Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парциальное давление абсорбентов

    Осушка газа гликолями основана на разности парциальных давлений водяных паров в газе и абсорбенте. Количество влаги, которое можно извлечь из газа с помощью абсорбента, определяется гигроскопическим свойством осушителя, температурой и давлением, эффективностью контакта газа и абсорбента, массой циркулирующего в системе осушителя и его вязкостью. [c.56]


    Очистку газа методом физической абсорбции целесообразно осуществлять только при средних и высоких парциальных давлениях кислых компонентов газа. При низких парциальных давлениях степень извлечения кислых компонентов невелика. Растворимость извлекаемых компонентов в абсорбенте можно повысить в некоторой степени путем повышения давления в абсорбере, но при этом одновременно увеличивается растворимость углеводородных компонентов газа и, следовательно, селективность процесса будет оставаться низкой. Кислые газы, получаемые на стадии регенерации и используемые обычно для получения серы, содержат в этом случае большое количество углеводородов, что нежелательно для процесса Клауса. Повысить концентрацию кислых компонентов можно ступенчатой дегазацией насыщенного абсорбента с постепенным понижением давления, но в газах дегазации, как правило, помимо углеводородов присутствуют сероводород и диоксид углерода, и [c.42]

    Насыщенный абсорбент поступает в турбину 3, где снижается его давление с давления абсорбции до давления десорбции. Турбина 3 служит приводом насоса, что существенно снижает энергетические затраты на перекачку абсорбента. Насыщенный абсорбент после снижения давления поступает в теплообменник 5 с целью повышения его температуры и далее в верхнюю часть десорбера 6. В нижнюю часть десорбера 6 подается горячий десорбирующий агент VI, предназначенный для снижения парциального давления целевых компонентов в газовой фазе с целью повышения движущей силы массопередачи. Из верхней части десорбера 6 уходят целевые компоненты V, из нижней — регенерированный абсорбент III. Регенерированный абсорбент после рекуперации теплоты в теплообменнике 5 через промежуточную емкость 4 насосом через воздушный или водяной холодильник 2 возвращается в абсорбер 1. [c.72]

    По закону Дальтона парциальное давление абсорбента в газовой фазе равно [c.283]

    Абсорбция и ректификация очень близки между собой с точки зрения физических основ этих процессов. Назначение любого абсорбера — извлечь конденсирующиеся примеси из потока газа. Это достигается посредством контакта газа и абсорбента. В качестве последнего используются различные нефтяные фрак)1,ии (керосин, масла и др.). Физическая сущность абсорбции состоит в том, что упругость паров поглощаемого вещества над абсорбентом меньше парциального давления этого вещества в газе, благодаря чему оно переходит из газа в поглотитель. [c.129]


    Согласно закону Дальтона, парциальное давление абсорбента в газовой фазе равно Раб = Ру б. [c.261]

    НаО -Ь НаЗО. Они применялись в первой абсорбционной холодильной машине [12] Эти рабочие вещества обладают очень хорошими термическими и калорическими свойствами — большое температурное поле раствора, малая теплоемкость, очень низкое парциальное давление абсорбента, хорошая абсорбционная способность, незначительная теплота смешения. Указанный раствор применяется в открытых абсорбционных [c.68]

    Из закона Генри следует, что количество растворяющегося в абсорбенте газа тем больще, чем выще парциальное давление [c.178]

    В противоположность процессу абсорбции процесс десорбции проводят при умеренно повышенных температурах (160—180° С) и пониженном давлении (5—8 ат), причем для того, чтобы происходил процесс десорбции углеводородов из насыщенного абсорбента, необходимо, чтобы парциальное давление извлекаемого компонента в газовой фазе было ниже, чем в жидкой фазе. Для этого в качестве десорбирующего агента применяют водяной пар. [c.271]

    Здесь С и С — общие (суммарные) концентрации прореагировавшего и непрореагировавшего газа А соответственно у поверхности и в массе жидкости. В то же время величина С выражает суммарную концентрацию при полном насыщении всей массы абсорбента газом А. Значит (С —С ) представляет собой количество газа А, которое может быть поглощено единицей объема основной массы жидкости, имеющей суммарную концентрацию С , до достижения полного насыщения этим газом в условиях химического равновесия в растворе (парциальное давление газа А над раствором должно быть таким, чтобы обеспечить величину концентрации непрореагировавшего газа в растворе А, равновесную с продуктами реакции). [c.71]

    Значение радикала может быть найдено по измерениям скорости абсорбции тем же абсорбентом при той же температуре газа с тем же парциальным давлением в лабораторной модели с известной величиной А (например, в колонне с орошаемой стенкой или в ячейке с мешалкой). [c.258]

    Применение физических поглотителей предпочтительно при высоких парциальных давлениях кислых компонентов в сырьевом газе. Повышение давления абсорбции приводит к снижению количества циркулирующего в системе абсорбента и, как следствие, к уменьшению расхода тепла в блоке регенерации. [c.43]

    Согласно правилу фаз равновесное состояние системы прн наличии трех компонентов К = 3 (инертный газ, поглощаемый газ, абсорбент) и двух фаз Ф = 2 (газ — жидкость) определяется значениями трех параметров (Л/ = К-г2 — Ф = 3 + 2 — 2=3). В качестве таких параметров обычно фиксируют концентрацию в жидкости х, парциальное давление над жидкостью и температуру /. Равновесное распределение поглощаемого компонента между двумя фазами определяется указанными параметрами. При малых концентрациях распределяемого компонента связь между параметрами и л ири данной температуре выражается в форме закона Генри  [c.13]

    Для осуществления процесса абсорбции необходимо, чтобы парциальное давление извлекаемого компонента в газовой фазе Рг было больше, чем в абсорбенте р. Разность этих давлений Ар = Рг — Рж определяет движущую силу процесса абсорбции. При ДР > О происходит процесс абсорбции, при ДР <0 — процесс десорбции. Процесс абсорбции (десорбции) прекращается, когда система достигает состояния равновесия, т. е. Рг Рг = Рж- [c.295]

    Условия контакта газа и гликоля в абсорбере. Температура контакта газа и гликоля оказывает существенное влияние на глубину осушки газа. При высокой темпера, туре контакта увеличивается парциальное давление воды над абсорбентом, а соответственно и содержание воды в газе. Снижение температуры повышает глубину осушки газа. Однако при выборе температуры контакта необходимо учитывать увеличение вязкости гликоля со снижением температуры и ухудшение ири -)том условий массообмена, а также опасность конденсании углеводородов. Верхний предел температуры контакта обуслов- [c.143]

    При десорбции поглощенные компоненты газовой смеси должны быть вновь переведены в газообразное состояние. Для этого обычно снижают парциальное давление углеводородов при вводе водяного пара либо повышают температуру насыщенного абсорбента и подводят тепло в нижнюю часть десорбера (см. рис. ХУ-2). В последнем случае десорбер можно рассматривать как отгонную часть ректификационной колонны. [c.302]

    Последнее позволяет резко снизить парциальное давление СО2 в газе при контакте с раствором третичного амина - ТЭА. Процесс регенерации осуществляется ступенчатым испарением. Растворы третичных аминов (45-53 % по массе) характеризуются низкой абсорбционной способностью по отношению к углеводородам. В этом состоит главное достоинство растворов ТЭА как абсорбентов СО2 при низком содержании Нз5 в газе. [c.22]


    Понижение температуры абсорбции будет благоприятно влиять на процесс очистки и в некоторой степени даже повысит селективность процесса, но может привести к понижению вязкости абсорбента и, следовательно, отрицательно отразится на эффективности массообменных процессов. Поэтому при низких парциальных давлениях кислых компонентов предпочтение следует отдавать хемосорбционной или адсорбционной очистке. [c.43]

    Комбинированные абсорбенты представляют собой смесь физического и химического абсорбентов. Они лишены недостатков физических абсорбентов, позволяющих очищать только газы с высоким парциальным давлением кислых компонентов, и недостатков наиболее распространенных химических абсорбентов - аминов (извлекаются HjS и Oj и почти не извлекаются сераорганические соединения). Комбинированные абсорбенты обеспечивают глубокое извлечение HjS, Oj, OS, Sj, RSH и RSR. Основное количество кислых компонентов извлекается физическим абсорбентом, а тонкая очистка химическим абсорбентом. [c.53]

    Процесс абсорбции протекает тогда, когда парциальное давление или концентрация извлекаемого компонента в газовой смеси больше, чем в абсорбенте. Чем больше эта разность, тем интенсивнее переход компонента из газовой смеси в жидкость (абсорбент). Когда парциальное давление или концентрация компонента в жидкости больше, чем в газовой смеси, происходит десорбция — выделение растворенного газа из раствора. [c.157]

    В значительной степени осушка зависит от температуры контакта газ — абсорбент. Повышение температуры контакта увеличивает парциальное давление воды над абсорбентом и тем самым повышает точку росы осушаемого газа. При понижении температуры контакта наблюдается обратный эффект. Обычно абсорбционная осушка проводится при температуре осушаемого газа не выше 45-50 С. [c.80]

    Изготовлением катализаторов на основе окиси цинка, в которых оптимизированы активность, абсорбционная емкость, плотность и прочность, занимается преимущественно фирма Ай-Си-Ай. Другим основным катализатором для сероочистки является окись железа, которая используется, главным образом, в экструдированной форме. Преимущества окиси железа заключаются в ее низкой стоимости и в возможности ее регенерации теоретически при любой скорости. Так как на парциальное давление сероводорода в потоке газа над окисью железа заметно влияют условия работы, то для окиси железа требуется более жесткое регулирование параметров, чем для окиси цинка. Различие поведения этих двух абсорбентов связано с влиянием водяных паров на абсорбционное равновесие серы (иногда также с влиянием водорода на сульфиды цинка и железа). [c.69]

    Абсорбция — процесс избирательного поглощения компонентов газовой смеси жидким поглотителем (абсорбентом). Процесс абсорбции происходит в том случае, когда парциальное давление извлекаемого компонента в газовой смеси выше, чем в жидком абсорбенте, вступающем в контакт с этим газом, т.е. для протекания абсорбции необходимо, чтобы газ и абсорбент не находились в состоянии равновесия. Различие в парциальном давлении извлекаемого компонента в газе и жидкости является той движущей силой, под действием которой происходит поглощение [c.191]

    Наиболее широко известная теория, предполагающая равномерный переход молекул через стабильный пограничный слой, называется теорией двух пленок и была предложена Уайтменом и Льюисом в 1924 г. [509, 937]. По этой теории абсорбируемый газ диффундирует через ламинарный пограничный слой и неподвижный подслой . Если в качестве абсорбента используется жидкость, то существуют такие же пограничные слои со стороны жидкости. Далее предполагают, что на границе раздела жидкость — газ существует равновесие. Тогда парциальное давление р1 и концентрация на границе раздела с,- взаимосвязаны. Когда достигается состояние установившегося режима переноса, скорость переноса из газового потока к границе и от границы раздела в объем жидкости должны быть равны. Тогда [c.107]

    Для солярового масла Уа = 1,06+1,09 для каменноугольного поглотительного 1,14-1,18. Низкие парциальные давления бензольных углеводородов в газе объясняют невысокое содержание бензольных углеводородов в насыщенном поглотительном масле (не более 2-3 % мае.). Это приводит к расходованию на орошение абсорберов больших объемов абсорбентов и к значительным расходам энергии на обогрев масла при десорбции бензольных углеводородов из абсорбента. [c.168]

    Определенный газовый компонент абсорбируется тогда, когда парциальное давление этого компонента в газовой фазе превышает его парциальное давление в парах, равновесных с жидкостью, являющейся абсорбентом и вступающей в контакт с газом. Следовательно, интенсивность, с которой будет поглощаться абсорбентом извлекаемый из газа компонент пропорциональна разности этих парциальных давлений. Кроме того, количество поглощенного компонента пропорционально времени и поверхности контакта жидкой и газовой фаз. [c.288]

    Влияние давления паров абсорбента на равновесие. В приведенных зависимостях не учитывалось влияние давления паров поглотителя на равновесие, что допустимо, если это давление мало по сравнению с парциальным давлением абсорбируемого газа. Если же давление паров поглотителя велико, то его влияние на равновесие при абсорбции учитывают следующим образом. [c.437]

    Абсорбция —процесс поглощения газов или паров из газовых или паровых смесей жидкимц поглотителями (абсорбентами). В основе процесса абсорбции лежит закон Рауля, согласно которому парциальное давление абсорбента над раствором равно давлению пара чистого абсорбента, умноженному на его мольную долю в растворе  [c.114]

    Сульфинол -процесс обеспечивает глубокое извлечение H2S, СО2, OS, S2, RSH, RSR. Основное количество компонентов поглощается физическим растворителем, тонкая очистка осуществляется диизопропаноламином. Раствор сульфииол химически и термически стабилен, имеет низкую теплоемкость и давление насыщенных паров. При взаимодействии с СО2 сульфи-нол незначительно деградирует с образованием диизопропанол-оксозолидона, который имеет щелочную реакцию и хорошо растворяет кислые газы. Разложение сульфинола при наличии СО2 в очищаемом газе в 4—6 раз меньше, чем моноэтанолами-иа. Поглощающая способность сульфинола примерно в 2 раза выше, чем МЭА, что снижает удельное количество циркулирующего абсорбента. Сульфинол -процесс высокоэкономичен как при низких, так и при высоких парциальных давлениях кислых газов в исходном газе. Расход пара на регенерацию абсорбента [c.183]

    Десорбцию проводят при относительно повышенных температурах (160—200° С) и пониженных давлениях (3—5 ат). Для десорбции углеводородов из насыщенного абсо"рбента требуется, чтобы парциальное давление извлекаемого компонента в газовой фазе было ниже, чем в жидкой. В качестве десорбирующего агента обычно применяют острый водяной пар. Отпаренные тяжелые углеводороды и водяной пар отводятся сверху десорбера, проходят конденсатор-холодильник и поступают в водоотделитель. Из водоотделителя вода выводится снизу, часть жидких углеводородов возвращается в десорбер на орошение, а балансовое количество поступает в емкость нестабильного газового бензина. Снизу десорбера выходит регенерированный абсорбент, который в теплообменнике отдает свое тепло насыщенному абсорбенту, охлаждается в холодильнике и возвращается наверх абсорбера. [c.166]

    Процесс абсорбции обычно протекает при сравнительно низкой температуре (30—40° С) и высоком давлении (10—15 ат), причем для того, чтобы происходил процесс поглощения углводородов из газа абсорбентом, необходимо, чтобы парциальное давление извлекаемого компонента в газовой смеси было выше, чем в жидком абсорбенте. [c.271]

    Для очистки газов от сероводорода и других серосодержащих соединений нспользуют преимущественно абсорбционные процессы. Наибольшее распространение получили алканоламиновые абсорбенты для низких и средних парциальных давлений кислых [c.281]

    Пары абсорбента, поднимаясь вверх, постепенно охлаждаются и, конденсируясь, отдают тепло стекающей навстречу 1< 1дкости, из которой выпариваются бензиновые углеводороды. Наличие в пото ке водяных паров, уменьшающих парциальное давление в системе, способствует лучшей отпарке бензиновых углеводородов. Смесь паров углеводородов и водяного пара поступает в верхнюю часть десорбера. Навстречу им стекает поток холодного орошения, назначение которого — сконденсировать и осадить в жидкой фазе легкие фракции абсорбента, увлеченные потоком паров. Количество подаваемого холодного орошения регулируют в зависимости от заданной температуры верхней части колонны. [c.144]

    При низких и средних парциальных давлениях кислых газов поглотительная способность абсорбентов на основе водных растворов- алканоламинов [c.5]

    Для переработки попутных газов широко используют абсорбционно-ректификационный метод. Принцип этого метода состоит в том, что газ промывают в абсорбере под давлением и при охлаждении абсорбентом — поглотительным маслом (при этом извлекаются в основном углеводороды Сз—С5), а затем отгоняют растворенные в абсорбенте газы, которые после конденсации подвергают дальнейшей ректификации. Регенерированный абсорбент охлаждают и возвращают в абсорбер. Благодаря применению абсорбента сильно снижается парциальное давление углеводородов Сз—Сб и для их отделения от низших гомологов не требуются столь высокое давление и низкая температура, как при конденса-и[1онпо-ректификационном способе. Это обусловливает более высокую экономичность абсорбционно-ректификациоиного метода. Когда процесс ведут с высокой степенью извлечения пропапа, при абсорбции неизбежно поглощается и значительное количество этана, с которым на стадии десорбции может быть увлечено много высших углеводородов. Во избежание их повторной абсорбции — десорбции поглощение высших углеводородов совмещают в одном аппарате с отпариванием легких углеводородов из насыщенного абсорбента. [c.26]

    Парциальное давление аммиака в смеси газов на входе в колонну равно 0,05 ат, на выходе 0,01 ат. Концентрация серной кислоты в абсорбенте на входе 0,6 кмолъ м , на выходе 0,5 кмоль/.ч . Частные коэффициенты массопередачи / = 0,35 кмолъ .ч Ч-ат), = 0,005 м ч Я = 75 кмолъ/(м ат) расход смеси газов 45 к.чоль/ч общее давление 1 ат. Газ н жидкость движутся противотоком. [c.150]

    Так как установлено, что парциальное давление НР над абсорбентом (раствором МагСОз) равно нулю, то АС определяется по формуле  [c.187]

    В отличие от хемосорбциопных способов методом физической абсорбции можно наряду с сероводородом и диоксидом углерода извлекать серооксид углерода, сероуглерод, меркаптаны, а иногда и сочетать процесс очистки с осушкой газа. Поэтому в некоторых случаях (особенно при высоких парциальных давлениях кислых компонентов и когда не требуется тонкая очистка газа) экономичнее использовать физические абсорбенты, которые по сравнению с химическими отличаются существенно более низкими затратами на регенерацию. Ограниченное применение этих абсорбентов обусловлено повышенной растворимостью углеводородов в них, что снижает качество получаемого кислого газа, направляемого обычно на установки получения серы. [c.14]

Рис. 4. Зависимость равновесного содержания СО, в абсорбенте от его парциального давления РсОз при концентрации МЭА 4,1 моль/моль и 60 Х ДЭД 4,5 моль/моль и 70 С, ТЭД 4,5 моль/моль, Сепасолв МПЕ О С Рис. 4. <a href="/info/939489">Зависимость равновесного</a> содержания СО, в абсорбенте от его <a href="/info/4707">парциального давления</a> РсОз при концентрации МЭА 4,1 <a href="/info/173836">моль/моль</a> и 60 Х ДЭД 4,5 <a href="/info/173836">моль/моль</a> и 70 С, ТЭД 4,5 <a href="/info/173836">моль/моль</a>, Сепасолв МПЕ О С
    В физических процессах извлечение кислых компонентов из газа происходит за счет физического растворения их в применяемом абсорбенте. При этом, чем выше парциальное давление извлекаемых компонентов, тем выше их растворимость. В отличие от алканоламинов, физические растворители одновременно с HjS и SOj извлекают из газа сераорганические примеси (меркаптаны, серооксид углерода и др.). [c.58]

    Очистку газа от двуокиси углерода и сероводорода проводи жидким поглотителем (абсорбентом) в абсорбере, а затем их выделях из жидкости в десорбере (регенераторе). Процесс абсорбционнс очистки — циклический. Поглощение основано на химическом взаим действии СОа и НдЗ с веществами, обладающими сравпитель слабыми щелочными свойствами, и образовании нестойких соед нений. Другие компоненты газовой смеси, не обладающие кислоч, ными свойствами, не поглощаются. жидкостью и не взаимодейству1( с ней. На стадии регенерации в результате повышения температур поглотителя и снижения парциального давления поглощенное компонента химические связи разрушаются. [c.113]

    Обозначим Шфциальное давление поглощаемого компонента в газовой фазе через р , а парциальное давление того же компонента в газовой фазе, находящейся в равновесии с абсорбентом, через Рр. Если р > Рр, то компонент газа переходит в жидкость, т.е. протекает процесс абсорбции (рис. VI- , а). Если Рг < Рр, то поглощенные компоненты газа переходят из абсорбента в газовую фазу, т.е, осуществляется процесс десорбции (рис. V - , б . [c.193]

    Процесс абсорбции происходит в том случае, если парциальное давление извлекаемого компонента в газовой смеси выше, чем в гкид ком абсорбенте, вступающем в контакт с этим газом, т. е. для протекания абсорбции необходимо, чтобы газ и абсорбент не находились в состоянии равновесия. [c.222]


Смотреть страницы где упоминается термин Парциальное давление абсорбентов: [c.137]    [c.284]    [c.157]    [c.306]   
Основные процессы и аппараты Изд10 (2004) -- [ c.437 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.460 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбенты

Давление парциальное



© 2025 chem21.info Реклама на сайте