Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время раздела фаз при массопереносе

    Соотношения для движущих сил массопереноса вещества внутри сплошной (несущей) фазы (1.169) (прямой эффект) и через границу раздела фаз (1.198) существенно отличаются друг от друга. Достаточно сказать, что соотношение (1.198) не содержит перекрестных эффектов, а является прямым эффектом в общем потоке переноса массы через поверхность раздела фаз, в то время как наличие градиента температур в сплошной фазе служит появлению перекрестного эффекта в потоке массопереноса внутри сплошной фазы (1.181). [c.68]


    Теория проникновения (пенетрационная) предложенная Хигби, базируется на том, что жидкая фаза на границе раздела фаз состоит из небольших элементов, которые непрерывно подводятся за счет конвективного переноса из объема жидкости с концентрацией с 14]. Время существования всех элементарных объемов около границы раздела обозначено дф. При этом абсорбция протекает в условиях нестационарной диффузии с коэффициентом массопереноса [c.38]

    Сложность гидродинамической обстановки в газожидкостных реакторах не позволяет пока достаточно строгим анализом получить уравнения для расчета коэффициентов массопереноса как в газовой, так и жидкой фазах, и затруднения, прежде всего, обусловлены подвижностью границы раздела фаз, что осложняет математическое описание проникновения турбулентных пульсаций в пограничный диффузионный слой. Поэтому в настоящее время при расчетах массопередачи в промышленных аппаратах приходится пользоваться эмпирическими уравнениями, ориентируясь на надежность результатов только в условиях, близких к экспериментальным. [c.42]

    С термодинамической точки зрения эмульсия есть двухфазная система с дисперсной фазой, содержащей микроскопические капли диаметром 0,1—100 мкм. Такие дисперсии никогда не являются полностью устойчивыми из-за того, что поверхность раздела между фазами обладает свободной энергией при соединении двух капель происходит уменьшение межфазной поверхности. Следовательно, коалесценция капель — это самопроизвольный процесс, в то время как эмульгирование требует затраты работы. Самопроизвольное эмульгирование наблюдается только в определенных системах, где две фазы предварительно взаимно ненасыщенны. Работа, необходимая для увеличения межфазной поверхности, черпается из свободной энергии смешения за счет массопереноса (см. гл. I). Истинно стабильные растворы, содержащие коллоидные мицеллы, не должны классифицироваться как эмульсии, так как они не имеют термодинамической фазы, которая может существовать отдельно. [c.75]

    Во всех моделях обновления поверхности скорость массопереноса характеризуется средним временем пребывания элементов на поверхности раздела фаз бср. которое зависит от типа аппарата, где осуществляется контакт фаз. Например, в насадочных колоннах (стр. 444) за величину 0ср условно принимают время, в течение которого жидкость проходит путь, равный размеру одного элемента насадки, и т. д. [c.398]


    Стадия массопереноса присуща любым гетерогенным процессам. В то же время стадия перехода заряженных частиц (электронов или ионов) через границу электрод — раствор (стадия разряда — ионизации) является специфически электрохимической стадией. В настоящее время доказано, что стадия разряда — ионизации любого электродного процесса протекает с конечной скоростью. Теория, описывающая кинетические закономерности переноса заряженных частиц через границу раздела фаз, называется теорией замедленного разряда. [c.184]

    В соотношениях, связывающих нормальные к поверхности раздела фаз компоненты скорости, должна учитываться плотность потока массы, обусловленная фазовым переходом. В то время как соотношения для усилий на поверхности раздела фаз, записанные выше без учета реактивной, силы, остаются справедливыми для всех стадий движения капли, нормальная составляющая скорости зависит от направления массопереноса (конденсация или испарение). [c.30]

    Аппараты, используемые для проведения процесса экстракции, называются экстракторами. Время пребывания жидкостей в них определяется в большинстве случаев скоростью переноса массы из одной фазы в другую за счет взаимодействующих между собой процессов молекулярной и конвективной диффузии. Именно поэтому процесс экстракции относится к классу массообменных процессов химической технологии. Причины возникновения диффузионного потока рассмотрены в 1.4.1. Скорость процесса молекулярной диффузии в жидкостях очень мала, поэтому основная функция аппаратов для проведения процесса экстракции заключается в том, чтобы максимально интенсифицировать процесс массопереноса. Принципы и способы такой интенсификации, вытекающие из теории массопереноса, которая подробно рассматривается в разделе 5, достаточно хорошо известны. [c.36]

    В гомогенных процессах не происходит переноса вещества или энергии через границу раздела фаз, поэтому в математической модели реактора для проведения гомогенных процессов отсутствует межфазный тепло- и массоперенос. В то же время модели реакторов этого типа, основные уравнения, методы использования безразмерных переменных и параметров и т. п. применяются также для анализа процессов и проектирования реакторов других типов. [c.58]

    Массоперенос углеводорода на поверхности капель без стабилизирующих агентов обусловлен, главным образом, чисто механическим фактором (сильное перемешивание). Образующиеся мельчайшие капельки эмульсий обоих видов не успевают закрепиться на границе раздела фаз и тем самым стабилизировать крупные капли парафина. В то же время [c.92]

    В настоящее время предложен и разрабатывается механизм возникновения межфазной турбулентности, основанный на предположении, что турбулентность возникает благодаря несоответствию поверхностного сопротивления движущей силе массопереноса. Поток диффундирующего вещества производит удары по границе, вызывая колебания последней. Движение поверхности раздела передается пограничным слоям фаз. С помощью такого механизма удалось количественно объяснить ряд имеющихся в настоящее время экспериментальных факторов по возникновению и протеканию процесса межфазной турбулентности [М. В. Островский и др., ЖПХ, 40, 1319 (1967)]. (Прим. редактора перевода.) [c.64]

    Учитывая различия в характере течения при заполнении формы, целесообразно рассматривать описание потока отдельно для каждой области, стыкуя решение на границе их раздела. С учетом сделанных допущений уравнения движения и тепло-и массопереноса для основной области течения во время заполнения будут иметь вид  [c.175]

    Хигби 144] предложил объяснить механизм массопереноса в процессах газопоглощения непрерывным обновлением поверхности жидкости. Предусматривалось, что поверхность, находящаяся в контакте с газовой фазой, состоит из большого числа мельчайших элементов жидкости каждый элемент остается на поверхности раздела в течение короткого промежутка времени, после чего он заменяется свежим элементом жидкости из основной массы жидкой фазы. Массоперенос происходит между газом и жидкостью во время этого короткого периода времени. [c.164]

    Кинетика большинства высокотемпературных процессов определяется скоростью, с которой реагенты могут достигнуть границы раздела фаз. Одним из наиболее характерных примеров является процесс окисления металлов. В результате взаимодействия поверхностных атомов с кислородом образуется слой окисла, толщина которого оказывается пропорциональной корню квадратному времени взаимодействия. Скорость реакции определяется процессом массопереноса (при условии, что слой окиси плотный и непрерывный) реагенты в таком случае должны диффундировать через слой окиси. По мере того как толщина окис-ного слоя увеличивается, скорость суммарного процесса уменьшается, так как возрастает время, необходимое для завершения диффузии реагентов (см. гл. УП). [c.110]


    Хигби полагал, что в жидкости, находящейся в турбулентном движении, жидкостная пленка на границе раздела фаз постоянно обновляется жидкостью из более глубоких слоев. При этом массопередача осуществляется посредством нестационарной молекулярной диффузии через тонкую жидкостную пленку, так как из-за кратковременности контакта фаз в пленке не успевает установиться стационарный режим. Хигби считал, что концентрация диффундирующего компонента на границе раздела фаз зависит от времени их контакта, в связи с чем начальным этапом массопередачи должно быть проникание (пенетрация, "проницание") через жидкостную пленку. Период проникания ("время экспозиции" по терминологии Хигби), отвечающий времени установления равновесия на границе раздела фаз, при рассмотрении массопереноса из цилиндрического и сферического газового пузырьков соответственно составляет  [c.16]

    Роль электрода сравнения схематически показана на рис. 10.3. Как видно, исследуемый раствор отделен от внутреннего электролита электрода сравнения жидкостным мостиком. В этом мостике, включающем обычно пробку из пористого стекла, может возникнуть градиент концентрации ионов и, соответственно, разность потенциалов. Величина этого потенциала определяется процессом диффузии заряженных частиц и со временем меняется. В эксперименте диффузионные потенциалы, возникающие в жидкостном мостике, можно контролировать двумя способами. Во-первых, можно подобрать такие ионы по обе стороны жидкостного соединения, чтобы отношение заряд/подвижность для всех из них было одним и тем же. Второй способ-градуировка электрода сравнения в стандартном растворе. Теория электродных жидкостных соединений детально рассмотрена в работах [2, 9] и имеющихся в них ссылках. Таким образом, биосенсоры на основе редокс-электродов имеют те же ограничения, что и системы с ИСЭ. Однако в случае редокс-систем имеется дополнительное ограничение, связанное с недостаточностью сведений о взаимосвязи химии поверхности электрода и наблюдаемых потенциалов. С другой стороны, редокс-электроды могут иметь меньшее время отклика, поскольку отсутствует массоперенос через границу раздела. Кроме того, обычно редокс-электрод имеет более низкое электрическое сопротивление, чем типичный ИСЭ, поэтому для него требуется недорогое измерительное оборудование, т.е. приборы с низким входным импедансом. Редокс-системы менее селективны и, следовательно, имеют более широкий диапазон приложений. [c.133]

    В работах А. Б. Таубмана и С. А. Никитиной с сотрудниками показано, что возникновение структурно-механического барьера связано с самопроизвольным образованием ультрамикроэмульсии (УМЭ) на границе раздела двух жидких фаз. Возникновение УМЭ можно легко наблюдать, если наслоить углеводород (масляная фаза) на водный раствор эмульгатора. Спустя некоторое время на границе раздела фаз появляется тонкая молочно-белая прослойка, постепенно утолщающаяся в сторону водной фазы. Это явление — следствие гидродинамической неустойчивости межфазной поверхности углеводород—раствор ПАВ, обусловленной I двусторонним массопереносом через границу раздела (переход в водную фазу вследствие внутримицеллярного растворения, перераспределение эмульгатора между фазами благодаря некоторой растворимости его в углеводороде). В результате возникающей поверхностной турбулентности в обеих фазах вблизи поверхности раздела спонтанно развивается процесс эмульгирования с образованием капелек эмульсии как прямого типа (в водной фазе), так и обратного (в углеводороде). Однако обратная эмульсия, как правило, грубодисперсна, малоустойчива и легко разрушается, тогда как прямая имеет коллоидную степень дисперсности (размер капелек соизмерим с размером мицелл, солюбилизировавших углеводород) и обладает высокой агрегативной устойчивостью. Ультрамикрокапельки ее защищены адсорбционными слоями эмульгатора, которые связывают их в сплошную гелеобразную структуру с заметно выраженной прочностью и другими структурно-механическими свойствами. [c.194]

    Перенос компонентов соприкасающихся фаз идет до достижения между ними динамического равновесия. Явления, происходящие при абсорбции на границе раздела фаз, описывают на основе двухпленочной теории Уитмана [42], согласно которой изменение концентраций переходящего вещества происходит в тонких приповерхностных слоях (пленках) газа Рц и конденсированного вещества (рис.5.35). Принимают, что в приграничных пленках конвекция отсутствует, и массоперенос осуществляется исключительно за счет молекулярной диффузии, в то время как перенос из объема газа к пленке и от пленки в объем конденсированной фазы У происходит очень быстро (например, за счет турбулентной диффузии) Поэтому концентрации переходящего компонента у в объеме газовой фазы У , и х в объеме У считаются постоянными. В плёнке газа концентрация переходящего компонента падает до значения у на поверхности радела фаз 8, а пленка конденсированной фазы насыщается до концентрации х , причем сама поверхность 8 не оказывает сопротивления переходу компонента В пленке концентрация снижается до постоянного значения х вследствие распределения компонента в объеме У . Перенос продолжается до достижения равновесия, при котором химические потенциалы переходящего компонента в газовой и конденсированной фазах выравниваются. [c.326]

    Во-первых, используем уже упоминавшийся ранее квазистационарный подход. В основе его лежит предположение о том, что характерные времена тепло-и массопереноса в газовой фазе много меньше, чем в жидкой, поскольку в газе коэффициенты диффузии и теплопроводности намного превосходят соответствующие коэффициенты в жидкости. Поэтому распределение параметров в газе можно считать стационарными, а в жидкости — нестационарными. С другой стороны, малость объема капли позволяет считать распределение в ней температуры и концентраций однородными, в то время как в газе эти параметры зависят от пространственных координат. Другое предположение состоит в том, что центр капли пе движется относительно газа. Это очень сильное предположение, потому что в реальных процессах, например при распыливапии жидкости в камере сгорания, капли движутся относительно газа за счет инерции и силы гравитации. Однако, если размер капель мал (меньше 1 мкм) и процесс тепломассообмена протекает достаточно быстро, то предположение допустимо. На поверхности капли, как обычно, предполагается существовапие локального термодинамического равновесия и равенство давлений фаз. Последнее условие было сформулировано в конце раздела 6.7. [c.126]

    Массоперенос в пузыре. Вследствие того, что коэффициенты диффузии в газе на 4 порядка выше, чем в жидкости, процесс массопереноса в пузыре протекает значительно быстрее, чем в каплях. Степень извлечения различных газов и паров из пузыря диаметром 4 мм, равная 99 %, может достетаться уже на высоте слоя жидкости от 2 до 10-12 см. Такая высокая скорость массопереноса в пузырях приводит к значительным трудностям при экспериментальном исследовании этого процесса. Трудности эти связаны с очень большим вкладом так называемых концевых эффектов в общее количество вещества, поступающего в пузырек в процессе его существования. Разделить стадии, из которых складывается общий процесс массопереноса в пузырьке (массоперенос во время образования, собственно движения и коалесценции на поверхности жидкости) практически невозможно. При этом степень поглощения в процессе образования пузыря и выхода его на поверхность жидкости может составлять до 50 % и выше. Кроме того, в связи с очень большой скоростью массопереноса в процессе движения становится заметным влияние так называемого поверхностного сопротивления. По-видимому, этим объясняется тот факт, что в настоящее время механизм массопередачи в пузырьке до конца не выяснен, а имеющиеся экспериментальные результаты по определению коэффициентов массоотдачи достаточно противоречивы. Многочисленные результаты по определению коэффициентов массоотдачи при лимитирующем сопротивлении газовой фазы на барботажных тарелках различных конструкций практически не дают никакой информации о механизме массопередачи в движущихся пузырях. Это связано с тем, что в такого рода экспериментах определяется суммарный коэффициент массоотдачи на тарелке, включающий все три стадии процесса. [c.285]

    Механизм такого снижения коэффициентов массоотдачи в газовой фазе по сравнению со значениями, предсказываемыми теорией конвективного массопереноса, еще не достаточно изучен. Можно предположить, что это является следствием образования на границе раздела фаз энергетического или механического барьера из адсорбированного слоя молекул растворимых или нерастворимых веществ, обладающих поверхностно-активными свойствами. Влияние поверхностно-активных веществ (ПАВ), специально вносимых в жидкую фазу в небольших количествах, на скорость массопередачи исследовалось неоднократно [5]. Такое влияние в основном является негативным, однако при некоторых видах ПАВ может приводить и к ускорению массопередачи. Уменьшение скорости массопереноса при добавках ПАВ происходит не только вледствие изменения гидродинамических условий, в частности подавления циркуляции внутри капли или пузыря. Разработана модель [16], согласно которой растворимые ПАВ адсорбируются поверхностью капли или пузыря и накапливаются в кормовой ее части в количествах, достаточных для создания межфазного сопротивления или барьера. Присутствие не растворимых в воде веществ также может способствовать уменьшению скорости массопереноса. В [48] отмечается, что скорость испарения воды в пузырек падала в несколько раз, когда в воде присутствовали капельки не растворимого в ней ундекана, которые могли захватываться всплывающим пузырьком и экранировать его поверхность. Однако в настоящее время нет ответов на вопросы о том, могут ли незначительные количества ПАВ или загрязнений, содержащихся в обычных жидкостях, создать на поверхности [c.286]

    Известно, что в обычной ВЭЖХ эффективность хроматографической системы, полученной путем последовательного соединения нескольких колонок (с целью повышения эффективности разделе(ния, не пропорциональна суммарной длине колонок В то же время в микро-ВЭЖХ благодаря уменьшению вихревой диффузии и более эффективному отводу тепла, выделяющегося вследствие перепада давления, увеличение длины колонки позволяет достигнуть достаточно высокой эффективности системы Выделяющаяся в колонке теплота влияет на процессы массопереноса, что ухудшает эффективность разделения Поэтому температуру в колонке следует поддерживать постоянной Малая теплоемкость микроколонок упрощает программирование температуры в ВЭЖХ Этот прием получил широкое распространение в газовой хроматографии (ГХ  [c.9]

    Таким образом, в условиях проведения опытов по диспергированию, образуются два вида эмульсии типа парафин в воде — крупнодисперсная, быстрорасслаивающаяся эмульсия и устойчивая мелкодисперсная [196]. Нам кажется возможным объяснить наблюдаемую картину в свете современных представлений о механизме эмульгирования, развиваемых в работах А. Б. Таубмана и С. А. Никитиной (см. гл. I). Согласно взглядам этих авторов, получившим в настоящее время прямое экспериментальное подтверждение, в процессе квазиспонтанного эмульгирования в результате массопереноса на границе раздела фаз (диффузия, солюбилизация) образуется высокодисперсная и устойчивая микроскопическая эмульсия с радиусом капель 0,02— 0,05 мк. Как уже описывалось выше, в результате образования и уплотнения этой микроэмульсии на границе раздела фаз происходит структурирование защитной пленки, что приводит к стабилизации эмульсии. [c.91]

    Здесь п — точечный к. п. д. при отсутствии сопротивления массопереносу в жидкой фазе кп — коэффициент массоотдачи, кмоль перенесенного вещества1(секХ Хм поверхности раздела фаз-атм) а — удельная поверхность раздела фаз на колпачковой тарелке, захвата газа на тарелке Я — газовая постоянная, атм м 1 (кмоль град) Т — температура, ° К а — среднее время контакта газа и жидкости, сек. Величина рассчитывается делением общего захвата газа на колпачковой тарелке (в м ) на объемный расход газа (в м /сек). Уравнение (У-97) было выведено в предположении о порщневом режиме течения пара вверх через слой жидкости, которая хорошо перемещивается в вертикальном направлении. [c.376]

    Важной характеристикой хроматографического разделения является размывание зоны компонента при его движении по колонке. В момент ввода образец занимает узкую полосу в верхней части колонки. При движении по колонке эта полоса размывается за счет неодинаковой средней скорости молекул одного и того же компонента, обусловленной различными факторами. Так, вихревая диффузия вызьшает более медленное перемещение молекул в узких каналах, чем в широких. Другим фактором является массоперенос в подвижнойфазе.Жидкость вблизи твердых частиц движется медленно, а в центре струйки между частицами - быстро. В результате молекулы компонента за равное время проходят разный путь центральные перемещаются быстрее, а находящиеся вблизи частиц - медленнее. Вносят свой вклад в размывание полосы и массоперенос в застойных зонах подвижной фазы, обусловленный диффузией молекул компонента в поры частиц неподвижной фазы, а также массоперенос в стационарной фазе, определяемый прониканием молекулы в глубь частицы. Чем медленнее движется компонент по колонке, тем больше размьшание. На рис. 1 приведена хроматограмма, иллюстрирующая разделение трехкомпонентного образца. Каждый компонент характеризуется временем удерживания шириной полосы или пика tw. Чем больше различие в компонентов, тем легче они разделяются, и чем меньше Гц,, тем лучше разделение. [c.6]

    Среди неоднократных попыток дать определение понятия мембраны определение, приведенное ниже [1, 2 ], представляется наиболее общим и в то же время конкретным мембрана это фаза или группа фаз, которые разделяют две различные фазы, отличающиеся физически и/или химически от фаз мембраны при этом мембрана обла цает свойствами, позволяющими ей под действием приложенного силового поля управлять процессами массопереноса между разделяемыми фазами . — Прим. ред. [c.28]

    Метод суммарной аппроксимации в настоящее время пшроко используется при решении задач математической физики. В частности, распространенные при решении задач тешюпроводности и фильтрации экономичные разностные схемы, например, локально-одномерная и переменн1йх направлений, построены на принципе суммарной аппроксимации [7]. Идея расщепления используется не только для получения более простых разностных схем, она значительно глубже, так как позволяет разделить во времени действие различных физических факторов, влияющих на рассматриваемый процесс. В этом смысле говорят о расщеплении по физическим факторам (процессам). Данный подход оказался особенно плодотворным при решении сложных задач газовой динамики, гидродинамики, динамики атмосферы [4]. Покажем возможность применения метода расщепления по физическим факторам для решения задач массопереноса в подземных водах. [c.381]


Смотреть страницы где упоминается термин Время раздела фаз при массопереносе: [c.24]    [c.110]    [c.223]    [c.171]    [c.6]    [c.114]    [c.107]    [c.375]    [c.245]    [c.352]   
Основные процессы и аппараты Изд10 (2004) -- [ c.398 ]




ПОИСК





Смотрите так же термины и статьи:

Массоперенос



© 2025 chem21.info Реклама на сайте