Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензил, превращения

    Алкильные группы в карбоциклических системах окисляются до карбоксильных групп, как обычно. Для этой цели применяют самые различные окислители, хотя чаще всего используют перманганат калия или бихромат натрия в кислом растворе. Для окисления некоторых гетероциклических систем, таких, например, как 2- и 4-алкилзамещенные пиридины или хинолины, можно приме-пять двуокись селена (в значительном количестве для того, чтобы подавить образование альдегида) или кислород в присутствии трет-бутилата калия в диметилформамиде [581. Для тех алкил-аренов, которые окисляются с трудом, а таких немало, превращение в кислоту происходит более эффективно при первоначальном бромировании с образованием бромистого бензила с последующим окислением его щелочным раствором перманганата калия. [c.247]


    ДИФЕНИЛАЦЕТИЛЕН, , l l- - H,-,. Мол. вес 178,22, т. пл. 61". Д. полу чают из бензила превращением в -гидразон и окислением последнего желтой окисью ртути в бензоле (67—73 о в расчете на бензил) 111. [c.382]

    Р = 1 не отвечают бимолекулярному процессу, так как для последнего характерны значения = 42—84 кДж/моль и 5= = = 20—40 э. е. Тот факт, что энергии активации, рассчитанные для Га и гь, практически близки, еще не указывает на идентичное строение переходного состояния двух реакций. Кроме того, поскольку скорость для дифенилметана меняется незначительно при изменении начальных концентраций компонентов, а для бензола скорость существенно зависит от концентрации, следовательно общей реакцией является изменение степени по бензолу. На основании вычисленных параметров активации можно считать, что первая стадия реакции превращения — это образование поляризованного промежуточного комплекса дифенилметана и хлорида алюминия, вторая — определяющая скорость реакции — ионизация его с образованием бензил-катиона  [c.214]

    О значении состава катализатора уже говорилось (стр. 129). Применение цеолитсодержащих катализаторов позволяет увеличить общую глубину превращения сырья и повысить выход бензи-яа. Вместе с тем снижаются содержание олефинов Сз—С4 в газе и общий выход газа, что вызвано большей селективностью цеолитсодержащих катализаторов. [c.140]

    Св-ва П.х. зависят от структуры, состава, мол. массы и ММР исходного полиолефина, от способа и степени его хлорирования, а следовательно, от характера распределения хлора в макромолекуле П.х. Характерные св-ва П.х. более высокие, чем у полиолефинов, масло-, бензо-, огнестойкость, высокие адгезия к разл. материалам и оптич. прозрачность, эластичность и морозостойкость, р-римость в орг. р-рителях, хим. стойкость, способность вследствие наличия хлора к хнм. превращениям, устойчивость в морской воде, к действию у-излучения и биокоррозии. П. х. не содержат токсичных остаточных мономеров, вследствие чего они допущены для применения в контакте с пищ. продуктами. [c.18]

    В работах [469, 470] сообщалось о получении ацетиленов лри дегидрогалогенировании в присутствии тритона В (бензил-триметиламмонийгидроксида). Доступный продажный продукт— раствор этой щелочи в метаноле — был превращен в толуольные, бензольные или пиридиновые растворы путем разбавления метанольного раствора избытком нового растворителя и отгонки большей части метанола. Тритон В не всегда полностью растворяется в бензоле или в толуоле, однако в большинстве случаев это не имеет значения. Для работы с нестойкими кетонами или сложными эфирами (которые не подвергаются омылению) лучше использовать пиридин. Температура и время реакции лежат в пределах от 70°С/30 мин до (—10) — (—30) °С/1—5 мин. Некоторые типичные примеры реакций, идущих с выходом 40—85%, приведены ниже  [c.242]


    Окисление толуола в среде углеводорода [54] ведут воздухом при 0,196—0,784 МПа и 150—170 °С в присутствии солей кобальта или марганца (0,02—0,10%)- Степень превращения толуола составляет 30—50%. На стадии окисления из 1 т толуола получают 1,23 т бензойной кислоты (32% от оксидата) и 0,066 т побочных кислородсодержащих продуктов, главным образом бёнз-адьдегнд (1,4% от оксмдата), бензиловый спирт (0,18%), бензил-бензоат, бензилформиат к бензилацетат. При фракционировании оксидата в вакууме последовательно выделяются толуол, побочные продукты (спирт и альдегид, возвращаемые на окисление), бензойная кислота (степень чистоты 99,85%) и кубовый остаток (направляемый на сжигание). Суммарный выход с учетом возврата побочных продуктов составляет 93—94% от теоретического. [c.69]

    Как видно, наиболее интенсивно из нафтеновых углеводородов расщепляются моно- и бициклическне, а из нафтено-ароматических — динафтенбензолы высокая же конверсия пиренов, бенз-тиофенов и дибензтиофенов вероятно, является следствием их превращения в кокс и смолистые вещества. Для некоторых нафтено-ароматических и ароматических углеводородов наблюдается рост их в процессе крекинга по сравнению с содержанием в исходном сырье, что указывает на образование этих соединений из других углеводородов. В целом для каталитического крекинга нафтено-ароматических и ароматических углеводородов в присут- [c.103]

    Если а-алкилпирролы пропускать через раскаленные трубки, то происходит перегруппировка (с одновременным дегидрированием) в производные пиридина, причем из боковой цепи образуется -углеродный атом пиридинового кольца, как это показывает превращение а-бензил-пнррола в -фенилпиридин  [c.972]

    В отличие от превращений ПАУ в атмосфере важным путем их удаления из водных сред является биологическая деградация. Установлено, что микрофлора сточных вод способна разрушать до 40% ПАУ, в частности бенз(а)пирен [147], причем деструкция под действием микроорганизмов протекает не только в воде, но и в донных отложениях. Следует заметить, что многие хорошо растворяющиеся в воде ПАУ не являются канцерогенами, но под действием УФ-излучения переходят в соединения, остротоксичные для водных организмов. [c.85]

    Как уже отмечалось выше, фильтры обеспечивают практически количественное улавливание неорганических компонентов, тогда как органические соединения, имеющие значительно большую упругость пара, могут частично теряться. Известно, что в почве, обработанной ХОП, концентрация последних с течением времени понижается не только вследствие химических превращений, но и из-за их испарения, т е, час-тично пестициды переходят в газовую фазу. Для всех случаев определения ХОП опубликованные в литературе данные, полученные при отборе проб только с применением фильтров, следует считать заниженными. Этот вывод справедлив и для ПАУ. В частности, в образцах пыли из воздуха, отобранных летом, по сравнению с зимними пробами содержание бенз(а)-пирена заметно меньше, что объясняется его испарением при более высоких летних температурах (соответственно 2 и 8 нг/м ) [22]. Анализ наиболее важных причин потерь ПАУ, ХОП и ПХБ при пробоот 1оре из атмосферы рассмотрен в работах [5-7,23,24 . [c.172]

    Приводимое ниже превращение бензил-и-толилсульфокси-да сопровождается обращением конфигурации [34]  [c.616]

    Скорость детоксикации экзогенных химических соединений в почве в значительной степени зависит от их стабильности. Изучение стабильности ряда препаратов в почве показывает, что для деструкции гептахлора на 95% требуется 3—5 лет, линдана —3—10 лет, а ДДТ — от 4 до 30 лет (25). В. А. Медведь и В. Д. Давыдова (26) обнаружили, что фенолы в черноземной почве разрушаются без об-разован.чя токсичных и устойчивых продуктов превращения. В пахотном слое фенол в концентрации 1 —10 г/кг разрушается в течение 16 дней, однако в более глубоких горизонтах (материнской породе) в тех же концентрациях он сохраняется свыше 40 дней. Наиболее высокой скоростью разрушения в почве отличаются двухатомные фенолы. Результаты изучения стабильности бенз(а)пирена, так называемого индикаторного загрязнения окружающей среды канцерогенными углеводородами, показали, что деструкция его в почве находится в определенной зависимости от ее pH, типа и концентрации ве[цества. Наибольшее количество канцерогена разрушается в первые 10 суток, в дальнейшем его деструкция значительно замедляется. Длительное сохранение в почве остаточных количеств бенз(а)пирена указывает на стабильность вещества, а при наличии постоянных источников загрязнения обусловливает возможность накопления его в почвах. При изучении влияния бенз(а)пирена, фенолов и др. препаратов на почвенную микрофлору и биологическую ее активность показало, что [c.82]

    Бензиловая перегруппировка. Интересной внутримолекулярной реакцией, которую можно рассматривать как присоединение карбаниона, является катализируемое основаниями превращение-бензила РНСОСОРИ в анион бензиловой кислоты РН2С(0Н)С00  [c.222]


    Другие пути получения замещенных бензальдегидов. — Синтетические методы, рассмотренные в предыдущих разделах, а также и многие другие известные методы не исчерпывают всех возможностей получения замещенных альдегидов. Альдегидная группа, хотя и обладает большой реакционной способностью, достаточно устойчива и не изменяется при разных превращениях в других положениях ядра. Так, нитрованием бензальдегида успешно получают л<-нитро бенз-альдегид, который восстановлением хлористым оловом и соляной кислотой, диазотированием без выделения амина или его гидрохлорида и последующим гидролизом может быть превращен в л-оксибензаль-дегид. [c.380]

    Для доказательства строения дифенилена Лотроп привел данные анализа, превращение углеводорода во фталевую кислоту при окислении хромовой кислотой и восстановление до дифенила при гидрировании над медью, нагретой до красного каления. Он установил, что молекула обладает по меньшей мере одной плоскостью симметрии, поскольку из иодидов 4,4 - и 5,5 -диметилдифенилен-2,2 -иодония получается один и тот же углеводород, а именно 2,7-диметилдифениле1Н. Маловероятная возможность, что углеводород представляет собой бенз]1иклооктатетраен, была исключена, когда был осуществлен синтез последнего соединения. Измерения дифракции электронов и рентгеноструктурный анализ полностью подтвердили строение дифенилена. Так, среднее расстояние С—С в шестичленных кольцах оказалось равным 1,39 А, а длина связи Сд—Сщ— равной 1,52 А (Мак, 1961). [c.508]

    Третичные и вторичные алкилгалогениды, как и первичные галогенопроизводные с активирующей группой в )5-положении, в условиях алкилирования главным образом подвергаются дегидро-галогенированию. Непригодны для препаративного использования и первичные бензил-, аллил- и пропаргилгалогениды, так как продукты алкилирования, первоначально образующиеся при их взаимодействии с ацетиленидами, благодаря т/ а//с-металлированию по активной метиленовой группе претерпевают сложные вторичные превращения. [c.190]

    Бензил превращается в транс-а,а -стильбендиолдибензоат по-механизму, хотя и не являющемуся механизмом реакции Тищенко, по тем не мепее включающему ряд восстановительных превращений [81 [c.343]

    Риформинг в сочетании с экстрактивной перегонкой или экстракцией растворителями позволяет также получать ароматические углеводороды, используемые в химической промышленности. Из каталитических риформинг-бензи-нов вырабатывают химически чистые ароматические углеводороды высокой чистоты (сорта для нитрования). В настоящее время из каталитических рифор-минг-бензинов таким путем выделяют бензол (для последующего превращения в фенол или стирол), толуол для нитрования, ксилолы для производства пластмасс и синтетических волокон и т. д., в количествах, значительно превышающих возможность производства этих материалов из любых других источников. Без такого нефтехимического синтеза и выделения этих продуктов невозможно было бы производство перечисленных материалов в современных объемах. Мощность установок каталитического риформинга в настоящее время достигла около 240 тыс. м /сутки. Если принять средний выход 85% и содержание ароматических углеводородов 45%, то очевидно, что нотенциальные ресурсы ароматических углеводородов от бензола до алкилбензолов с алкильными цепями Сх—С , связанными с бензольным кольцом, значительно превышают возможную потребность промышленности органического синтеза. [c.203]

    Бро.мбенз-2,1,3-тиадиазол получен с невысоким выходом бромированием бенз-2,1,3-тиадиазола в присутствии восстановленного железа , нз 4-бром-5-аминобенз-2,1,3-тиадиазола при эли.минировании аминогруппы по реакции Зандмейера , диазотированием 4-амииобенз-2,1,3-тиадиазол в присутствии бромистоводородной кислоты и последующим превращением диазониевой соли по Зандмейеру . [c.15]

    Подобно тому как описанный выше метод представляет собой способ превращения кислоты в соответствующий альдегид, десульфуризация тиолового эфира [[ри помощи обычного (не дезактивированного в ацетоне) никеля Ренея позволяет осуще-стшть избирательное полное восстановление кислоты до спирта. Из различных простых тиоловых эфиров, таких, как бензи ловый эфир тиобензойной кислоты или метиловый эфир тио-пальмитиновой кислоты, были получены ожидаемые спирты [c.413]

    Разложение диазокетонов. Дифеннлкетсн обычно получают из бензила посредством следуюп[его ряда превращений [ПО, 14 , 144J  [c.120]

    После того как превращение натрия в амид патрия закончится, вводную трубку заменяют капельной воронЕмй емкостью 500 мл и колбу охлаждают в бане со смесью сухого льда и трихлорэтилена. Затем в течение 20 мин. к содержимому колбы при перемешивании прибавляют по каплям 69 г (0,59 моля) цианистого бензила (примечание 3), после чего охлаждающую баню отставляют, раствор перемешивают дополнительно в течение 20 мин. и через делительную воронку медленно прибавляют к нему 700 мл абсолютного эфира. Полученпый раствор оставляют стоять или поддерживают при слаипм нагревании на водяной бане до тех пор, пока температура его не достигнет комнатной. Скорость прибавления. эфира и последующее нагревание регулируют таким образом, чтобы выделяющийся аммиак проходил через ловушку для поглощения газов, а не выделялся бы частично через ртутный затвор мешалки. После удаления большей части аммиака к раствору дополнительно прибавляют 300 мл абсолютного эфира (примечание 4) и колбу нагревают в бане с горячей водой. Прекращая на короткий срок доступ воды, проходящей через обратный холодильник, небольшому количеству эфира дают возможность улетучиться из реакционной смеси, чтобы вместе с ним удалить возможно большее количество аммиака (примечание 5). После этого пропускание воды возобновляют и к верхней части капельной воронки и к обратному холодильнику присоединяют резиновые трубки, по которым подают азот под давлением [c.356]

    В пром-сти Т. получают превращением антраншювой к-ты в условиях р-ции Зандмейера (диазотирование с послед, заменой диазогруппы на 8Н) в тносалйциловую к-ту, к-рую алкилируют С1СН2СООН и сплавляют со щелочью 2 молекулы образующегося бензо[6]тиофена (в виде Ка-соли) конденсируются под действием серы в I  [c.568]

    Образование пленок нитролаков происходит в результате улетучивания р-рителей при содержании дополнит, реакционноспособных пленкообразователей - вследствие их хим. превращений. Нитролаки высыхают значительно быстрее, чем любые др. лакокрасочные покрытия - при комнатной т-ре время высыхания от неск. минуг до 1 ч. Покрытия из нитролаков отличаются поверхностной твердостью сразу после высыхания, хорощими декоративными св-вами, бензо- и маслостойкостью, а также дещевизной недостатки - горючесть, низкие атмосферостойкость и хим. стойкость. [c.508]

    По литературным дан. 1ым, беьзиламии получают взаимодействием хлористого бензила с спиртовым раствором аммиака (одновременно получаются ди- и трибензиламины [1, 2] каталитическим гидрированием бензонитрила, бензальдокси1 [а и некоторых других подобных соединени [3, 4], превращением а мида фенилуксусной кислоть[ в ал[нн по реакции Гофмана [о], взаимодействием бензальдегида с формиатом иатрия по ре- [c.33]

    Поскольку в ходе восстановления в неводных средах образуются относительно стабильные анион-радикалы и анионы, возможно улавливание этих интермедиатов при проведении электролиза в присутствии СО2. Так, восстановление бензил иденацетофенона на ртутном катоде в ДМФА с К1 (что ограничивает восстановление потенциалами первой волны) при барботирова-нии СО2 [6] приводит к двум карбоксилатам, (10) и (11). Предполагают, что соединение (10) образуется путем одно-электронного восстановления, за которым следуют стадии карбоиилирования, одноэлектронного восстановления и вновь карбонилировання ( С С-механизм), как и в случае стильбена (см. гл. 6). Подкисление приводит к отщеплению карбоксильной группы в а-положении к карбонильной группе и превращению (10) в р-бензоил-а-фенилпропионовую кислоту (12), которую можно выделить. Прн объяснении пути образования (11) предполагают, что радикал (13), возникающий после первых стадий ЕС, до нли после восстановления присоединяется к молекуле исходного соедипения с образованием интермедиата [c.362]


Библиография для Бензил, превращения: [c.57]   
Смотреть страницы где упоминается термин Бензил, превращения: [c.284]    [c.159]    [c.249]    [c.111]    [c.1113]    [c.315]    [c.344]    [c.315]    [c.36]    [c.151]    [c.139]    [c.198]    [c.272]    [c.506]    [c.516]    [c.507]    [c.451]    [c.258]    [c.10]    [c.443]   
Теоретические основы органической химии (1964) -- [ c.548 ]




ПОИСК







© 2024 chem21.info Реклама на сайте