая связь, радикал, ион. [c.358]


    Какова реакционная способность алканов Назовите реакции, в которые они вступают. Дайте определение следующим понятиям а) гомолитический разрыв связи б) свободный радикал  [c.11]

    Если углеводород лишается одного (или нескольких) атомов водорода, то образуется остаток, частица — углеводородный радикал " (ие следует смешивать с понятием свободного радикала ). В завпснмости от числа потерянных водородных атомов радикалы могут быть одно-, двух- и трехвалеитными. Кроме того, если в радикале свободная валентность находится у первичного атома углерода, то такой радикал называется первичным. Соответственно этому бывают вторичные (свободная валентность у вторичного атома углерода) и третичные (свободная валентность у третичного углеродного атома) радикалы  [c.46]

    Подобные частицы ранее назывались свободные радикалы , в настоящее время этот термин устарел. Понятие радикал сегодня употребляется для частиц с неспаренными электронами и, как правило, не применяется для обозначения дискретной группы атомов в молекуле. [c.27]

    Если считать за радикалы частицы, содержащие непарные электроны, то понятию о мимолетно существующих (при обычных температурах) соединениях отвечает особая, самостоятельная идея. Действительно, многие радикалы эфемерны, но не все. Так, например, радикал N0 может существовать в макроколичествах, будучи в обычных условиях заморожен в отношении процесса [c.209]

    Одним из наиболее важных понятий в теории цепных реакций является длина цепи. Под длиной цепи понимают среднее число элементарных стадий продолжения цепи после возникновения свободного радикала до его исчезновения (обрыва цепи). Пусть вероятность обрыва цепи на данном звене равна а (а < 1). Тогда вероятность ее продолжения равна 1 — а, а длина цепи представляется соотношением вероятностей ее продолжения и обрыва п = (1 — )/ . Отношение вероятностей продолжения и обрыва цепи равно отношению соответствующих скоростей, т.е. п = г прод/ обр- Длина цепи может составлять от нескольких десятков до миллионов звеньев, как при синтезе НС1. Общая скорость неразветвленной цепной реакции равна произведению скорости зарождения цепи vq (количество свободных радикалов, возникающих в единице объема в единицу времени) на длину цепи  [c.134]

    Строго говоря, нельзя дать достаточно обоснованного определения понятия свободного радикала и установить различие между ним и понятием молекулы . Поэтому деление всех стабильных частиц на обычные молекулы и так называемые свободные радикалы в значительной мере произвольно. [c.5]

    Дайте определение следующих понятий мономер, полимер, димер и свободный радикал. [c.475]

    Для объяснения полученной сложной зависимости необходимо ввести понятие о разветвленных цепях, т. е. о цепях, в которых один радикал вызывает появление более чем одного нового радикала, так что число радикалов по мере протекания реакции возрастает в геометрической прогрессии. Стадией инициирования реакции является, по-видимому, процесс [c.312]

    Вообще стабильность любого радикала определяется термодинамическими и кинетическими свойствами системы. Мерилом термодинамической стабильности радикала относительно реакции рекомбинации является разность свободных энергий Д2 радикала и его димера. Эту разность нельзя отождествлять с разностью энергий стабилизации, с энергией сопряжения радикала, поскольку играют роль и энтропийные эффекты, связанные с различными значениями чисел степеней свободы, различными статсуммами радикала и димера. Кинетическая стабильность характеризуется тем активационным барьером, который нужно преодолеть при реком бинации радикалов. Поэтому равновесие радикал—димер устанавливается с конечной скоростью, определяемой высотой барьера. Таким образом, можно говорить лишь об определенной стабильности радикала, стабильности относительно какого-либо процесса. Так, в равновесии радикал—димер Z = О, однако относительно другой системы, например радикал — растворитель, Д2 > О и тогда стабильность радикала определяется чисто кинетическими характеристиками такой системы. Например, трифенилметил стабилен при обычных условиях относительно диспропорционирова-ния и взаимного алкилирования, однако это чисто кинетическая стабильность, поскольку в присутствии катализаторов, под действием света, а также при повышенных температурах эти реакции идут необратимо с заметными скоростями. Стабильность радикала — понятие относительное и определяется совокупностью термодинамических и кинетических свойств рассматриваемой системы. [c.41]

    Уже в течение первых десятилетий XIX в. число известных органических веществ начало возрастать с каждым годом. Было установлено, что многие органические соединения обладают значительно более сложным строением, чем неорганические вещества, и открыто явление изомерии (см. стр. 27). Это поставило перед исследователями, казалось бы, неразрешимую задачу объяснить и систематизировать все многочисленные новые явления. Великие ученые того времени — Берцелиус, Дюма и Либих ясно видели все значение стремительно развивающейся органической химии и пытались вместе с другими исследователями постепенно систематизировать все вновь открытые соединения и рассмотреть их с какой-нибудь определенной точки зрения. Это стремление нашло свое выражение в теории радикалов и ее предшественнице — этериновой теории. Первоначально термином радикал обозначали атом или группу атомов в кислородных соединениях, а именно остаток , не содержащий кислорода. Позднее это понятие было расширено, и название радикал стали применять также для групп атомов в соединениях, не содержащих кислорода, при условии, если эти группы атомов отвечали некоторым определенным условиям. По определению Либиха, радикал представляет собой не-изменяющуюся составную часть ряда соединений и может быть замещен в этих соединениях какими-нибудь другими простыми телами из соединений радикала с каким-либо простым телом это последнее может быть выделено и замещено эквивалентным количеством других простых тел . [c.18]


    Выделение органической химии в самостоятельный раздел химической науки вызвано многими причинами. Во-первых, это связано с многочисленностью органических соединений (в настоящее время известно свыше трех миллионов органических Еси еств, а неорганических— около 150 тыс.). Вл дряя причина состоит в сложности и своеобразии органических веществ по сравнению с неорганическими. Например, их температуры плавления и кипения имеют более низкие значения они легко разрушаются при воздействии на них даже сравнительно невысоких температур (часто не превышающих 100°С), в то время как неорганические вещества свободно выдерживают очень высокие температуры. Большинство химических реакций с участием органических соединений протекает гораздо медленнее, чем ионные реакции неорганических веществ, что обусловлено природой основной химической связи в органических веществах — ковалентной связью. Углерод, входящий в состав органических веществ, обладает особой способностью соединяться не только с несколькими другими углеродными атомами, но и почти со всеми элементами периодической системы (кроме инертных газов). Следует подчеркнуть, что выход продукта в органической реакции, как правило, ниже, чем при реакции неорганических веществ. Кроме того, в области органической химии приходится сталкиваться с новыми понятиями и явлениями органический радикал, функциональная группа, изомерия и гомология, а также взаимное влияние атомов и атомных групп в молекуле. [c.5]

    В 1900 г. американский химик М. Гомберг (1860—1947) впер вые нолучилл радикал трифенилметил, способный к самостоятельному существованию. Это, а также результаты исследований Бо денштейна, Семенова, Хиншельвуда и многих других ученых позволило заключить, что подавляющее большинство химических процессов идет через образование свободных радикалов. Одновременно с этим изменился и смысл понятия свободный радикал ям стали называть активную частицу, обладающую неспаренным электроном. [c.178]

    Курс теории строения органических соединений отличается от систематического курса органической химии особым подходом к одному и тому же в своей сущности объекту — органической молекуле. Систематический курс излагается по классам соединений и может быть построен двумя способами первый кладет в основу структуру органического радикала и последовательно рассматривает алифатические, ароматические, гетероциклические ряды с соответствующими функциональными группами второй способ базируется на введении и последующем превращении функциональных групп в молекуле, что приводит к иному расположению материала углеводороды, спирты, альдегиды, кислоты, оксиальдегиды, оксикислоты и т. д. В обоих случаях в систематическом курсе отдается предпочтение описанию химических явлений, многообразию свойств конкретных соединений. Теоретический курс должен подходить к объекту с иной стороны, рассматривать предмет исторически, дeлfгь упор на сущность внутренней природы описываемых явлений. Для теоретического курса наиболее важным является выяснение основных понятий науки, которые, как известно, не неизменны, а текучи, подвижны, исторически обусловлены достигнутым уровнем знаний. [c.3]

    Поиск органических радикалов, направляемый дуалистическо теорией, стал модой. Химики ставили перед собой цель выделения их в свободном виде и часто были уверены, что достигли,этой цели, получив в дейстзительности бирадикал К —К. В химической литературе первой половины XIX в. в этой связи можно было встретить даже отождествление понятий молекулы и радикала. [c.78]

    Теории Кекуле и Купера с необыкновенной легкостью и простотой объясняли строение и сложных радикалов , и органических соединений в целом. Молекула любого. химического соединения рассматривалась в этих теориях как та1Кое целостное образование (дань унитарному учению Жерара), которое складывается из атомов за счет полного взаимного насыщения единиц сродства. Теории Кекуле и Купера обосновали таким образом истинность и действенность учения Берцелиуса о сложных радикалах, но они запретили то вольное обращение с понятием радикала, которое допускал Берцелиус, стирая грань между радикалом и молекулой. Такой синтез всех предшествующих структурных идей на основе теории валентности привел к той ступени в разв итии классической структурной химии, на которой оказалось возмож1Ным получение из элементов или простейших веществ самых разнообразных органических соединений. Это был канун того периода в истории органической химии, который обычно характеризуют как триумфальное шествие органического синтеза . [c.83]

    Дайте определение понятиям атом,лсатион, анион, радикал. Укажите точками все внешние электроны в следующих част11цах а) Н, Н-, н+ б) Вг, Вг-, Вг+ в) СН , СНз", СНз+ г) Н-0, Н —О", Н—0+, Н3О+. Назовите эти частицы. [c.5]

    В данном разделе обсуждается определение органической химии, формулируются основные понятия, которые необходимы при рассмотрении строения и свойств всех органических соединений. К числу таких ионягий относятся и омерия , гомологический ряд , функциональная группа , углевородный радикал и др. [c.426]

    Понятие валентности можно распространить и на целую группу атомов, входящих в состав молекулы. Так, в азотной кислоте группа N03 соединена с одним атомом водорода и, следовательно, одновалентна. В серной кислоте группа 364 соединена с двумя атомами водорода, т. е. двухвалентна, и т. д. Если представить себе такую атомную группу без водорода, то она, очевидно, будет иметь свободные валентности (в наших примерах — соответственно одну или две) и вследствие этого не будет способна к существованию в виде отдельного химического соединения. Подобные груп- пы атомов, имеющие свободные валентности, называются радикалами (радикалы кислот, например N03 и 504, часто называют кислотными остатками, а одновалентный радикал ОН — гидроксилом или водным остатком). Пред ставление о радикалах значительно упрощает составление формул по валентности, так как при записи многих химических реакций радикалы могут быть без изменения перенесены из одной формулы в другую. [c.28]

    Понятие радикала в химии очень старо, оно восходит к Либигу. Так, например, в одном из старых учебников по органической химии можно прочесть Радикалы представляют собой группы атомов, которые играют роль элементов, могут комбинировать с последними и друг с другом, а также путем реакций обмена могут переноситься из одного соединения в другой). Свободные радикалы впервые стали предметом обсуждения после того, как на рубеже столетий Гомберг [46] доказал, что трифен ил метил — химически стабильная система. Однако простейшие радикалы, подобные СН3, СНг, СН, являются чрезвычайно короткоживущими частицами, их очень трудно получить и исследовать в свободном состоянии. Они химически нестабильны несмотря на то, что в общем стабильны физически, т, е. они самопроизвольно не разлагаются (энергия диссоциации их не равна нулю), но могут быть разрушены в результате соударений. [c.9]

    Фундаментальные исследования, цроведенные Ф.Г.Унгером методом ЭПР, позволили окончательно установить, что понятия парамагнетизм и асфальтены неразделимы, и тем самым, выявить природу сил, ответственных за структурирование спин-спиновое взаимодействие свободных нейтральных радикалов. Более того, исследования парамагнетизма в неф1-яных системах (1евис, 1982) позволяют сделать вывод, что спин-спиновое взаимодействие стабильных радикалов ассоциируется с системой ароматических колец, содержащих нечетное число атомов углерода и асфальтены могут существовать как полная структурная ароматическая единица только в состоянии свободного радикала. [c.12]

    Рассмотрегпте координационной связи на основе метода молекулярных орбиталей не требует введения каких-либо новых понятий. Неэмпирические расчеты были проведены для ВНз ЫНз, молекулы, которую можно со1юставить с изоэлектронной ей ковалентной молекулой этана [4]. Расчет энергии диссоциации на ВНз и ЫНз дает значение 123 кДж-моль , что составляет одну треть энергии диссоциации этана на два метнль-иых радикала. Силовая постоянная для валентного колебания В—N равна половине силовой постоянной для связи С—С. Рассчитанный дипольный момент комплекса велик (5,7 Д), что свя-зано с переносом примерно половины заряда электрона от аммиака к бор а ну. [c.360]

    Термин ароматический возник потому, что многие соедниения -беизальдегид, бензиновый спирт, эфиры бензойной кислоты, содержащие, как и бензол, радикал фенил СбНз, были выделены нз различного рода ладанов, ароматических масел и бальзамов. Даже после установления четырехвалеитности углерода и введения понятия о кратных связях в алкенах и алкинах строение бензола и других ароматических соедниений оставалось загадкой, поскольку, являясь формально ненасьпценными соединениями, они были инертными в реакциях присоединения. Это противоречие частично удалось устранить А. Кекуле, который в 1865 г. предложил для бензола формулу гексагонального 1,3,5-циклогексатриена  [c.949]

    Хотя схемы, передающие механизм взаимод. с водой во мн. случаях неверны, взгляды Вернера дали нек-рый импульс для изучения роли воды в кислотно-основном взаимод. Из работ в этом направлении выделяются работы А, Ганча (1917-2Д создавшего т. наз. хим. теорию к-т. В этой теории к-ты определены как соед. водорода, в к-рых последний м. б. замещен на металл илн неметаллоподобный радикал. Важнейший признак к-т-способность давать соли. Ионизация к-т в р-ре происходит в результате их взаимод. с р-рителем. Теория содержит принципиально новое положение в р-рах кислотные св-ва проявляются не самой к-той, а сольватир. катионами водорода. В хим. теории к-т четко сформулировано понятие об амфотерности-способности нек-рьи соед. проявлять как кислотные, так и основные св-ва в зависимости от условий и природы реагентов, участвующих в кислотно-основном взаимодействии. [c.393]

    МЕХАНИЗМ РЕАКЦИИ. Понятие используется в осн. в двух смыслах. Для сложных реакций, состоящих из неск. стадий, М. р. -это совок>иность стадий, в результате к-рых исходные в-ва превращаются в продукты. Для простой р-ции (элементарной р-ции, элементарной стадии), к-рая не может быть разложена на более простые хим. акты, выяснение М. р. означает идентифицирование физ. процессов, составляющих сущность хим. превращения. Для одной частицы (молекула в основном или возбужденном состоянии, ион, радикал, диффузионная пара, синглетная или триплетная радикальная пара, комплекс) или двух (редко трех) частиц (молекул, ионов, радикалов, ион-радикалов и т. п.), находящихся в определенных квантовых состояниях, изменения в положениях атомных ядер и состояниях электронов составляют суть их превращений в другие частицы с присущими этим частицам квантовыми состояниями. В рассматриваемые фнз. процессы часто включают в явном виде акты передачи энергии от частицы к частице. Для элементарных реакций в растворе М. р. включает изменения в ближней сольватной оболочке превращающихся частиц. [c.74]

    Автор книги здесь, как и в других местах, слишком расширенно использует понятия тривиальные названия, относя к ним все, не отвечающие правилам hem. Abstr. По существу же названия типа метилэтилкетон — это нетривиальные (случайные) названия, а радикало-функциональные (допускаемые правилами IUPA ). — Прим. переводчика. [c.159]


Смотреть страницы где упоминается термин Радикалы понятие: [c.188]    [c.361]    [c.9]    [c.25]    [c.16]    [c.1127]   
История химии (1975) -- [ c.229 , c.230 ]

История химии (1966) -- [ c.229 , c.230 ]




ПОИСК







© 2024 chem21.info Реклама на сайте