Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилен на металлах

    Конденсация с ацетиленом Металлы, окислы на угле [c.29]

    АЦЕТИЛЕНИДЫ м мн. Группа химических соединений, являющихся продуктами замещения водорода в ацетилене металлами. [c.48]

    В табл. 18 представлены данные по количественным адсорбционным измерениям в системе ацетилен — металл, по которым [c.154]

    Таким образом, ацетилен, который имеет две ортогональные ря-связи, использует одну заполненную ря-орбиталь для образования донорной связи с атомом марганца, а обратная подача электронов от металла осуществляется на соответствующую разрыхляющую ря -орбиталь ацетилена. Известен ряд комплексов ацетилена с платиной, где связь ацетилен — металл, вероятно, аналогична связи в комплексах платины с этиленом. [c.366]


    Каталитическое действие солей ртути и меди на реакцию гидрохлорирования ацетиленовых углеводородов объясняется образованием координационного комплекса ацетилен — металл, в котором происходит активация ацетилена. Активированный ацетилен взаимодействует с хлор-анионом С1 с образованием металлорганического соединения, которое быстро разлагается кислотой  [c.252]

    Исследовалось влияние примесей в ацетилене на качество сварного шва. Установлено, что при сварке пластин из малоуглеродистой стали толщиной 2,6 и 16 мм. происходит определенное поглощение фосфора, но не серы. При сварке очищенным ацетиленом металл сварного шва содержал 0,005% Р и 0,024% 5, однако когда сварка производилась ацетиленом, содержащим 0,029% РНз и 0,008% НгЗ, сварной шов содержал 0,015% Р и 0,025% 5. Но на качество сварного шва это не оказало влияния. При изучении влияния содержания РНз и НгЗ в ацетилене на качество сварных швов (пластина толщиной 6 мм) не было обнаружено изменений металлографической структуры при содержании до 0,05% каждой из примесей. При содержании 0,1% РНз и 0,1% НаЗ не было установлено видимых изменений или вредного влияния на механическую прочность сварных швов. Даже при содержании в ацетилене 0,25% РНз и 0,25% НгЗ прочность не снижается, уменьшается лишь вязкость шва, определяемая по углу загиба. При содержании каждой из примесей в ацетилене в количестве 0,5% наблюдалось отрицательное влияние на структуру сварного шва при содержании каждой из примесей 1% швы становятся пористыми [1.32]. [c.69]

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    В присутствии газов-разбавителей, например окиси углерода, ацетилен может воспламеняться и при 250—300 °С. Некоторые твердые вещества также понижают температуру самовоспламенения ацетилена в 1,5—2 раза. Так, в присутствии карбида кальция температура самовоспламенения ацетилена при атмосферном давлении составляет 500 °С. Окислы меди, железа и других металлов, являясь весьма активными катализаторами, в значительной мере способствуют снижению температуры разложения ацетилена. Наименьшая температура, при которой возможен взрывной распад ацетилена, находящегося под избыточным давлением 400 кПа, составляет в присутствии меди 240 °С, а в присутствии окислов железа 280 °С. [c.21]

    Непредельность ацетилена обусловливает его способность по-лимеризоваться. Ацетилен полимеризуется при температуре выше 400°С, а в присутствии окислов металлов или других катализаторов при 240—300 °С, при этом выделяется значительное количество тепла. Выделяющееся тепло способствует дальнейшей полимеризации, и при температуре выше 500 °С может произойти взрывчатый распад еще не подвергшегося полимеризации ацетилена. [c.24]

    Приводим перечень некоторых ядов (металлы и (или) соедипения), предложенных для деактивации никеля и металлов платиновой группы, с целью сделать их более пригодными для избирательной гидрогенизации углеводородов, особенно ацетиленов серебро, медь, цинк, кадмий, ртуть, алюминий, таллий, олово, свинец, торий, мышьяк, сурьма, висмут, сера, селен, теллур и железо [68, 116]. [c.268]

    Кузнецов = обнаружил, что этилен, так же как и метан, этан и ацетилен, нацело разлагаются порошком алюминия при темнературах, близких к температуре плавления этого металла. ,  [c.245]

    Способность цеолитов одновременно адсорбировать пары воды и СО 2 можно использовать для решения очень важной промышленной задачи — создания защитных атмосфер, необходимых при обработке металлов, спекании металлокерамики, специальной пайке и т. п. (применение контролируемых защитных атмосфер позволяет регулировать содержание углерода в поверхностном слое стальных изделий и повышать усталостную прочность и долговечность деталей). Одновременно с парами воды и двуокисью углерода из воздуха под давлением при помощи цеолитов могут удаляться и углеводороды, в частности ацетилен. Кроме того, совместная адсорбция паров воды и СО 2 открывает перспективу для решения вопроса о тонкой осушке, об очистке некоторых газов, используемых в промышленности (воздуха, азото-водородной смеси, углеводородов и т. д.). Наряду с предварительной осушкой и очисткой воздуха цеолиты могут применяться и для очистки продуктов его разделения, например очистка аргона от кислорода и других примесей (азота, водорода и углеводородных газов). [c.111]

    Карбиды при взаимодействии с водой выделяют ацетилен или смеси углеводородов. Карбиды щелочных металлов при контакте с водой реагируют со взрывом. Карбиды серебра, меди и некоторых других металлов нестабильны. При контакте с водой реакция про- [c.37]

    При взаимодействии с галогенами многие горючие вещества и металлы самовозгораются. Ацетилен, водород, этилен в сме- [c.144]

    Каталитическое действие солей ртути и меди на реакцию гидрохлорирования объясняют образованием координационных комплексов, в которых ацетилен активируется и взаимодействует е хлор-анионами, причем промежуточно получаются переходные состояния с металл-углеродной связью или настоящие металлоорганические соединения, быстро разлагаемые кислотой  [c.133]

    Эта реакция принадлежит к уникальному классу реакций. Ее проводят в режиме окислительного дегидрирования, но она не является каталитической. Ранее говорилось, что дегидрирование этана в этилен — относительно высокотемпературный процесс. Дегидрирование метана в ацетилен представляет собой чрезвычайно высокотемпературную реакцию и идет при 1300— 1600°С, когда равновесие наиболее сильно сдвинуто в сторону образования этилена. Очевидно, металлические реакторы не могут быть использованы для реакции парциального окисления природного газа (метана) в силу того, что реакция происходит при температуре, превышающей температуру плавления нержавеющей стали или любых других распространенных металлов. Поэтому реакторы футеруют огнеупорным кирпичом, а теплообмен и теплоотвод осуществляют до контакта горячих газов с неметаллическими поверхностями. При более низких температурах контакт газов с металлическими поверхностями допустим, и окончательный отвод тепла производится в металлическом теплообменнике. Сильно нагретые продукты реакции охлаждаются путем впрыскивания воды непосредственно в газовый поток (рис. 4). При этом вода превращается в пар, который вместе с продуктами должен быть охлажден экономично и с пользой. При получении ацетилена его быстрое охлаждение является одной из решающих операций, препятствующей гидрированию ацетилена в этилен или этан. [c.148]


    Катализатор готовился нанесением на силикагель крепких растворов азотнокислой меди и азотнокислого висмута (Си В1=4 . 1), до содержания металлов эквивалентного 12,7% Си и 3,2% В1. Силикагель брался прокаленный во вращающихся печах при 800°. После нанесения на него солей силикагель нагревался до 450—550°, причем нитраты превращались в окиси. Поело заполнения реактора этим катализатором окись меди превращалась в ацетилид. Для этого при 60 — 70° и в течение, примерно, 12 час. в реактор подавался разведенный формальдегид (5—20%) и разведенный азотом ацетилен. По мере образования ацетилида концентрация ацетилена постепенно повышалась с 10 до 90%, а температура—до 90°. Приготовленный таким образом. катализатор дозволял проводить синтез бутин-диола при температуре всего 100° и под давлением ацетилена всего 5 атм (ацетилен в синтез берется не разведенный азотом). [c.483]

    Для предотвращения накопления опасных примесей прибегают к сливам жидкого кислорода, удорожающим производство, но и этот прием не исключает возможности взрывов. Наиболее эффективным методом является тщательная очистка разделяемого воздуха от вредных примесей, для чего иногда используют адсорбцию на силикагеле. При этом эффективно извлекается только ацетилен, но не алканы. Весьма эффективной очисткой является окисление ацетилена на катализаторах из окислов металлов при небольшом подогреве (150—180°С). [c.80]

    При нагревании до 500°С и при сжатии до давлений выше 2-10 Па ацетилен, даже в отсутствии кислорода, разлагается со взрывом. Разложение инициируется искрой и трением. Взрывоопасность ацетилена возрастает в контакте с металлами, способными образовывать ацетилениды, например, с медью. Это необходимо учитывать при выборе материала аппаратуры. С воздухом ацетилен образует взрывчатые смеси с пределами воспламенения 2,3 и 80,7% объема. При этом взрывоопасность смесей снижается при разбавлении их инертными газами (азот, метан) или парами. [c.244]

    Ацетилен является эндотермическим соединением с энтальпией образования -1-227,4 кДж/моль. Поэтому, при сгорании его в кислороде выделяется большое количество тепла и развивается высокая температура, достигающая 3150°С. Это обусловило использование ацетилена для сварки и резки металлов, на что расходуется до 30% всего его производства. Вследствие высокой взрывоопасности ацетилен хранится и транспортируется в баллонах, заполненных древесным углем, или в растворе в ацетоне под давлением 1,5—2,5 МПа. [c.244]

    В дальнейшем с помощью аналитических определений было установленоj что соединения ацетилена с медью, серебром и ртутью являются продуктами замещения атома водорода в ацетилене металлом [105, 175, 176]. Причем Э. Кейзер свои наблюдения сопроводил замечанием Водород ацетилена, очевидно, имеет кислый характер . Наконец, в 1904 г. русский химик М. П. Скосарев-ский [177]j переведя натриевые производные ацетилена в соответствующие карбоновые кислоты, получил убедительные доказательства в защиту формул Na = H и Na = Na. [c.44]

    При взаимодействии я-С5Н5Мп(СО)з с ацетиленами при УФ-облучении образуются моноацетиленовые комплексы 8.1. Предполагают, что характер связи ацетилен — металл в них такой же, как в аналогичных комплексах с этиленом. [c.366]

    Прн взаимодействии ацетилена с водными растворами солей меди, серебра и ртути образуются осадки соответствующих ацети-ленидов металлов, характеризующиеся взрывчатыми свойствами. Ацетилен, содержащий влагу и аммиак, при длительном контакте с красной медью может реагировать с ней с образованием ацети-ленидов меди. При соприкосновении с серебром ацетилен способен образовывать взрывчатое ацетиленистое серебро. Содержание меди в материале аппаратуры, запорной арматуры, приборов и других устройств, применяемы-х в производстве ацетилена, не должно превышать 70%. [c.23]

    Во всех отраслях промышленности эксплуатируется большое число ацетилено-наполнительных станций различной производительности (от 10 до 320 мVч),. Предусмотрено дальнейшее расширение производства растворенного -ацетилена для автогенной обработки металлов. Производство ацетилена для газопламенной обработки металла основано на высокой растворимости ацетилена в ацетоне в одном объеме ацетона при 20 °С растворяется 20 объемов ацетилена. При этом способность ацетилена к взрыву понижается, а предельное давление, выше которого ацетилен распадается со взрывом, значительно повышается. Растворенный ацетилен перевозят и хранят в стальных баллонах, заполненных специальной пористой массой и ацетоном, газ растворяется в ацетоне и распределяется в порах массы. [c.37]

    Однако последние сообщения [37, 123] говорят о том, что дифенилацетилен и дидейтерозамещенный ацетилен при определенных комбинациях металл — кислота дают продукты присоединения водорода в гfм Псложение. Ранее считалось, что присоединение водорода при помощи комбинаций металл — кислота является химической реакцией восстановления. [c.263]

    Как было от.мечено, в систе.ме транспортирован1 я цетилена (для контрольно-измерительных приборов, регулирующих устройств, арматуры и т. д.) нельзя использовать металлы, образующие с ацетиленом сильно- [c.112]

    Карбиды — кристаллические тела. Природа химической связи в них может быть различной. Так, многие карбиды металлов главных иод эупп I, П и И1 групп периодической системы представляют собой солеобразные соединения с преобладанием ионной связи. К их числу относятся карбиды алюминия AI4 3 и кальция СаСг. 11ервыи из них можно рассматривать как продукт замеш,е-ния водорода на металл в метане СН4, а второй — в ацетилене С2Н2. Действительно, при взаимодействии карбида алюминия с водой образуется метан [c.437]

    С. Технический ацетилен, получаемый из карбида Kajibuw , пахнет неприятно из-за имеющихся в нем примесей. На воздухе ацетилен горит сильно коптящим пламенем. При его сгорании выделяется большое количество теплоты. Поэтому ацетилен в смеси кислородом широко используют для сварки и резки металлов (автогенная сварка температура пламени до 3150 С). Взрывоонзсен смеси с воздухом, содержащие от 2,3 до 80,7% ацетилена, взрывают от искры. Трудно растворим в воде под небольшим давле)1ием (1,2—1,5 МПа) хорошо растворяется в ацетоне (до 300 объемов) и в таком виде безопасен. [c.473]

    Кузнецов показал, что матан, этан, этплен и ацетилен полностью разлагаются в присутствии порошкообразного алюминия npii температурах, близких к температуре плавления этого металла. [c.335]

    Опыты П. Сабатье и его сотрудника Сандэрана возбуждают заслуженное внимание и представляют наиболее интересный пример неорганического синтеза нефти. Смесь непредельного углеводорода, с водородом подвергается (в присутствии катализатора — никеля) нагреванию нри температуре не свыше 180°. Происходит процесс гидрогенизации ненасыщенных углеводородов. В результате получается светло-желтая жидкость удельного веса 0,790, состоящая из предельных углеводородов и напоминающая по своим свойствам пенсильванскую нефть. При несколько измененных условиях опыта получаются и другие результаты так, если пропускать ацетилен без водорода над никелем при температуре 200°С, получается вещество, богатое ароматическими углеводородами. При вторичном пропускании этого последнего над никелем получается смесь нафтенов, т. е. нефть типа бакинской. Здесь, очевидно, мы имеем процесс полимеризации и образования под влиянием катализаторов циклических соединений. Вертело доказал, что полимеризация ацетилена (С2Н2) дает бензол (СаНе) при температуре размягчения стекла. Далее в литературе встречаются указания, что углеводороды могут получаться и при других реакциях. Например, еще в 1863 г. была известна возможность непосредственного получения ацетилена при пропускании водорода между угольными концами вольтовой дуги, но тогда на это не обратили должного внимания. Еще Вертело указал, что щелочные металлы, реагируя с СО2, образуют карбиды, или ацетиды и кислород, который потом уходит из сферы реа- [c.302]

    Перед испытанием готовят эталонные растворы органических соединений ванадия, молибдена, кобальта и никеля в топливе и вольфрама в воде в интервале концентраций этих металлов 1 Ю" - 10 % (масс.). Пробу топлива тщательно перемешивают и сжигают в количестве 7-8 мл/мин в пламенах воздух - ацетилен или оксид азота (N2 О)-ацетилен в режиме, указанном в табл. 18 (для спектрофотометра 1Ь-453). Для определения вольфрама сжигают водный раствор сухого остатка испьггуемого топлива. Перед растворением водой остаток обрабатывают раствором гидроксида натрия. [c.146]

    Больи. ое практическое значение имеют карбиды — соединения, образованные углеродом с элементами, обладающими меньшей, чем он, электрсютрицательпостью. В большинстве случаев их получают сильным нагреванием соответствующих элементных веществ или их оксидов с углеродом. Иногда применяют и другие методы синтеза, в частности, взаимодействие металлов с углеводородами. При пропускании ацетилена через растворы солей некоторых металлов (Си+, Ag+, Au+, Hg+ ) образуются ацетилени-ды. Часто один элемент дает несколько карбидов. [c.365]

    Применение. Более половины получаемого кислорода расходуется в черной металлургии для интенсификации выплавки,. чугуна и стали. В смеси с ацетиленом С2Н2 кислород используют для сварки и резки металлов, при горении этой смеси пламя имеет [c.442]

    В обычных условиях горение представляет собой процесс окисления или соединения горючего вещества и кислорода воздуха, сопровождающийся выделением тепла и света. Однако известно, что некоторые вещества, папример сжатый ацетилен, хлористый азот, озон, взрывчатые вещества, могут взрываться и без кислорода воздуха с образованием тепла и пламени. Следовательно, горение может явиться результато.м не только реакции соединения, но и разложения. Известно также, что водород и многие металлы могут гореть в атмосфере хлора, медь — в парах серы, магний — в диоксиде углерода и т. д. [c.119]

    Примеси и очистка карбидного ацетилена. По выходе из генераторов ацетилен имеет высокую концентрацию (свыше99% об.), но (одержит небольшие иримеси NH3, H2S, РН3 и др. Они образу-ЮТС1 при разложении водой соединений, всегда присутствующих в карЗиде кальция, в частности нитридов, сульфидов и фосфидов кальция и других металлов  [c.79]

    Винилирование, т. е. введение винильной группы в различные соединения, может достигаться косвенными и прямым методами. Последний состоит в прямом взаимодействии веществ с ацетиленом, которое можно разделить на две группы 1) винилированпе, катализируемое солями переходных металлов (прежде всего, 2п к Си), и 2) винилирование, катализируемое щелочами. [c.298]

    Сварку проводят ацетилеиокислородиым пламенем с добавлением присадочного материала. Для получения ацетилена используют генераторы различных типов, основные данные кото-ры. приведены в табл. 3.9, или баллоны с ацетиленом и другими горючими газами (водородом, пропап-бутановой смесью и др.). Ацетиленовые генераторы выпускаются производительностью 0,5—320 м ч ацетилена. Генераторы могут быть передвижные п стационарные. Передвижные генераторы имеют производительность до 3 м /ч. Генераторы по давлению делятся на три группы низкого (до 0,01 МПа), среднего (0,01 — 0,15 МПа) и высокого давления (более 0,15 МПа). Кислород доставляют в специальных баллонах под давлением 15 МПа. Для сварки применяют горелки типов Москва , ГС-3 и другие, которые могут работать с горючими газами, имеющими различный расход в зависимости от номера применяемого наконечника от 50 до 2800 л/ч и с кислородом, имеющим расход соответствеино от 55 до 3100 л/ч. Горелки Москва и ГС-3 имеют семь сменных наконечников. Это позволяет проводить сварку металла различных толщин вплоть до 30 мм одной и той же горелкой. [c.101]

    При взаимодействии меди и серебра е ацетиленом возможно образование соответствующих ацетил и дов. взрынаюиАИХся гг зи нагреве и ударе, поэтому эти металлы применять не рекомендуется. Ниобий интенсивно реагирует с ацетиленом при повышенных температурах. Имеются сведения об охрупчивании платины и никеля а ацетилене при высоких температурах. При температуре 480 С медь в нем загорается. [c.813]

    Но особой схеме реагируют ацетилен и окись углерода в присутствии гидрокарбонила железа H2Fe( O)4. Это соединение было приготовлено Гибер [68] действием гидроокисей щелочных или щелочноземельных металлов на пентакарбонил железа  [c.489]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Ацетилен — в обычных условиях газ конденсируется при —83,8°С, 0,1 МПа критическая температура 35,5°С критическое давление 6,2 МПа. Как н другие гг зообразные углеводороды, ацетилен дает с воздухом и с кислородом взрывоопасные смеси, причем пределы взрывоопасной концентрации очень широки —объемное соотношение воздух С2Н2 от 1 2,0 до 1 81. Взрывоопасность ацетилена усугубляется его способностью давать с некоторыми металлами (Си, Ag) взрывоопасные соединения — ацетилиды, например СиС = ССи. [c.180]


Смотреть страницы где упоминается термин Ацетилен на металлах: [c.368]    [c.155]    [c.250]    [c.411]    [c.146]    [c.12]    [c.13]    [c.403]    [c.38]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.149 , c.163 ]




ПОИСК







© 2025 chem21.info Реклама на сайте