Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алканы реакционная способность

    Из табл. 6 можно также заметить количественное различие в величине энергии одной и той же связи, входящей в разные по составу молекулы. Так, в алканах с-н=412,96 кДж/моль, в алкенах — 415,89 кДж/моль и в бензоле — 421,33 кДж/моль в молекуле воды о-н=457,73 кДж/моль, а в спирте — 438,06 кДж/моль. Следовательно, заменяя в молекулах углеводородов один атом Н на другой, создается не только новая связь, но изменяется энергия соседней связи, что обусловлено изменением электронной плотности связей за счет индуктивного смещения зарядов. Такое влияние связей друг на друга было теоретически предсказано Марковниковым, который отметил влияние заместителей в молекуле на их реакционную способность. [c.73]


    Что вы при этом наблюдаете Сделайте вывод о реакционной способности алканов. [c.26]

    Последняя реакция — взаимодействие пероксидного радикала с углеводородом — определяет строение образующегося гидропероксида и последующих продуктов окисления. При этом соблюдается Обычный для радикальных реакций порядок изменения реакционной способности атомов водорода, определяемый относительной стабильностью промежуточного радикала R-. Вследствие этого преимущественным местом атаки молекулы при окислении арил-алканов становится а-положение боковой цепи по отношению к ароматическому ядру, а для олефинов—аллильное положение. Кроме того, для углеводородов всех классов справедлива известная последовательность в изменении способности к замещению атомов водорода, находящихся при разных углеродных атомах (третичный >вторичный>первичный). [c.358]

    В ряде работ исследуется кинетика и механизм реакций Х-пере-хода в приближении реагирующей молекулы, когда активированный комплекс моделируется гипотетической структурой. Янг [233] применил метод МО для расчета энергии локализации и реакционной способности простейших алканов в реакциях Н-перехода (рис. 15.3). Для молекул алканов ЭЛ можно определить как энергию требующуюся для изоляции двух а-электронов на г-той рвущейся связи от остальных а-электронов молекулы. Например, для этана 1. определяется как разность энергий соответствующих структур  [c.152]

    Алканами называются углеводороды, имеющие общую формулу С Н2п+г и содержащие только 5р -гибридизованные атомы углерода. Они широко используются в качестве топлива, однако ограниченно применяются в химии. Это связано с тем, что алканы отличаются низкой реакционной способностью поэтому в лабораторной практике реакции с ними проводят довольно редко. По-видимому, алканы используются в лаборатории в основном в качестве растворителей. Тем не менее, нам кажется целесообразным начать рассмотрение именно с алканов, так как некоторые их реакции помогут читателю получить представление о важных физико-химических концепциях. Кроме того, на примере алканов мы впервые познакомимся с химическими методами, применяемыми для изучения процессов превращения исходных продуктов реакции в конечные. Номенклатура алканов является основой для названий многих органических соединений, поэтому мы подробно рассмотрим ее в этой главе. В начале главы мы познакомимся со структурой углеводородов, затем рассмотрим их номенклатуру, после чего остановимся на реакционной способности этих соединений. [c.98]


    Соеди нение Ионность связи С-Металл % Температура °С Растворимость в алканах Реакционная способность  [c.937]

    В конце тридцатых годов появились экспериментальные доказательства существования свободных метильных и этильных радикалов [30, 31], измерена средняя продолжительность их жизни, разработаны способы получения радикалов. Оказалось, что радикалы гораздо более устойчивы, чем физически возбужденные молекулы, и многие из них удалось идентифицировать [32, 33]. Было показано, что радикалы,, имея свободную валентность, обладают высокой реакционной способностью, могут вызывать сильный цепной эффект [34]. В связи с этим вопрос об участии радикалов в крекинге алканов и других органических соединений приобрел решающее значение. [c.24]

    Термодинамические расчеты равновесий в реакциях присоединения радикалов к олефинам или реакций замещения их с олефинами показывают, что в условиях термического крекинга обратимые реакции образования изобутил-, третичного изобутил-радикала и аллил-радикалов (или типа аллильных радикалов) могут выступать в качестве реакций, замедляющих скорость распада алканов, так как указанные радикалы являются относительно более устойчивыми к распаду и обладают более низкой реакционной способностью (алкильные радикалы). [c.257]

    Влияние полярных заместителей на реакционную способность субстрата удобно проанализировать на примере хлорзамещенных алканов. Хорошо известны два наиболее существенных эффекта, обусловленных замещением. Во-первых, атомы хлора, перетягивая электронное облако со связей молекулы субстрата, становятся отрицательно заряженными центрами. Во-вторых, повышается стабильность радикала вследствие способности электронов атомов J к сопряжению. Конкуренция этих эффектов имеет существенное значение при определении реакционных свойств субстрата, атакуемого нуклеофильным, электрофильным или радикальным реагентом. [c.151]

    RH + b — R 1 + H 1 Алкилхлориды отличаются высокой реакционной способностью, их удается использовать для различных синтезов. Хлорирование газообразных и жидких алканов хорошо освоено в промышленности. Процесс может быть осуществлен тремя способами фото-хими-ческим, каталитическим и термическим. [c.201]

    Исследование строения спиртов, полученных прямым окислением нормальных алканов, позволило заключить, что в присугствии борной кислоты образуются преимущественно вторичные спирты, представляющие собой смесь всех возможных изомеров. Это указывает на одинаковую реакционную способность по отношению к кислороду вторичных углеродных атомов высших алканов нормального строения [15]. Получаются спирты в основном с таким же числом углеродных атомов в молекуле, как и в исходном углеводороде, и такой же структуры [16]. [c.299]

    Углеродные циклы, содержащие меньше шести атомов углерода, являются напряженными, поскольку угол С—С—С в малых циклах должен быть меньше тетраэдрического угла (109,5°). Чем меньше цикл, тем больше в нем напряжение. В молекуле циклопропана, имеющей форму равностороннего треугольника, углы С—С—С составляют всего 60", поэтому молекула циклопропана проявляет намного больщую реакционную способность, чем молекула его ациклического аналога пропана или молекула циклогексана, не имеющая напряжения в цикле. Отметим, что циклоалканы описываются эмпирической формулой С Н2 , которая отличается от общей формулы ациклических алканов. Таким образом, циклоалканы образуют отдельный гомологический ряд. [c.414]

    В результате присоединения Н2 к алкену образуется алкан. Эта реакция, называемая гидрированием, не протекает при обычных температурах и давлениях. Одной из причин низкой реакционной способности водорода по отношению к алкенам является большая энергия связи Н2. Для проведения реакции гидрирования необходим катализатор, способствующий разрыву связи Н—Н. Чаще всего в реакции гидрирования применяются гетерогенные катализаторы-тонкоизмельченные металлы, на поверхности которых происходит адсорбция Н2. Действие таких гетерогенных катализаторов в реакции Н2 с алкенами подробно описано в разд. 13.6. Молекулярный водород также реагирует в присутствии катализаторов с алкинами, образуя с ними алканы, например  [c.423]

    Особенности строения алканов - наличие прочных ковалентных связей (а-связей), характеризующихся низкой поляризуемостью, определяют их реакционную способность алканы преимущественно вступают в реакции, протекающие по Х -механизму. При достаточно высоких температурах происходит разрыв углерод-углеродной связи (крекинг-процесс). [c.288]

    Различные соотношения входяпщх в технический парафин и в церезин углеводородов разных групп обусловливают разницу химических свойств этих продуктов. Поскольку технические парафины состоят в основном из и-алканов и из углеводородов, близких к ним по структуре, их химические свойства приближаются к химическим свойствам к-алканов технические парафины являются химически малоактивными веществами, слабо реагируют со многими реагентами, энергично действующими на церезин, и способны образовывать в значительной доле своей ыассы комплексы с карбамидом. Церезины же вследствие присутствия в них ароматических углеводородов, углеводородов сильно разветвленных структур и высокомолекулярных конденсированных соединений обладают повышенной реакционной способностью, в частности, энергично реагируют с хлорсульфоновой кислотой, олеумом и др. С карбамидом лишь относительно небольшая часть массы церезина способна образовывать комплексы. --— [c.79]


    Какова реакционная способность алканов Назовите реакции, в которые они вступают. Дайте определение следующим понятиям а) гомолитический разрыв связи б) свободный радикал  [c.11]

    Начнем прежде всего с вопроса о том, что такое вообще функциональная труппа . В основе структуры типичных органических соединений лежит углеродный скелет, которому может быть поставлен в соответствие некоторый насьпиенный углеводород, алкан (для ациклических) или циклоалкан (для карбоциклических соединений). Эти родоначальные углеводороды по известным причинам химически довольно инертны. Введение в их молекулы гетероатомов или кратных связей резко изменяет картину реакционной способности соединений, и именно реакции таких участков молекулы и определяют химическое лицо образуемых производных. Конкретная природа подобных реагирующих сайтов, функциональных групп, и определяет отнесение данного соединения к определенному классу (спирты, кетоны, олефины, ацетилены и т. п.). Разумеется, сами алканы (а тем более циклоалканы) вовсе не являются мертвыми образованиями, и их участие во всевозможных превращениях достаточно общеизвестно. Вспомним хотя бы о таких практически важных реакциях, как окисление, хлорирование и нитрование парафинов, или их разнообразные преврашения в условиях гетерогенного катализа. В этом смысле понятие функциональная группа несколько условно, однако оно имеет вполне конкретное содержание, так как основные синтетические методы строятся на превращениях с участием строго определенного участка молекулы, содержащего функциональную группу при неизменности остальной ее части. [c.131]

    Эта реакция применима только для получения симметричных алканов. При использовании смеси разных алкилгалогенидов выходы смешанного продукта R—R обычно низки вследствие различий в их реакционной способности. [c.34]

    Под действием суперкислот алканы легко подвергаются протоли-тическим реакциям, в которых могут участвовать третичные, вторичные и первичные С—Н-связи, а также С—С-связи [9, 18]. В изоалканах реакционная способность третичных С—Н-связей превышает реакционную способность вторичных (и первичных) С—Н-связей и С—С-связей. В -алканах реакционная способность С—С-связей в общем случае выше, чем СН-связей. Очевидно, что стерические факторы влияют на а-основность так же, как на л- или п-основности. [c.272]

    Обмен водорода можно осуществить при обработке кислотами или основаниями. Как и реакция 11-1, реакция обмена используется главным образом для выяснения вопросов, связанных с изучением механизмов реакций, например для установления относительной кислотности, но она также может быть использована в синтетических целях для получения дейтери-рованных или меченных тритием молекул. Под действием обычных сильных кислот, например H2SO4, в реакцию обмена вступают только достаточно кислые протоны, такие, как ацетиленовые, аллильные и т. п. Однако под действием суперкислот можно осуществить обмен первичных, вторичных и третичных атомов водорода в алканах (см. т. 1, разд. 8.1) [43]. При этом порядок реакционной способности водорода меняется в ряду третичный>вторичный>первичный. Если в молекуле имеются связи С—С, они также могут расщепляться (реакция 12-46). Механизм обмена (показанный ниже на примере метана) включает атаку Н+ по связи С—Н с образованием пятивалентного [c.421]

    В отличие от алканов этилен и его гомологи проявляют большую реакционную способность, что обусловлено наличием в нх молекулах двойной связи. Алкены способны вступать в реакции присоединения за счет разрыва л-связн. Кроме того, л-связь под действием окислителей разрушается легче, чем а-связь, поэтому для алкенов характерно участие в качестве восстановителей в окислительно-восстановительных реакциях. [c.318]

    Длкены характеризуются ввиду наличия двойной связи высо — кой реакционной способностью в реакциях присоединения, но повышенной, по сравнению с алканами, термостойкостью в отношении реакций распада. Этилен из алкенов наиболее устойчивый. Он всегда содержится в продуктах термолиза нефтяного сырья как первичный и вторичный продукт их превращений. По термической стабильности он занимает промежуточное положение между мета — ном и этаном. Термический распад этилена заметно начинается при температуре 660 С. При 400 — 600 °С в основном протекает его полимеризация [c.32]

    Процесс биодеградации является совокупностью биохимических реакций, а скорость химической реакции при прочих равных условиях зависит прежде всего от реакционной способности соединений (в данном случае от строения) и их концентрации. Доля аренов в бензинах по сравнению с алканами и нафтенами самая низкая и редко достигает 10 %. Однако бензол и его ближайшие гомологи обладают самой высокой среди УВ растворимостью в воде. Поэтому концентрация легких аренов в водной фазе, где протекают биохимические реакции, резко отличается от их концентрации в нефти. [c.43]

    Алканы представляют собой весьма устойчивые соединения, инертные по отношению ко многим другим веществам. При высоких давлениях и температурах их можно заставить реагировать с кислородом и галогенами. Тривиальное название алканов — парафины — означает отсутствие у них химического сродства, т. е. низкую реакционную способность. Представление о свойствах соединений этой группы дает парафиновый воск (смесь твердых веществ, являющихся высшими членами ряда алканов). [c.455]

    В этой главе мы прошли долгий путь рассуждений, начав с рассмотрения сравнительной химии элементов В, С, N и Si. Углерод несомненно играет особую роль, обусловленную наличием у его атомов одинакового числа валентных электронов и орбиталей, отсутствием отталкивающих неподеленных электронных пар и способностью образовывать двойные и тройные связи. Простые алканы, или соединения углерода и водорода, с простыми связями иллюстрируют многообразие соединений, которые может образовывать углерод благодаря своей способности создавать длинные устойчивые цепи. Алкилгалогениды - это своеобразный мостик от алканов с их сравнительно низкой реакционной способностью к изобилию производных углеродов спиртам, простым эфирам, альдегидам, кетоиам, сложным эфирам, кислотам, аминам, аминокислотам и соединениям других типов, которые не обсуждались в данной главе. Способность углерода образовывать двойные и тройные связи была проиллюстрирована на примере алкенов и алкинов, она играет чрезвычайно важную роль при образовании сопряженных и ароматических молекул. [c.337]

    В соответствии с классическими взглядами, ароматизация алканов на оксидных и металлических катализаторах протекает по пазным механизмам. Согласно [141, 142], на оксидах катализаторах вначале происходит дегидрирование алкана в алкен, последующая циклоизомеризация алкена в циклогексан и, наконец, дегидрирование последнего в арен. На металлических, в частности платиновых, катализаторах постулировался другой механизм алканы— -циклогексаны—варены [143, 144]. Основанием для этого явилось исследование реакционной способности 2,2- и 3,3-диметилгексанов. Одним из продуктов превращения 3,3-диметилгексана в исследованных условиях явился гел1-диметилциклогек-сан. [c.237]

    Важнейшее отличие кремния от углерода заключается в том, что Si имеет большее число внутренних электронов. Следствием этого является неспособность двух атомов кремния сблизиться достаточно сильно, чтобы между ними могла возникнуть двойная или тройная связь. Кремний образует силаны, аналогичные алканам, которые будут обсуждаться в разд. 21-3. Силаны имеют общую формулу Si H2 + 2- Наиболее длинную цепь из всех полученных до сих пор силанов имеет гексасилан (рис. 21-7). Подобно азотоводородам, силаны обладают опасно высокой реакционной способностью. Простейшие силаны устойчивы в вакууме, но все они самопроизвольно возгорают на воздухе и все со взрывом реагируют с галогенами. Силаны обладают сильными восстановительными свойствами. [c.278]

    Чтобы проиллюстрировать низкую реакционную способность алканов, укажем только один пример к-гексан не взаимодействует с кипящей HNO3, концентрированной HjSO , таким сильным окислителем, как КМпОд., и с расплавленным NaOH. Инертность алканов позволяет использовать их в качестве смазочных масел, полимерных пленок и твердых пластмасс для изготовления труб и сосудов (хорошо известным всем примером является полиэтилен). В сущности, алканы вступают только в такие химические реакции, как горение, дегидрирование и галогенирование. [c.287]

    Полагая, что все карбанионоподобные концы независимо от их длины обладают одинаковой реакционной способностью, следует ожидать статистического распределения длины цепей (р) [после гидролиза до алканов и А1(0Н)з, причем мольная доля для цепей с длиной р задается уравнением Пуассона [c.110]

    Полученные результаты позволили сделать вывод, что величина С характеризует глубину распространения реакций по радиусу зерна и ве-тгачину их диффузионного торможения. Из представленных на рис. 1.2 зависимостей видно, что при крекинге углеведородов, обладающих меньшей реакционной способностью в процессе образования кокса, уменьшается диффузионное торможение, увеличивается степень использования внутренней поверхности и зона отложения кокса расширяется в глубь пор. Установлено, что при крекинге стирола и бутадиена процесс коксообразования протекает в тонком периферийном слое (0,10-0,15 мм), а при крекинге алканов-по всей внутренней зоне зерен катализатора [42]. [c.12]

    Во второй части четвертой главы рассмотрены термодинамика и кинетика элементарных реакций присоединения и замещения радикалов с простейщими непредельными и предельными углеводородами, а также реакций рекомбинации и диспропорционирования радикалов и молекул алканов и алкенов и реакций изомеризации радикалов. Эти реакции играют важную роль не только в термическом радикально-цеп-ном крекинге и пиролизе, но и во многих других цепных реакциях органических веществ, протекающих в газовой фазе. Рассмотренные реакции относятся к основным реакциям химии радикалов вообще, а решаемые вопросы — к проблеме реакционной способности частиц в радикальных реакциях. [c.11]

    В настоящее время не существует надежного метода определения абсолютной величины константы скорости реакций присоединения метиленовых радикалов к молекулам алканов. Как видно, различия в энергиях активации при этих реакциях малы и показывают, что присоединение радикалов СНг по месту вторичной и третичной С—Н связям тре- бует более высоких энергий активации, чем присоединение по месту более сильной первичной связи. Это аномально с точки зрения утвердившихся представлений о более высокой реакционной способности вторичных и третичных С—Н связей. Однако вследствие малых величин самих энергий активации стерические факторы в этих реакциях имеют более важное значение, чем энергетические факторы. Возможно, что влиянием стерических препятствий имитируется заключение об энергиях активаций присоединения СНз по разным местам. Вместе с тем есть, конечно, различия между реакциями отрыва Н от первичной связи присоединения бирадикала, которые сами по себе могут служить причиной обращения порядка реакционной способности при этих реакциях. [c.187]

    Несмотря на то, что энергия диссоциации связей С—С Меньше энергии диссоциации связи С—Н, распад низших алканов (этан, пропан, бутан) происходит по связи С—Н, что объясняется отсутствием стерического фактора. Начиная с пентана распад происходит преймушественно по связям С—С. Большая молекулярная масса и степень разветвления молекулы обусловливает повышение ее реакционной способности. Скорость распада высокомолекулярного алкана по отношению к низкомолекулярному алкану может отличаться на порядок. [c.187]

    Алкены являются соединениями, родственными алканам, но отличаются от последних тем, что в их молекуле содержится по крайней мере одна двойная углерод-угле-родная связь. Алкены иногда называют олефинами. Наличие двойной связи приводит к тому, что каждый алкен содержит на два атома водорода меньше, чем соответствующий алкан. Поскольку алкены содержат меньше водородных атомов, чем необходимо для образования алкана, они принадлежат к числу ненасыщенных углеводородов. Несколько позже мы убедимся, что наличие двойной связи придает алкенам значительно большую реакционную способность, чем у алканов. Простейшим алке-ном является С2Н4, называемый этеном или этиленом. Следующий член ряда алкенов, СНз—СН=СН2, называется пропеном или пропиленом. При наличии в молекуле алкена более трех атомов углерода возможно образование изомеров. В качестве примера на рис. 24.6 показаны все возможные алкены с четырьмя атомами углерода и молекулярной формулой С4Н8. Первое из этих соединений содержит разветвленную [c.414]

    В ряду алкан — алкен — алкин реакционная способность возрастает это непосредственно видно из сопоставления значений AG298 (кДж/моль) в ряду газообразных gHg (—23,48), СдН (62,73) и 1-СдН4 (194,48) (см. также с. 117). [c.115]

    В ряду алкан — алкен — алки реакционная способность возрастает это непосредственно видно из сопоставления значений (ккал/моль) в ряду газообразных СзН (-5,61), СзН (14,99) и С3Н4 (46,47). [c.64]

    В алкенах имеется относительно малопрочная я-связь, поэтому их реакционная способность гораздо выше, чем у алканов. Для алкенов характерны реакции, П1юходящие с разрывом я-связи, — реакции присоединения и окисления  [c.41]

    Другой способ влияния мультиплетности на реакционную способность частиц демонстрируется на примере трехатомной молекулы метилена, СНг. Исследования по импульсному фотолизу указывают на то, что основное состояние метилена является триплетным, хотя имеется первый возбужденный сииглет, лежащий незначительно выше основного состояния (энергия возбуждения 30 кДж/моль). При фотолизе H2N2 или СНгСО преимущественно образуется метилен в синглетном состоянии с небольшой примесью триплетного метилена. Интеркомбинационная конверсия от синглета к триплету индуцируется инертными газами. Химическая реакционная способность триплетных и синглетных частиц совершенно различна. Синглетное состояние реагирует с Нг и СН , на три порядка быстрее, чем триплетное. Синглетный СНг внедряется в связь С—Н алканов, в то время как триплетный СНг отрывает атомы Н  [c.152]

    Тривиальное (историческое) название алканов — парафины — означает не имеющие сродства . Алканы химически мало активны. Низкая реакционная способность алканов обусловлена очень малой полярностью связей С — СиС — Нвих молекулах вследствие почти одинаковой электроотрицательности атомов углерода и водорода. [c.453]

    Важнейшими параметрами при очистке нефтепродуктов серной кислотой являются концентрация и количество кислоты, температура, интенсивность перемешивания и эффективность удаления кислого гудрона. Изменяя эти параметры, можно получать различные результаты очистки. Под действием серной кислоты алканы могут растворяться, сульфироваться, окисляться или алкилироваться [14]. Цикланы могут вступать в такие же реакции, но, кроме того, могут дегидрироваться до ароматических углеводородов и конденсироваться с алканами. Однако при обычно применяемых условиях кислотной очистки ни алканы, ни цикланы не вступают в сколько-нибудь заметное взаимодействие с кислотой. Ароматические углеводороды сульфируются сравнительно легко, но их реакционная способность изменяется даже в пределах одного гомологического ряда и зависит от многих других условий. Алкены под действием коццентрированной серной кислоты очень легко нолимеризуются и этерифицируются, а диены реагируют чрезвычайно энергично даже со слабой кислотой. [c.109]

    Эта двойная связь придает молекуле повышенную реакционную способность по сравнению с молекулами алканов. Так, хлор, бром и иод с трудом действуют на парафиновые углеводороды, но активно реагируют с этиленом смесь хлора с этиленом быстро взаимодействует при комнатной температуре )В темноте, а на свету этот процесс протекает со взрывом в результате реакции образуется дихлорэтан С2Н4С12 [c.189]


Смотреть страницы где упоминается термин Алканы реакционная способность: [c.143]    [c.103]    [c.133]    [c.253]    [c.437]    [c.477]    [c.68]    [c.456]    [c.370]   
Основы органической химии (1983) -- [ c.80 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы



© 2024 chem21.info Реклама на сайте