Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ИФК-спектры стереохимия

    В порядке уменьшения величины ООд, иначе в порядке ослабления кристаллического поля, адденды могут быть расположены в ряд, приведенный на стр. 31Л. Теория кристаллического поля позволяет объяснить стереохимию комплексов и некоторые их физико-химические свойства (магнетизм, положение полос поглощения в спектрах и т. п.). [c.258]

    Теория кристаллического поля, развившаяся из простой электростатической модели, может быть применена к комплексам для интерпретации и предсказания наиболее выгодных координационных чисел, стереохимии, путей реакций замещения, спектров поглощения, магнитных и термодинамических свойств. На некоторых из этих вопросов следует остановиться более подробно. В частности, будут рассмотрены стереохимия, магнитные свойства, спектры поглощения и термодинамические свойства комплексных ионов. Это отчетливо покажет, что теория кристаллического поля — более удовлетворительный и более общий метод изучения комплексов, чем метод валентных связей. Однако, придавая особое значение орбиталям и электронам центрального атома, теория кристаллического поля неизбежно должна стать менее точной, когда усиливается роль делокализации электронов и орбиталей лиганда, т. е. при возрастании ковалентности связи. [c.264]


    Применение ЯМР-спектроскопии не ограничивается установлением или же подтверждением химического строения молекул. ЯМР дает возможность решать ряд проблем стереохимии, количественного анализа смесей, кинетики и механизмов быстрых химических реакций, в том числе протонного обмена, таутомерных превращений и другие вопросы. Целые разделы органической и неорганической химии обязаны своим стремительным развитием именно применению спектроскопии ЯМР- Данные спектров ЯМР считаются такими же надежными критериями в оценке структуры, в распознавании и отождествлении химических соединений, как и сведения других физических методов исследования. [c.10]

    Возможность отличить друг от друга оптические антиподы предоставляют прежде всего измерения оптической активности. На практике поляриметрическими измерениями пользуются для этой цели так часто, что забывают о существовании других отличий у антиподов. Так, в некоторых случаях различна, зеркальна, форма кристаллов антиподов. Различно отношение антиподов к хиральным реагентам и в особенности к ферментам. Различны спектры ЯМР в хиральных растворителях. Как видно из этого перечисления, различий набирается не так уж мало, однако тем не менее поляриметрическое определение знака оптического вращения остается наиболее часто применяемым приемом идентификации антиподов. Это нередко создает у начинающего изучать стереохимию иллюзию, что знак вращения непосредственно выражает конфигурацию, т. е. пространственное расположение заместителей вокруг хирального центра. Чтобы рассеять эту иллюзию, напомним о том, что знак вращения одного и того же антипода может меняться в зависимости от условий измерения — природы растворителя, концентрации, температуры, длины волны света. [c.63]

    Наша задача не в том, чтобы научить читателя методике расшифровки спектров ПМР (в этом смысле изложенное выше весьма схематично), а в том, чтобы по возможности передать логику мышления в этой области. И в связи с этим особенно важно обратить внимание на два обстоятельства. Первое. В наших рассуждениях мы опирались на знание структуры изучаемого соединения — мы могли не знать его стереохимии, по на бутлеровскую структуру ссылались постоянно. В этом смысле спектроскопия ПМР дает (в некоторых пределах, конечно) тем [c.83]

    П.ОВ простотой измерений и доступностью необходимого оборудования. По мере дальнейшего развития техники и накопления соответствуюш,их экспериментальных данных поляриметрия в ультрафиолетовой области спектра и метод дисперсии оптического враш,ения также найдут, по-видимому, более широкое применение при изучении структуры и стереохимии моносахаридов. [c.58]


    Информация о структуре и стереохимии вещества из ЯМР-спектра может быть получена путем рассмотрения интенсивности сигнала, его относительного положения в спектре, называемого химическим сдвигом, и анализа спин-спинового взаимодействия, но чаще всего из комбинации всех этих характеристик. [c.63]

    Выделенный в индивидуальном состоянии дезоксисахар целесообразно исследовать с помощью ядерного магнитного резонанса (см. стр. 63). Этот метод окончательно доказывает наличие в соединении СН - нлн СНз-группы, и в тех случаях, когда спектр удается полностью расшифровать, он позволяет определить положение СНа-группы и относительную стереохимию всего соединения Для выяснения абсолютной конфигурации моносахарида необходимо химическое расщепление и идентификация осколков обычно это достигается периодатным окт слением моносахарида или какого-либо его производного. Одновременно такое расщепление служит проверкой выводов, сделанных из анализа спектров ядерного магнитного резонанса. [c.256]

    Масс-спектрометрический метод, успешно разрабатываемый в настоящее время, относительно мало чувствителен к стереохимическим различиям в структуре моносахаридов, по крайней мере для соединений с незакрепленной конформацией, что приводит к близкому сходству масс-спектров диастереомеров. Поэтому масс-спектры производных моносахаридов позволяют получить весьма полезную информацию о молекулярном весе соединения, его функциональных группах и их взаимном расположении, размере цикла и т. д., но не о стереохимии. ЯМР-спектроскопия дает существенную информацию именно о стереохимических и конформационных различиях сахаров и в ряде случаев позволяет сделать исчерпывающие заключения о пространственном строении молекулы моносахарида. [c.626]

    К настоящему времени накоплен достаточно большой материал ио влиянию различных факторов на химические сдвиги ядер С в спектрах ЯМР органических соединений. Оказалось, что в большинстве случаев химические сдвиги С несут исчерпывающую информацию о структуре и стереохимии молекул. В этих условиях другие параметры ЯМР — мультиплетность линий, константы спин-спинового взаимодействия, время спин-решеточной релаксации зачастую определяются и используются лишь для отнесения линий спектра к определенным ядрам с. [c.77]

    Масс-спектрометрия используется для установления молекулярной массы каротиноида и особенностей строения. Информацию о наличии определенных функциональных групп в пигменте могут дать ИК- и ЯМР-спектры. Стереохимия каротиноида является конечным этапом его изучения. Наиболее полные данные о стереохимии каротиноида можно получить, используя спектры кругового дихроизма и низкотемпературные спектры поглощения (при температуре жидкого азота). Окончательное заключение о строении изучаемого каротиноида дают рептгеноструктурный анализ и тотальный синтез полнена. Следует отметить, что все перечисленные выще анализы могут быть проведены с небольщим количеством образца (около 10—20 мг), что в значительной степени содействовало развитию в последние годы химии каротиноидов. [c.313]

    Одним из первых успехов только что нарождавшейся стереохимии Циклических соединений явилось создание теории напряжения Байера, успешно и красиво объяснившей неустойчивость циклопропана и циклобутана и высокую стабильность соединений ряда цикло-пентана. Байер обратил внимание на то, что в трехчленных и четырехчленных кольцах по очевидным геометрическим причинам валентные углы углерода (109°28 ) должны уменьшиться до 60 и 90°, соответственно, создавая в результате значительное напряжение молекул. Наоборот, в пятичленном кольце циклопентана по той же причине углы почти точно соответствуют валентному углу. Однако дальнейшее развитие теории встретилось с неожиданными трудностями. Плоские, по представлениям Байера, кольца циклогексана, циклогептана и т. д. должны были бы характеризоваться растущим с увеличением кольца напряжением, но оказалось, что они весьма устойчивы. Особенно устойчивыми оказались циклогексан и его производные, а также синтезированные Ружичкой соединения с числом атомов С в цикле от 15 до нескольких десятков. По теории напряжения существование таких соединений вообще считалось невозможным. Правда, в дальнейшем Заксе и Мор показали, что циклогексан может быть свободен от байеровското напряжения, если его атомы углерода расположены не в плоскости, а в пространстве. Они предложили две такие пространственные модели, получившие названия кресла XI и ванны, или лодки, XII. Казалось бы, эти формы совершенно равноценны и должны отвечать двум изомерным цик-логексанам, которые, возможно, трудно или совсем неразделимы. Однако в дальнейшем различными физическими методами (с помощью спектров комбинационного рассеяния [571, ИК-спектроскопин [c.37]

    Наблюдаемые различия в поведении циклопентановых и ццклогексановых углеводородов прн электронном ударе согласуются со стереохимией алицнклических соединений [106]. Присутствие в масс-спектре циклобутапа ионов (СНз)" также указывает на возможность изомеризации молекулярного иона в структуру типа (СНз—СН—СНа—СНо) Ю7], ее образование связано с расщеплением цикла и миграцией атома водорода к одному из конечных углеродных атомов. Вероятность этого процесса подтверждается исследованием дейтернрован-ного циклобутана. Изомеризация молекулярного иона нафтеновых углеводородов конкурирует с процессом разрыва двух связей в нафтеновом кольце и образованием стабильного радикала или молекулы, а возможно и с процессом отрыва радикала, присоединенного к кольцу. Вероятность этих процессов зависит от структуры кольца и характера заместителя [108-110]. [c.56]


    И других родственных или модельных соединений привели к полному выяснению строения сло1Ж1Ны х ненасыщенных систем изо- и микомицина и их стереохимии. Так, в спектре микомицина присутствуют характери- [c.617]

    Были подтверждо ны также некоторые факты, связанные с явлениями в растворах. Так, в ходе димеризации карбоновых кислот линии комбинационного рассеяния, обязанные своим пропсхождепием исходным карбонильной п гидроксильной группам, оказываются измененными. Большое сходство спектра комбинационного рассеяния иона тетраметиламмонпя [(СНз)4К] со спектром третичного бутана ((>Н. )4С подтверждает тетраэдрическое строение, приписываемое этому нону стереохимией. При изучении спектров комбинационного рассеяния водных растворов азотной и серной кислот умеренных концентраций былп получены ясные доказательства существования молекул, недиссоциированных на ионы. [c.435]

    Стереохимия соединения 45 установлена по данным ЯМР-спектроскопии. В ПМР-спектре выделенного продукта 45 наблюдается сигнал протона Н(3) при атоме С(3) в области 1.32-1.53 м.д. в виде мультиплета с константой 7р нз= 16.32 Гц. Это указывает на его транс-расположение по отношению к фрагменту Р0(0Е1)2 поскольку из литературных данных известно, что для циклопропилфосфонатов с транс-конфигурацией константа спин-спинового взаимодействия /р.нз находится в диапазоне 14.5- 20 Гц. [c.21]

    Доказательство конфигурации синтетических изомеров мускарина. Конфигурация изомеров была установлена по инфракрасным спектрам и методом окисления. Инфракрасные спектры частично непосредственно дают ответ на вопрос о стереохимии изомеров, так как та пара изомеров, в которых окси- и диметил-аминометильные группы характеризуются ис-расположением (эпи- и алло-формы), вследствие наличия внутримолекулярной водородной, связи обнаруживает независимо от концентрации валентные колебания связанной ОН-группы при 3,16 мк, тогда как нормускарин и эпиаллоиормускарин в достаточно разбавленном растворе обнаруживают валентные колебания свободной [c.454]

    Биман и Сейбл [13] установили для ряда циклических полио-лов важную закономерность, которая заключается в том, что интенсивность молекулярного иона в масс-спектрах эпимерных циклических спиртов зависит от стереохимии системы. Как правило, чем больше заместителей содержится в системе, тем менее интенсивен исходный молекулярный ион. [c.37]

    Конечно, не сами протоны, а их окружения являются энантиотопными нлн диастереотопными так же, как не атом углерода, а его окружение может быть асимметрично. Термины эиантиотопиые протоны и диастереотопные протоны были предложены профессором Принстонского университета Куртом Мислоу для удобства не только обсуждения ЯМР-спектров, но н рассмотрения многих аспектов стереохимии. [c.407]

    Здесь под свойством растворенного вещества подразумеваются -факторы, связанные только со структурой и стереохимией его молекулы, а параметр растворителя пропорционален концентрации бензольных колец в среде [279]. Основываясь на этих данных, Ласло и др. предложили модель кластера, построенного из молекул растворенного вещества и растворителя, которая и была положена в основу большинства теоретических описаний эффекта ИАРС [279]. В модели Ласло принимается, что эф- фект ИАРС обусловлен частичной ориентацией молекул ароматического растворителя вокруг биполярного центра молекулы растворенного вещества, причем эта ориентация обусловлена слабыми межмолекулярными взаимодействиями между молекулярными диполями растворенного вещества и молекулярными квадруполями растворителя [413]. Время жизни таких неустойчивых комплексов в шкале времени типичного эксперимента 51МР должно быть очень малым, и регистрируемый спектр ЯМР будет представлять собой усредненный спектр всех разнообразных комплексов. Точная стехиометрия и стереохимия этих нестабильных комплексов неизвестны, но в них, по-видимому, молекулы бензола обращены своей плоскостью к положительному концу молекулярного диполя растворенного вещества. Именно [c.480]

    Спектры ПМР производных 1,4-бенздиазепина рассматривались в связи с изучением стереохимии соединений данного класса (см. главу 4). Наиболее подробно исследованы спектры ПМР 1,2-дигидро-ЗН-1,4-бенздиазепинов [13—19]. В спектрах этих соединений имеется мультиплетный сигнал ароматических протонов в области 7,30—8,00 м. д. (см. рис. 4). В работах (16, 19] отдельные пики мультиплета отнесены к конкретным протонам ароматических колец. [c.108]

    Подобным же образом тритерпенойдные соединения (ХХУИ ) и (XXIX), в которых кольца С и О соединены в обоих случаях в /праяс-положении, но обладают противоположной конфигурацией, имеют несколько сдвинутые максимумы поглощения (240 ммк по сравнению с 243 ммк), что служит признаком различной стереохимии. Таким образом, тщательным расчетом спектра с помощью модельных соединений можно обнаружить те детали структуры, которые выходят за пределы правил Вудворда. [c.197]

    ЯМР Протоны двойной связи, соединяюш,ей 2- и 3-й углеродные атомы, дают квартет АВ при 4,09 и 3,38 м. д., / 10 гц, в соответствии с частичной структурой XVI. Следует ожидать два нерас-щепленных сигнала метильных групп, один для ангулярной группы 14 и другой для метильной группы 15, соединенной с четвертичным карбинольным атомом углерода 4 эти пики появляются соответственно при т 8,76 и 8,41 м. д. Сигнал метильной группы, связанный с лактонным кольцом, расщепляется водородом в положении 11 на две компоненты (8,67 и 8,76 м. д.), которые, очевидно, частично перекрываются с сигналом метильной группы при 8,76 м. д. Оба сигнала при 7,75 и 7,45 м. д. по виду являются компонентами системы АВ J 13 гц). В структуре X имеется только один протон, который может взаимодействовать подобным образом, а именно ангулярный протон в положении 5. Величина константы спин-спинового взаимодействия этого протона с соседним атомом водорода при С-6 требует, чтобы эти атомы были расположены в транс-положении относительно друг друга но сигнал для протона при С-6 расщепляется еще раз в результате взаимодействия с водородом в положении 7, и в спектре со шкалой 40 Мгц он появляется в виде неразрешенного широкого пика около 5,75 м. д. На шкале 60 Мгц эта часть спектра наблюдается в виде квартета со второй константой спин-спинового взаимодействия, равной 10 гц. Протоны в положениях 6 и 7 находятся, таким образом, в траяс-положении, оба ориентированы аксиально, так что эту часть молекулы можно представить, как показано формулой XVII. Отнесение других протонов С — Н невозможно, однако широкий пик около 7,1 м.д. почти наверняка является сигналом протона гидроксильной группы. Данные, подтверждающие эти отнесения, были получены из спектров других соединений [XI — XIV сантонин (XIII), для которого стереохимия была определена рентгеновским методом, особенно полезен для сравнения]. [c.247]

    Использование изопропилиден- и бензилиденацеталей полиолов и сахаров позволяет повысить не только летучесть этих соединений, но и информативность масс-спектров для определения структуры и стереохимии [331]. [c.192]

    В химии сахаров, так же как и в других областях органической химии, ИК-спектроскопию применяют прежде всего для функционального анализа соединения —для характеристики функциональных групп и их взаимного расположения. Кроме того, с помощью ИК-спектра можно иногда получить некоторые сведения о структуре и стереохимии моносахаридной молекулы в целом. Наконец, ИК-спектроскопия может использоваться для установления идентичности или неидентичности двух образцов. Для решения каждой из этих задач приходится выбирать соответствующие экспериментальные условия. Так как моносахариды нерастворимы в растворителях, применяемых в ИК-спектроскопии ( I4, H I3, Sj), а использование воды в качестве растворителя требует специальной сложной техники снятие ИК-спектров в растворе производится только для изучения замещенных производных моносахаридов. Для самих моносахаридов, а также для их производных снятие спектров обычно проводится в вазелиновом масле или в таблетках, состоящих из образца и бромида калия. Каждый из этих методов не свободен от принципиальных недостатков, а их применение связано с некоторыми техническими трудностями. [c.58]

    Галогенметилдиметилсилиловые эфиры, получившие широ кое признание в ГХ, применяют для тех же целей и в ГХ — МС Эти производные получаются с количественным выходом для спиртов и стероидов, желчных кислот, простагландинов, различных инсектицидов, карбоновых кислот гидроксистильбе нов, углеводов Масс спектры этих производных лучше отра жают стереохимию исходных соединений, чем спектры ТМС производных Относительная интенсивность пиков ионов (М — СН2С1)+ в масс спектрах этих производных стероидов доста точно высока, что позволяет использовать для их анализа ме тод СИД [c.82]

    Боратные производные широко используются для стабилиза ции углеводов Особо следует сказать о смешанных борат ТМС производных дающих весьма характерные масс спектры, на ос новании которых удается определять число атомов углерода (пентоза или гексоза), размер кольца (фураноза или пираноза) и стереохимию гидроксильных групп [c.88]

    Нас заинтересовали возможности обратимости первой стадии реакции, а также моно- и бмс-циклизации уже на этой стадии. С этой целью повторены классические работы [1-5, 7-17] и детально изучена стереохимия продуктов [18-34]. Предложены новые ЯМР тесты для отнесения мезо- и й ,/-форм а,а -днзамещен-ных глутаровых кислот (в группе СН2 иезо-формы A J h = 2.5-5.0 Гц, а й ,/-формы A J h = 0) [19, 23] и адипиновых кислот ( Н ЯМР спектр фрагмента (СНгЗг мезо-формы в 2-5 раз шире по сравнению с й ,/-формой [26]). [c.295]

    Настоящая работа является частью проводимых нами систематических исследований строения и стереохимии продуктов конденсации сульфамидов и мочевин с глиоксалем [1]. Изучены масс-спектры полученных недавно производных новой гетероциклической системы - 3,3 -бн-(6,8-дналкнл-2,4-днокса-7-тна-6,8-дназабн-цикло[3,3,0]октан-7,7-диоксидов) 1. Спектры измерены при помощи масс-спектро-метра MS-30 Ki-atos при энергии ионизирующих электронов 70 эВ. Пики молекулярных ионов имеют низкую интенсивность или вообще не наблюдаются. Первичные фрагментные ионы Fi и 2, образующиеся непосредственно из М , возникают путем разрыва диоксоланового кольца или связи С(3)-С(3 ). Образование фрагментов F3 и F4 сопровождается миграцией водорода, вероятно, от С(1) или С(5) к С(3) или 0(2), соответственно. [c.57]


Смотреть страницы где упоминается термин ИФК-спектры стереохимия: [c.96]    [c.131]    [c.192]    [c.276]    [c.42]    [c.201]    [c.77]    [c.183]    [c.474]    [c.84]    [c.206]    [c.66]    [c.181]    [c.62]    [c.67]    [c.42]    [c.11]   
Успехи стереохимии (1961) -- [ c.291 , c.328 ]




ПОИСК





Смотрите так же термины и статьи:

Стереохимия



© 2025 chem21.info Реклама на сайте