Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ТФА-аминокислот эфиры устойчивость

    Понятие о химическом строении белков. Как мы неоднократно имели случай убедиться, наиболее устойчивыми к воздействию химических реактивов в органических молекулах являются углерод-углеродные связи. Нагревание вещества с водными растворами кислот или щелочей обычно не нарушает этих связей гидролиз, как правило, приводит к расщеплению связей у кислорода или азота. Таковы реакции гидролитического расщепления сложных эфиров (например, жиров) и амидов. Белковые вещества при гидролизе распадаются в конечном итоге до а-аминокислот. Если в состав белка входят только различные а-аминокислоты, то мы имеем дело с так называемыми собственно белками, или протеинами Но существуют и сложные белки, или протеиды, в состав которых входят остатки соединений, принадлежащих к иным классам органических и неорганических соединений. [c.393]


    Из осушителей этой группы наиболее часто употребляют безводный хлористый кальций, используемый как наполнитель осушающих трубок и колонок при сушке газов, как поглотительный агент в эксикаторах и для непосредственного осушения органических жидкостей. Хлористый кальций применяют в порошкообразном или плавленом виде. Порошкообразный хлористый кальций имеет, как правило, щелочную реакцию, так как он содержит небольшие количества Са(0Н)С1. Плавленый препарат содержит лишь следы Са(0Н)С1 [4], однако его эффективность по сравнению с порошкообразным хлористым кальцием несколько ниже. Будучи относительно устойчивым нейтральным осушающим реагентом средней эффективности, хлористый кальций пригоден для осушения широкого круга органических соединений. Надо, однако, помнить, что с некоторыми веществами, как, например, со спиртами, аминами, аминокислотами, фенолами, некоторыми эфирами и т. п., хлористый кальций образует комплексные соединения [1]. Иногда это (в общем нежелательное) свойство хлористого кальция используется для удаления небольших количеств спиртов из органических жидкостей (например, хлороформа, этилацетата и т. д.). В этих случаях вещество встряхивают с концентрированным раствором хлористого кальция в воде. [c.571]

    Константы устойчивости комплексов рассматриваемых аминокислот с краун-эфиром в воде [57, 58] значительно ниже (табл. 4.8), чем в спиртовой среде [56], что связано с более сильной сольватацией участников реакции в воде. Константы равновесия реакций комплексообразования увеличиваются в порядке Ь-аланин < глицин < Ь-фенил- [c.207]

    Важнейшей среди уретановых защитных групп являются производные, содержащие карбобензоксигруппу (9), введенные в практику Бергманом и Зервасом в 1932 г. Это и послужило началом современной эры пептидного синтеза [7]. Эти производные легко образуются через промежуточный хлормуравьиный эфир схема (8) н для большинства аминокислот являются устойчивыми кристаллическими соединениями. Значительное число вариаций этой защитной группы, которые могут быть использованы в [c.373]

    В этой главе мы прошли долгий путь рассуждений, начав с рассмотрения сравнительной химии элементов В, С, N и Si. Углерод несомненно играет особую роль, обусловленную наличием у его атомов одинакового числа валентных электронов и орбиталей, отсутствием отталкивающих неподеленных электронных пар и способностью образовывать двойные и тройные связи. Простые алканы, или соединения углерода и водорода, с простыми связями иллюстрируют многообразие соединений, которые может образовывать углерод благодаря своей способности создавать длинные устойчивые цепи. Алкилгалогениды - это своеобразный мостик от алканов с их сравнительно низкой реакционной способностью к изобилию производных углеродов спиртам, простым эфирам, альдегидам, кетоиам, сложным эфирам, кислотам, аминам, аминокислотам и соединениям других типов, которые не обсуждались в данной главе. Способность углерода образовывать двойные и тройные связи была проиллюстрирована на примере алкенов и алкинов, она играет чрезвычайно важную роль при образовании сопряженных и ароматических молекул. [c.337]


    Одновременная защита NH2-и СООН-групп приводит не только к более высокой термической устойчивости, но также придает и другие свойства пептиду, выгодные для ГХ. Исключая из рассмотрения здесь другие возможные функциональные группы в молекуле аминокислоты, можно отметить, что эфиры Н-защищенных аминокислот дают лишь небольшие хвосты и в соответствии с этим регистрируются в виде острых пиков. Аминогруппы защищали с помощью различных группировок, преимущественно ацильных [c.311]

    Примерами оптически активных соединений могут служить соединения 177, 178 и 179. Были измерены константы устойчивости диастереомерных комплексов этих хиральных соединений с различными хиральными катионами-"гостями". С помощью жидко-жидкофазной хроматографии было проведено расщепление энантиомерных солей эфиров аминокислот на D- и L-изомеры [ 25, 26, 28 - 30, 32 - 35, 37 - 40] (разд. 3.5Л). [c.284]

    Метиловые эфиры (-ОМе) и этиловые эфиры (-ОЕ1) применялись в пептидном синтезе уже Фишером и Курциусом. Снятие этих защит по окончании пептидного синтеза проводят мягким щелочным гидролизом в диокса-не, метаноле (этаноле), ацетоне, ДМФ с добавлением различных количеств воды. Названные алкиловые эфиры следует применять для синтеза коротких пептидов, так как с ростом цепи гидролитическое расщепление затрудняется, а применение жестких условий гидролиза повышает опасность побочных реакций. Следует избегать избытка щелочи, в противном случае может произойти рацемизация и другие побочные реакции. Оба алкильных эфира устойчивы к гидрогенолизу и мягкому ацидолизу. При гидразиноли-зе они переходят в гидразиды, что можно использовать для дальнейшей конденсации фрагментов с помощью азидного метода. При аммонолизе метиловые и этиловые эфиры дают амиды. Это применяют в тех случаях, когда С-концевая аминокислота должна нести амидную группу. [c.117]

    Получение самих активированных сложноэфирных производных связано с лишней стадией синтеза, однако есть возможность получать эти производные в больших количествах и сохранять их до-момента использования. Тем не менее следует заметить, что стадии образования сложного эфира и аминолиза подвержены рацемизации в связи с образованием оксазолона, и поэтому метод активированных сложных эфиров наиболее часто используется в ступенчатом наращивании оптически устойчивых производных аминокислот, содержащих устойчивые уретановые (например, бензил-оксикарбонильную и грег-бутоксикарбонильную) защитные группы. [c.396]

    Фенилзамещенные сидноны и сидионимины представляют фармакологический интерес благодаря их противоопухолевому, бактериостатическому и жаропонижающему действию [204]. Эфиры аминокислот при реакции с HNOj переходят в относительно устойчивые диазоэфиры. Известным примером является диазоуксусный эфир, получающийся из эфира глицина, который находит применение в органическом синтезе для расширения циклов и реакций присоединения  [c.69]

    Сначала получается гидрохлорид эфира, при добавлении основания эфир аминокислоты освобождается, извлекается органическим растворителем и перегоняется в вакууме. Свободные эфиры имеют характерный аминный запах. При хранении и особенно при нагревании они переходят в 2,5-дио-ксопиперазины, отщепляя спирт. По этой же причине часть продукта теряется при перегонке эфиров аминокислот. Относительно термически устойчивы изопропиловые эфиры, и благодаря этому свойству они были предложены для осторожного разделения смесей аминокислот перегонкой их эфиров. [c.73]

    Большое практическое значение имеют также галогензамещенные фениловые эфиры К-замещенных аминокислот, которые были введены в синтетическую пептидную химию Купришевски и сотр. По скорости аминолиза они сравнимы с 4-нитрофениловыми эфирами, но имеют преимущество, так как удаление освобождающегося при аминолизе замещенного фенола осуществляется с меньшими трудностями. Кроме того, трихлорфениловые эфиры очень устойчивы к щелочному гидролизу. 2,4,5- и 2,4,6-Трихлорфениловые эфиры нашли широкое применение при синтезе различных пептидов. [c.152]

    На устойчивость а-С—Н-связи аминокислот сильно влияет характер заместителей. Особенно легко при катализе основаниями рацемизуются активированные эфиры М -бензилоксикарбониламинокислот, имеющие -заместители, оттягивающие электроны. Рацемизация через азлактоны в этом случае исключена. Предполагается [366], что в таких случаях рацемизация протекает путем прямого а-депротонирования, причем возникающий карбанион мезомерно стабилизируется. Механизм /3-элиминирования и обратного присоединения, который первоначально постулирован для рацемизации 4-нитрофенилового эфира М-бензилоксикарбонил-8-бензил-ь-цистеина, был опровергнут исследованиями Ковача и др. [367]. Изучение [c.174]

    В течение последних лет были накоплены данные, свидетельствующие о том, что многие биологически важные реакции ацилирования связаны с промежуточным образованием ацилфосфатов (смещанных эфиров фосфорной и карбоновой кислот). К этим реакциям относится и активация карбоксильной группы аминокислот на одной из стадий биосинтеза белка [201, 311]. В связи с этим полезно кратко обсудить методы получения ацилфосфатов. Вследствие большой нey foйчивo ти они в известной мере отличаются от эфиров фосфорной кислоты. Как смешанные ангидриды кислот ацилфосфаты гидролитически неустойчивы и по реакциднной способности напоминают пирофосфаты и ангидриды фосфатов с другими сильными кислотами. Как и ожидалось, в трех группах ацилфосфатов устойчивость возрастает в порядке СЬХXXVIII СХС- [c.142]


    Карбо-трет-бутилоксиазид, представляющий собой устойчивый реагент [48—50], вступает в реакцию с аминокислотами и с эфирами аминокислот [11, 165]. [c.169]

    Карбоциклопентилоксигруппа [1281 обладает интересными свойствами. Циклопентилхлоругольный эфир [1311—устойчивое соединение, которое легко реагирует с аминокислотами в слабощелочной среде [1281. Карбоциклопентилоксигруппа отщепляется действием бромистого или хлористого водорода в нитрометане [1281 с образованием продуктов расщепления, которые лишены лакри-могенных свойств и не вступают в побочные реакции с пептидами, содержащими метионин [128]. [c.183]

    Метил Алкилиден и алкил Алкилиденовые и алкильные эфиры аминокислот обладают высокой устойчивостью к влаге и повышенным температурам [10] [c.138]

    Трифторацетильная защита (36), обычно вводимая в аминокислоты действием тиольного эфира (37), лабильна в силу мощного электроотрицательного эффекта трех атомов фтора. Пептиды, содержащие трифторацетильную защиту аминогруппы аминокислотных остатков, легко расщепляются под действием гидроксид-иона и медленно — действием этанольного раствора хлорида водорода. Эти производные, однако, устойчивы в безводных кислотных средах, обычно используемых для удаления грег-бутоксикарбонильной группы, а поэтому могут использоваться в сочетании с этой защитой. Важно использование этих защитных групп для защиты аминогруппы в боковом радикале, например в остатке лизина. Фталильная защитная группа (38) находила применение на ранних этапах развития химии пептидов. Она легко вводится с помощью Л/-карбэтоксифталимида (39) [33] и чаще всего снимается при действии гидразина или его производных. Сильное электронооттягивающее действие фталимидиой группы благоприятствует непосред- [c.379]

    Выбор метода создания пептидной связи в каждом случае определяется общей стратегией синтеза (рм. разд. 23.6.5), скоростью и эффективностью протекания реакции и факторами повседневной практики. Не последнюю роль играет при этом легкость отделения конечного пептида от неизбежно получающегося побочного продукта, образующегося при превращении активирующей группы. Так, активация дициклогексилкарбодиимидом (см. разд. 23.6.3.1) приводит к практически нерастворимой дициклогексилмочевине,. тогда как при использовании сложных эфиров Л/-гидроксисукцини-мида (см. разд. 23.6.3.2) образуется водорастворимый Л/-гидрокси-сукцинимид. Таким образом, обоснованный подбор конденсирующих реагентов обеспечивает значительную гибкость выбора методики обработки реакционной смеси. Выбор метода активации зависит также от природы карбоксильной компоненты, в особенности от группы X, защищающей аминогруппу схема (30) . Уретанопо-добные защиты обеспечивают существенную устойчивость к рацемизации в простых производных аминокислот, и поэтому здесь не столь важно, насколько выбранный метод создания пептидной связи способствует рацемизации. Если защитная группа представляет собой простое ацильное производное или замещена дополни тельным остатком аминокислоты, как в карбоксикомпоненте пепти дов, то тогда предотвращение рацемизации полностью зависит от избранной методики активации и условий реакции. [c.390]

    Эфиры а-аминокислот более стабильны, чем а-аминокетоны, но тем не менее подвержены легкой самоконденсации, приводящей к 2,5-дикетопипера-зинам. Хотя дикетопиперазины устойчивы к действию окислителей, ароматические производные пиразинов можно получить после первоначального превращения дикетопиперазинов в дихлор- или диалкоксвдигвдропиразины [186]. [c.290]

    Для проведения ГХ-анализа одинаково важны как химическая, так и термическая устойчивость рассмотренных выше производных. Химическая устойчивость прежде всего определяет условия обработки, хранения и дозировки образцов. Как уже упоминалось, в результате слишком длительного анализа одного и того же образца могут образовываться несколько продуктов и, следовательно, получаться неоднозначные данные. Если ТФА-производные эфиров простых моноаминомонокарбоновых кислот — устойчивые вещества, которые могут храниться неограниченное время, то этого нельзя сказать о производных аминокислот сложной структуры, содержащих несколько ацильных групп. Большинство таких соединений крайне чувствительны к гидролизу и частично разлагаются в присутствии следов воды [53]. У оксиаминокислот Сер и Тре это может привести к полной потере защитных групп, так как кислота, образующаяся при гидролизе О-ТФА-группы, по типу кислотноосновного катализа может способствовать N—О-ацильной миграции и таким образом вызвать полную потерю Ы-ТФА-групп [126]. Рекомендуется эти соединения хранить и даже вносить в прибор в присутствии избытка трифторуксусного ангидрида, к которому могут добавляться другие растворители. [c.318]

    Что касается термической устойчивости этого класса соединений, то ситуация здесь такая же производные простых аминокислот термостабильны и не разлагаются в ходе ГХ-анализа, а Ы-ТФА-производные Сер и и Тре, имеющие свободные оксигруппы, обнаруживают тенденцию к р-элиминированию воды при возгонке в высоком вакууме [126]. Эта тенденция еще более усиливается при О-ацилировании. Фиг. 71 показывает, что такое р-элиминирование имеет место в ходе испарения перед ГХ-анализом [53]. Видно, что н-бутиловый эфир бис-ТФА-Тре дает два сигнала, первый из которых возрастает с увеличением температуры испарения. Совершенно аналогичные результаты бьши получены с метиловым эфиром М-ТФА-Цис при очень высоких температурах в системе можно было обнаружить только метиловый эфир Ы-ТФА-аминоакриловой кислоты 1105]. Возникающие трудности можно обойти, вводя обра- [c.318]

    Пептидный синтез. Сложные эфиры бензгидрола, получаемые прп взаимодействии Д. с N-запииценными аминокислотами, применяются в пептидном синтезе, особенно для получения цистеиновых пептидов (71. Эфиры бемзгпдрола по низкой устойчивости в кислой среде можно сравнить с ф( / -бутиловыми эфирами. Эти эфиры нельзя синтезировать прямым путем, однако их можно получить этери-фикацией -тол)олсульфоната аминокислоты 181. [c.387]

    В качестве исходного вещества при синтезе оптически активных краун-эфиров используется, прежде всего, 1,1 -динафтол. Замыкание кольца проводится путем реакции присоединения с полиэфирными производными, так же как и при описанном в разд. 2.2.1 синтезе ароматических краун-эфиров. Имеются два метода получения хиральных изомеров I) сначала получают рацемическую смесь и затем проводят ее разделение на оптические изомеры путем хроматографирования смеси этот метод основан на разной устойчивости диастереомерных комплексов с заранее расщепленной на О- или Ьчсзомв-ры солью эфира аминокислоты 2) разделяют на изомеры 1,1 -динафтол и [c.284]

    Защитная группа. п-Нитробензильная сложноэфириая группа используется в пептидном синтезе для защиты карбоксильной группы [11. Сложный эфир получают обработкой N-защищепной аминокислоты реагентом в присутствии триэтиламина. Группа очень устойчива к действию НВг в уксусной кислоте--реагента, обычно используемого для отщепления карбобепзоксигруипы. Она удаляется гидрогенолизом. [c.444]

    Пептидный синтез. Зервас и сотр. [11 получили фенациловые 5,(1)Пры аминокислот при обработке карбобензоксиаминокислот Б. в присхтствии триэтиламина в этилацетате. Фенацильная сложноэфирная группа устойчива к кислотам, но расщепляется при каталитическом гидрировании или при обработке тиофенолятом натрия в неводной среде в мягких условиях. Австралийские химики [2], изучавшие д-бромфенациловые эфиры, пришли к выводу, что сложные эфиры типа фенациловых, как правило, непригодны для защиты карбоксильной группы в случае медленных реакций конденсации. [c.45]

    Зависимость асимметрического выхода (р) от константы устойчивости комплекса а — никель — аминокислота (или оксикисло та) при гидрогенизации метилацетоацетата на никеле, модифицированном соответсвующими соединениями [5], и б — металл—тартрат при гидрогенизации ацетоуксусного эфира на N1-, Си- и Со-катализаторах, модифицированных Г>-винной кислотой. [c.74]

    Исследованию связи между электронной структурой молекул и устойчивостью образующихся ионов посвящены работы [13—51]. Для решения вопроса о путях фрагментации иона исследуется зависимость между вероятностями разрыва связей в ионе и некоторыми величинами, вычисляемыми с помощью метода молекулярных орбиталей. Найдена корреляция между распределением положительного заряда в молекулярных ионах и вероятностями разрывов связей, рассчитанными из экспериментальных масс-спектров. При этом плоггность положительного заряда на связи С—С была принята равной электронной плотности, создаваемой электроном высшей занятой молекулярной орбитали на этой связи в исходной молекуле. Такое соответствие получено для н-алканов Сз—Сю [13—15], первичных и вторичных алкиламинов [16, 17], изоалканов и циклоалканов [18], простых и сложных эфиров и эфиров аминокислот [19]. [c.89]


Смотреть страницы где упоминается термин ТФА-аминокислот эфиры устойчивость: [c.148]    [c.148]    [c.229]    [c.261]    [c.301]    [c.509]    [c.8]    [c.64]    [c.114]    [c.120]    [c.215]    [c.246]    [c.67]    [c.677]    [c.317]    [c.32]    [c.444]    [c.45]    [c.308]    [c.309]    [c.58]   
Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.114 , c.115 , c.132 , c.135 ]




ПОИСК







© 2025 chem21.info Реклама на сайте