Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфирование различных органических соединений

    Сульфирование является одним из наиболее распространенных процессов в анилинокрасочной промышленности. Введение сульфо-группы в молекулу органического соединения может преследовать различные цели. Сульфогруппа может вводиться либо для придания соединению большей растворимости, либо для дальнейшей замены сульфогруппы на гидроксил, аминогруппу и т. п. [c.28]


    Реакции электрофильного замещения охватывают широкий круг реакций нитрование, галогенирование, сульфирование и реакции Фриделя — Крафтса свойственны почти всем ароматическим соединениям реакции типа нитрозирования и азосочетания присущи лишь системам с повышенной активностью такие реакции, как десульфирование, изотопный обмен, и многочисленные реакции циклизации, которые с первого взгляда кажутся совсем различными, но которые также оказывается целесообразным отнести к реакциям того же типа. По своей синтетической важности реакции электрофильного замещения, вероятно, важнее любого другого типа органических реакций. Эти реакции служат источником получения почти любого типа ароматических соединений они позволяют осуществить прямое введение ряда заместителей и групп, которые далее могут быть замещены или превращены в другие заместители, включая даже дополнительные ароматические кольца. [c.330]

    Процессы восстановления часто включают параллельное введение в молекулу органического соединения различных функциональных групп (восстановительное аминирование, ацилирование, силилирование, сульфирование и т т.). [c.219]

    Серная кислота находит разнообразное применение в лабораториях и различных отраслях промышленности. Главнейшим ее потребителем является промышленность, производящая удобрения, где серная кислота используется в первую очередь для производства сульфата аммония (на газовых заводах и коксовых батареях) и суперфосфата. Кроме того, серная кислота используется для очистки растительных масел, жиров и минеральных масел, для получения других кислот, сульфатов, простых и сложных эфиров. В промышленности органического синтеза, кроме концентрированной серной кислоты, часто используют дымящую серную кислоту (олеум), особенно для сульфирования, т. е. введения в органические соединения вместо атома водорода группы 80 зН. Умеренно концентрированную серную кислоту (72—75% ) используют для получения пергаментной бумаги. Серная кислота удельного веса 1,15—1,25 (имеющая примерно максимальную электропроводность) используется в аккумуляторных батареях. Разбавленную серную кислоту употребляют и в медицинских целях. [c.764]

    Диоксан — прекрасный растворитель, образует молекулярные соединения с различными неорганическими и органическими веществами, причем свойства адденда определяют характер его связи с диоксаном, которая является донорно-акцепторной и приводит к образованию оксониевых соединений. Особенно интересен продукт взаимодействия диоксана с серным ангидридом — диоксан-сульфотриоксид, который, являясь нейтральным соединением, с успехом применяется в качестве сульфирующего вещества при сульфировании органических соединений (стр. 544)  [c.138]


    Применение серной кислоты. Серная кислота является одним из важнейших химических продуктов. Она широко применяется в качестве исходного вещества для получения различных солей, в качестве окислителя, обезвоживающего средства, для сульфирования органических соединений и др. [c.34]

    Серная кислота применяется в различных органических синтезах, например для сульфирования органических соединений (при производстве сульфокислот), различных красителей, сахарина. Для этого используют как концентрированную кислоту, так и дымящую (олеум). Ее применяют в качестве водоотнимающего средства в реакциях нитрования при производстве нитробензола, нитроцеллюлозы, нитроглицерина и т. д. [c.35]

    Введение группы ЗОдН в органические соединения, приводящее к образованию сульфокислот (сульфирование), может осуществляться различными методами. Наиболее широкое распространение в химической практике получило сульфирование серной кислотой или ее производными. Применение в качестве сульфирующих агентов соединений сернистой кислоты более ограничено и менее полно освещено в обзорной химической литературе. В то [c.5]

    К органическим добавкам, подходящим для использования в противокоррозионных смазках, относятся органические амины, нафтенат цинка, различные продукты окисления нефти, соли сульфированных масел, содержащие щелочные и щелочноземельные металлы, и различные другие соединения [43]. В течение длительного времени успешно применяют ланолин, получаемый при обработке шерсти. Его активными составляющими являются высокомолекулярные жирные спирты и кислоты. Иногда в противокоррозионные смазки добавляют свинцовые мыла, которые образуют плохо растворимый Pb lj при взаимодействии с Na l, попадающим на поверхность металла при прикосновении потных рук. [c.272]

    Образование сульфата и сульфокислоты протекает одновременно, и основное направление реакции зависит от способности органического соединения внедряться в комплексный ион, а образование того или иного изомера при сульфировании определяется электронной плотностью в различных участках молекулы органического соединения. [c.22]

    Устойчивость пластических материалов и резин к действию микроорганизмов также снижают вещества, входящие в состав пластического материала в процессе получения или обработки. Такими веществами могут являться остатки эмульгаторов, аппретуры для текстиля, изготовленной на крахмале или на клею, и т. п. Например, хлористый винил полимеризуется в присутствии многих веществ, большей частью органических соединений, выполняющих различные функции. В данном случае наибольший интерес представляют эмульгаторы и стабилизаторы эмульсий. В качестве эмульгаторов применяются сульфированные масла, щелочные соли высших жирных кислот, их эфиры и амины, сульфокислоты и различные алкил- и арилсульфонаты. В качестве стабилизаторов применяют казеин, крах- мал, поливиниловый спирт, желатин, метилцеллюлозу, полиакрилат натрия и т. п. [c.162]

    В связи с разносторонними требованиями предъявляемыми к смазочным материалам для обработки металлов резанием (см. гл. 4), в них обычно вводят различные компоненты. Это присадки и добавки, улучшающие смазочные свойства ПАВ, выполняющие функции эмульгаторов, стабилизаторов и смачивателей противокоррозионные и бактерицидные присадки, а также присадки, предотвращающие вспенивание. Даже компоненты одного и того же назначения могут относиться к разным классам химических соединений. Рассмотрим свойства, особенности строения и области применения наиболее характерных типов применяемых веществ. К ним относятся жиры, их производные и жирозаменители (продукты окисления парафинов и петролатумов, нафтеновые и смоляные кислоты и т. п.), высокомолекулярные спирты, продукты сульфирования углеводородов, органические сульфиды, эфиры кислот фосфора, хлорорганические соединения, органические соединения, содержащие серу, хлор и фосфор, соли неорганических кислот и твердые порошкообразные вещества слоистого строения, обладающие анизотропными механическими свойствами (графит и дисульфид.молибдена). [c.183]

    Сульфокислоты разделялись на основании различной их растворимости различные фракции затем десульфировались путем гидролиза водой с образованием органических веществ, которые в свою очередь по различной растворимости разделялись на углеводороды и окисленные соединения (нейтральные смолы и асфальтены). Полученные таким образом углеводороды изучались затем по методу Уотермана с целью общего определения структуры. Результаты рассматриваются более полно ниже, в разделе Сульфированные нефтяные фракции . [c.523]


    Несмотря на то что к этому классу относятся соединения различного строения, производство их связано с применением известных процессов органического синтеза окисления, алкилирования, сульфирования, этерификации, поликонденсации, нейтрализации и т. д. Многие процессы были рассмотрены раньше, другие не типичны для нефтехимии. [c.340]

    Для присоединения окиси этилена к органическим гидроксилсодержащим соединениям в качестве катализатора можно использовать катионообменную смолу в Н" -форме . Если через слой сульфированного сополимера (92% стирола и 8% дивинилбензола) с размером зерен 0,74—0,83 мм при температуре --100 °С пропускать смесь окиси этилена (10 вес. %) с этиловым спиртом (90 вес. %) со скоростью 1 объем смеси на 1 объем ионита в час, то в получаемой жидкости не содержится окись этилена. Катализатор активен в течение 20 суток. Реакцию можно проводить с разными спиртами и использовать различные катионообменные смолы. [c.96]

    С, Э. Крейн и Р. А. Липштейн [59] определяют это свойство масла (присадки) термином диспергирующая способность , что не вполне точно. На самом деле, как показал опыт последних лет, моющие присадки не обладают способностью диспергировать ужо образовавшиеся отложения — лаки, нагар и пр. Данные исследований Б. В. Лосикова и Л. А. Александровой в области кальциевых солей органических сульфокислот показывают, что стабилизирующий эффект и моющее действие, вызываемое этими продуктами, находятся в прямой зависимости от их молекулярного веса и устойчивости их собственных растворов в масле. Из большого числа образцов кальциевых и бариевых солей сульфокислот, полученных сульфированием различных органических соединений, активными оказались только те соли, которые растворялись в холодном и горячем масле. Соли, которые растворялись только в горячем масле и желатинировали при охлаждении, а также такие, которые выса- [c.454]

    Высокощелочные нефтяные сульфонаты рекомендуется использовать не только в качестве моюще-диспергирующих присадок и ингибиторов коррозии, но и для снижения кислотности масел. Эти присадки состоят из маслорастворимых сульфосолей различных металлов, их оксидов, гидроксидов или карбонатов и полярных органических соединений, содержащих гидроксильные, эфирные и ампнные группы. Для получения ингибиторов коррозии, оказывающих одновременно моющее действие, сульфированный нефтепродукт нейтрализуют смесью ацетата и оксида свинца. Полученную сульфосоль добавляют к маслу, и эта композиция эффективно защищает металл от коррозии. [c.184]

    СУЛЬФИРОВАНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ — введение сульфогрунпы (—ЗОдН) в органич. соединения с образованием связи 3—С может быть осуществлено прямым и косвенным путем. К прямому сульфированию относится замещение водорода в ароматич. или алифатич. соединениях сульфогруппой присоединение сульфогрупп по кратной связи олефинов. К косвенному сульфированию относится замена сульфогруппой других атомов или атомных групп. Прямое сульфирование чаще всего проводят серным ангидридом, а также его комплексами (диоксансульфотриоксидом, пиридинсульфотриоксидом) и гидратами различного состава (серной к-ты и олеума) реже используют хлористый сульфурил, хлорсульфо-новую к-ту и сернистый газ в присутствии окислителя (кислород, хлор). Наиболее легко сульфируются полициклич. ароматич. углеводороды (антрацен, фенантрен и др.), труднее — нафталин и еще труднее — бензол. [c.555]

    Сульфированием называют процесс замещения атома водорода в органическом соединении сульфогруппой 50зН, осуществляемый путем обработки сульфируемых веществ различными сульфирующими агентами. [c.27]

    Исследования замещения нитрогруппы на аминогруппу ь ряду антрахинона проводились в связи с проблемой перехода в производствах а-амино- и а,а -диаминоантрахинонов от сульфирования антрахинона в присутствии токсичных соединений ртути к нитрованию (см. разд. 3.1.5, 4.1.4). Для получения 1-аминоантрахинона из 1-нитроантрахинона и 1,5-диаминоантра-хино на из 1,5-динитроантрахинона предложен аммонолиз в различных органических растворителях или в водной суспензии. Замещение нитрогруппы при действии алкил аминов на а-нит-роантрахиноны протекает в различных растворителях с высоким выходом, например в сульфолане в течение 0,5—2 ч при 140 °С с выходом более 98%. Реакцию с ароматическими аминами проводят обычно в среде амина, например анилина, при 175—180 °С. Помимо аммиака и аминов реагентами могут служить мочевина и Л -алкил- или Л ,Л -диалкиламиды [417]. [c.316]

    Органические красители. Сырьем для производства органических красителей обычно является каменноугольная смола. В большинстве случаев циклические углеводороды, полученные из смолы или же синтетическим путем (бензол, толуол, антрацен и их производные), являются основными веществами для производства очень многочисленных красителей. Технологические процессы могут включать сульфирование (серной кислотой), нитрование (серной и азотной кислотами), восстановление нитросоединений в аминосоединения (железной стружкой и кислотой, цинком, сернистым аммонием, сернистым натрием, сернистой кислотой и т. д.), диазотирование (солями азотистой кислоты и свободными кислотами), конденсацию (хлористым алюминием), окисление (хлором, азотной кислотой и т. д.), плавление (с едкилш щелочами), высаливание (хлористым натрием и т. д.), подщелачивание (едкими щелочами, едкой известью) и т. п. Образующиеся при этом сточные воды содержат в растворимом и нерастворимом виде различнейшие органические и неорганические соединения. Особенно часто встречаются следующие составные частг сстатки исхедных и промежуточных органич(Ских продуктов (бензол, анилин, циклические нитросоединения и т. д.), остатки готовых продуктов (красители), метиловый спирт, серная кислота и ее соли, глицерин, азотная кислота и ее соли, соли азотистой кислоты, хлористый натрий, известь, железные соли, хлористый алюминий, уксусная кислота и ее соли, а также вторичные продукты реакции этих веществ. [c.213]

    При помощи химических методов из стоков прежде всего удаляются токсичные вещества — тяжелые металлы, мышьяк, цианиды, ряд органических соединений. Так, например, получение некоторых прочных юрас ителей на основе анграхинона овя зано с применением сернокислой ртути как катализатора при его сульфировании. Ртуть, оставаясь в продуктах сульфирования в различных формах, попадает во все последующие стадии производства, в сточные воды, а также <в атмосферу производственных помещений. [c.45]

    Книга посвящена методам введения сульфогруппы в органические соединения. Подробно описаны различные методы сульфирования, сульфати-рования и сульфаминирования органических соединений серной и хлорсульфоновой кислотами, серным ангидридом и его комплексами с органическими соединениями. Описаны методы получения сульфокислот окислением серусодержащих соединений и обменной реакцией галоидалкилов с сульфитом натрия. При нанисании книги использована оригинальная литература, опубликованная вплоть до середины 1964 г. Приведена обширная библиография. [c.4]

    Книга Э. Е. Джильберта послужит ценным пособием для специалистов, соприкасающихся с вопросами введения сульфогруппы в молекулу органических соединений. В книгу включены разделы, посвященные реакциям сульфирования, сульфатировання, сульфаминирования. Очень подробно описаны методы получения и свойства различных сульфирующих реагентов, причем особое внимание уделено серному ангидриду и его комплексным соединениям. Специальная глава посвящена процессам сульфатировання. Основная ценность книги состоит в том, что в ней достаточно полно охвачена оригинальная литература вплоть до середины 1964 г. и она может служить справочником по методам введения серусодержащих групп в молекулу органического соединения. [c.8]

    Настоящий труд представляет собой попытку восполнить этот пробел. Поставив перед собой такую задачу, автор не стремился охватить весь материал, а сделал это выборочно, стараясь рассмотреть основные теоретические сведения, которые могли бы быть полезны химику-исследователю. Среди них уделено внимание и современным взглядам. В этой связи важно отметить, что обычные правила ориентации заместителей в ароматических соединениях справедливы в хловпях кинетически контролируемой реакции сульфирования серной кислотой или олеумом, но не всегда соблюдаются в условиях термодинамически контролируемой реакции. Этот эффект связан с обратимостью сульфирования данный вопрос достаточно серьезен, чтобы выделить его в отдельную главу. Другое явление, которое все чаще рассматривается в работах по получению сульфонатов и по десульфированию, — это влияние стерических факторов. Приводится ряд примеров влияния пространственных факторов, облегчающих или затрудняющих взаимодействие с серным ангидридом или сульфитами. Особое внимание уделено реакциям серного ангидрида и его различных комплексов с органическими соединениями. В ряде случаев сделаны попытки обобщения отдельных изолированных фактов и определения тенденции дальнейшего развития того или нного метода. Глава, посвященная реакции сульфо-алкилирования и родственным непрямым методам (гл. 5), является примером такого подхода к рассматриваемому материалу полезность этих препаративных методов в прошлом, по-впдимому, недооценивалась. [c.9]

    Взаимодействие пиридина с различными кислотами Льюиса приводит к комплексным соединениям, некоторые из которых настолько стабильны, что могут быть выделены. Эти соединения широко используются в органическом синтезе. Среди них пиридинсульфо-триоксид (11) — кристаллическое вещество, применяемое при синтезе алкилсульфатов и сульфировании ацидофобных индолов [18], комплекс с бораном 12 — мягкий восстанавливающий агент [19], тетрафтороборат N-нитропиридиния (13) — мягкий нитрующий агент [20, 21] и трифлат N-фторопиридиния (14), используемый при фторировании [22]. [c.165]

    В данной главе рассматриваются получение и свойства важнейших реагентов, применяемых для прямого введения группы ЗОдН, сульфирования, сульфатировання и сульфаминирования, речь о которых будет идти соответственно в гл. 2, 6 и 7. Эти реагенты в широком смысле слова можно рассматривать как соединения серного ангидрида, которые выделяют его при взаимодействии с органическими соединениями с различной степенью легкости. Все они являются неорганическими соединениями, во многих случаях модифицированными путем образования комплексов с подходящими органическими основаниями. Получение и свойства органических сульфирующих агентов рассматриваются отдельно в гл. 5. [c.11]

    Определенный прогресс достигнут в понимании действия и применении старых сульфирующих агентов. Физико-химические исследования дали более точное значение состава олеума, а работа с комплексом 80з—пиридин привела к новым и распшрила старые области применения этого комплекса для сульфирования красителей, углеводов и стероидных спиртов, а также полициклических соединений и чувствительных к действию кислот гетероциклических соединений. Комплекс ЗОд—диоксан, полученный в 1938 г., является одним из наиболее часто применяемых сульфирующих агентов в лабораторных условиях, особенно для сульфирования алкенов. Недостатком сульфаминовой кислоты, выпускаемой промышленностью с 1936 г., являлась ее высокая стоимость и низкая реакционная способность по сравнению с другими реагентами, но второй недостаток был частично преодолен, когда было найдено, что реакционная способность этой кислоты может быть значительно повышена до-бавлениел различных органических оснований. [c.12]

    Сульфированием называют процесс замещения водородного атома в органическом соединении на группировку атомов 80дН. Процесс сульфирования осуществляется путем обработки сульфируемых продуктов различными сульфирующими агентами. [c.210]

    В том, что такие исследования раньше не проводились, можно убедиться, например, по материалам последней монографии, относящейся к сульфированию органических соединений и охватывающей литературу, опубликованную вплоть до середины 1964 г. [79]. Авторы [73, 103—107] предполагают (в чем они, возможно, и правы), что указанные процессы протекают главным образом по схемам, пред.чоженным различными исследователями для объяснения химических превращений поливинилхлорида при действии на него окислителей (например, кислорода воздуха) при повышенных температурах. Авторы ставили перед собой более узкую, но в то же время и сложную задачу синтеза и изучения свойств сульфокислотных ионитов на основе поливинилхлорида. [c.76]

    Основными исходными веществами для производства красителей являются органические промежуточные продукты (глава XXXVII, стр. 471 исл.), из которых путем различных химических превращений получают более сложные соединения—красители. Многие реакции, широко применяемые в производстве красителей, используются также в других отраслях органического синтеза—при получении промежуточных продуктов, фармацевтических препаратов и различных других органических соединений. К таким общим реакциям (стр. 472) относятся сульфирование, нитрование, нитрозирование, введение галоидов, восстановление нитро-соединений, ацилирование, алкилирование и арилирование аминов, замещение групп SOgH, NHj, ОН и атомов галоидов, окисление. Кроме того, в производстве красителей применяются и другие, более специфичные для него реакции диазотирование и азосочетание при получении азокрасителей, процесс осернения в производстве сернистых красителей, различные реакции конденсации и т. д. [c.583]

    Различные типы реакций, в которых трифторид бора используется в качестве катализатора, подробно рассмотрены в гл. 6 монографии Трифторид бора и его производные [21]. Укажем лищь основные типы таких реакций 1) синтез насыщенных углеводородов олефинов, спиртов, меркаптанов, кетонов, эфиров, соединений, образующихся в результате межмолекулярного взаимодействия с окисью углерода, амидов, анилидов, нитрилов и органических соединений, содержащих серу 2) этерификации, включая конденсацию кислот с олефинами, кислот с ацетиленом, кислот со спиртами и альдольпую конденсацию 3) разложение 4) гидратация 5) дегидратация, включая реакции дегидратации спиртов, кислот и кетонов 6) гидрирование 7) нитрование 8) окисление 9) восстановление 10) сульфирование И) галоидирование  [c.188]

    Строго определенных з 1висимостей характера осадка от состава электролита установлено не было. Губка появлялась в различных местах катода как в разбавленных, так и в концентрированных растворах (по цинку и щелочи) при комнатной и повышенной температуре и даже ири перемешивании. Можно лишь отметить, что время начала видимого образования губки несколько увеличивалось с повышением концентрации цинка и температуры электролита. Добавки различных органических веществ (декстрин, пептон, гуммиарабик, желатина, клей, альбумин, агар-аг ар, В-нафтол, фурфурол, сульфированные ароматические соединения, сахара и др.) не оказывали заметного влияния на качество осадка. [c.263]

    Для химической переработки выделенных из газа углеводородов используются, практически, все основные реакции органического и нефтехимического синтеза пиролиз, конверсия, окисление, гидрирование и дегидрирование, гидратация, алкилирование, реакции введения функциональных групп — сульфирование, нитрование, хлорирование, карбонилирование и др. Наряду с процессами разделения они позволяют получать на основе газообразного топлива водород, оксид углерода (II), синтез-газ, азотоводородную смесь, ацетилен, алкадиены, цианистый водород, разнообразные кислородсодержащие соединения, хлор, нитропроизводные и многое другое. В свою очередь эти полупрЬдукты являются сырьем в производстве многочисленных целевых продуктов для различных отраслей народного хозяйства высококачественного топлива, пластических масс, эластомеров, химических волокон, растворителей, фармацевтических препаратов, стройматериалов и др., как это показано ниже. [c.198]

    Сульфирование (по международной номенклатуре — сульфониро-вание) — одна из важнейших реакций органического синтеза и широко используется с целью химической переработки ароматических углеводородов в промежуточные продукты различного строения, а также для придания конечным продуктам синтеза — красителям, физиологически активным вещ,ествам, поверхноетно-ак-тивньш и текстильно-вспомогательным соединениям и другим — кислотных свойств и растворимости в воде. [c.55]


Смотреть страницы где упоминается термин Сульфирование различных органических соединений: [c.1028]    [c.12]    [c.12]    [c.12]    [c.136]    [c.343]    [c.12]    [c.49]   
Поверхностно-активные вещества (1953) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Различные соединения



© 2025 chem21.info Реклама на сайте