Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Турбулентность деформаций

    Турбулентность деформаций возникает в результате стохастических изменений межфазной поверхности в ее ближайших окрестностях. Деформация межфазной поверхности приводит к динамической неустойчивости жид кости. Турбулентные силы, вызывающие деформации, максимальны на межфазной поверхности и убывают с увеличением расстояния от нее. Для развития турбулентности деформаций не требуется наличие потока массы сквозь межфазную поверхность кроме того, этот вид турбулентности не зависит от времени. Однако возрастание относительной скорости фаз увеличивает турбулентность деформаций (тогда как межфазная турбулентность при этом будет затухать). Турбулентность деформаций наблюдается в пленочных системах, а также в дисперсных потоках. Закономерности этого вида турбулентности исследованы Брауэром [12] для пленочного течения и для двухфазного движения пузырей и капель. Стохастическую природу деформации поверхности пленки можно показать измерением частоты волнообразования. [c.84]


    Опишем физический смысл членов, входящих в (1.2.26). Первое и второе слагаемые левой части характеризуют соответственно изменение во времени и конвективный перенос диссипации энергии турбулентности. Первый и второй члены правой части характеризуют турбулентную и молекулярную диффузию диссипации турбулентной энергии. Третий член представляет собой генерацию диссипации. Четвертый и пятый члены характеризуют уменьшение диссипации под влиянием вязкости и под действием турбулентных деформаций. Шестым членом также как и четвертым обычно пренебрегают. [c.18]

    Член появляется в левой части уравнения для количества движения ожижающего агента в точке усредненных локальных значений. Затем переносится в правую часть уравнения и включается в дивергенцию тензора напряжения так же, как напряжения Рейнольдса в теории турбулентного движения. Аналогично представляет собой эффективный усредненный тензор напряжений для твердой фазы, равный сумме членов, описывающих сопротивление деформации совокупности частиц, возникающей благодаря их взаимодействию, и члена, аналогичного R-k и получаемого при замене скорости ожижающего агента в точке на соответствующую скорость твердой частицы. [c.80]

    Суш ественный вклад в деформацию границы раздела фаз вносят различия в динамическом напоре турбулентных вихрей в отдельных точках межфазной поверхности. Деформации могут быть настолько велики, что граница раздела разрывается и включение дробится (дуга 41) на более мелкие элементы (ДРг)- Дробление может происходить лишь под действием относительно малых по величине вихрей. В случае крупномасштабных вихрей, которые не изменяются на расстояниях порядка диаметра включения, вероятность сильных деформаций и дробления уменьшается. [c.28]

    Существенный вклад в изменение поверхности раздела фаз вносят различия в динамическом напоре турбулентных вихрей в отдельных точках межфазной поверхности. Деформации могут быть настолько велики, что граница раздела разрывается и частица может раздробиться (ДРа — дробление кристаллов) на более мелкие частицы (дуга 23). Изменение поверхности по границе раздела фаз связано также непосредственно с переносом массы (дуга 20), так как рост кристалла сопровождается увеличением поверхности. [c.9]

    С точки зрения продольного перемешивания жидкости пустотелые барботажные колонны, учитывая высокие скорости циркуляции, можно рассматривать как аппараты идеального смешения. Но при малых скоростях газа основную роль в продольном перемешивании будут играть турбулентные пульсации, обусловленные деформациями газовых пузырей и заполнением жидкостью покинутого ими объема, т. е. турбулентностью в следах за газовыми пузырями. [c.56]


    Если капля имеет некоторый диаметр щ,. на нее могуг результативно воздействовать только пульсации с масштабом X = Деформация капли и. ее последующее, деление, происходит за счет кинетической энергии сплошной среда = Рси а12, обусловленной разностью пульсационных скоростей и действующих на расстоянии, щ,.- Крупномасштабные пульсации (X > увлекая за собой каплю, вследствие малой разности скоростей на расстоянии не могут быть причиной ее деформации. Точно-так же не могут воздействовать на каплю и пульсации с масштабами К < dц . Так как турбулентный поток имеет внутренний масштаб все капли в процессе дробления должны стремиться к максимальному устойчивому диаметру р о. которому в сплошной среде соответствует критерий Ке р = 1. [c.59]

    Вполне очевидно, что размеры капель, дробящихся в турбулентном потоке сплошной среда (при d > о). не будут зависеть от ее вязкости, а также от вязкости дисперсной фазы Vд. Увеличение Vд только затормаживает сдвиг слоев жидкости в капле, что соответственно отражается на скорости ее деформации. При высоких значениях Уд, несмотря на наличие необходимой кинетической энергии А и, деление капли может и не произойти, если время воздействия на нее внешнего потока невелико [53]. Поведение капли в процессе дробления по существующим представлениям [45, 62 ] сводится к следующему. [c.59]

    С деформациями третьего типа — с произвольной формой капель — встречаются в турбулентном течении. Флуктуации давления вызывают появление в отдельных участках сначала небольших выпуклостей, которые постепенно разрастаются и становятся очагами возникновения новых капель. [c.41]

    Структурные изменения в пристенном слое существенно отличаются от тех, которые происходят в процессе течения в основной массе струи. Возникающие напряжения могут приводить к периодическому проскальзыванию пристенных слоев, что влечет за собой проявление нестабильности потока. В больщинстве случаев такая нестабильность проявляется по причине 5-6-кратной деформации, развивающейся в результате сдвига, и возникающих при этом нормальных напряжений. Необходимо отметить, что увеличение длины капилляра / ослабляет нестабильность процесса истечения концентрированных растворов и расплавов полимеров. Нарушение установившегося течения и профиля скоростей, которое выражается в искажении формы струи жидкости, вытекающей из капилляра, определяется как эффект эластической турбулентности . Область проявления эластической турбулентности соответствует увеличению эффективной скорости сдвига. Эта область смещается в сторону больших X и у при ослаблении входовых эффектов, при удлинении капилляра, при снижении г эф. [c.182]

    Особенностью электромагнитной объемной силы является то, что в отличие от других объемных спл (силы тяжести, инерционных сил) ею можно управлять, воздействуя на вызывающие ее. электрическое и магнитное поля. Изменяя величину электромагнитной силы, можно влиять на интенсивность п форму ударных волн, увеличивать критическое значенпе числа Рейнольдса при переходе ламинарного режима течения в турбулентный, замедлять или ускорять ноток электропроводной жидкости (или газа), вызвать деформацию профиля скорости и отрыв пограничного слоя. [c.178]

    В реальных условиях, особенно при течении вязких полимерных растворов через капилляры или патрубки (возможными концевыми эффектами пренебрегаем), этот эффект накопления избыточной высокоэластической деформации проявляется в виде высокоэластической турбулентности струя начинает пульсировать, при застывании расплава поверхность его становится неровной (эффект, который технологи называют акульей шкурой ) и т. п. При продольном течении (гл. VI) может происходить по сходным причинам разрыв струи или выдергивание раствора из капилляра. [c.177]

    О третьем механизме прекращения течения мы упоминали в гл. V в связи с эластической турбулентностью. Этот механизм обычно наблюдается при капиллярном (т. е. сдвиговом) течении, но в действительности также не связан с геометрией течения, а обусловлен накоплением высокоэластической деформации, которое может происходить и при сдвиговом, и при продольном течении. Наглядно такой процесс можно себе представить не как относительно резкий релаксационный переход из одного структурно-жидкого (вязкотекучего) состояния в другое (высокоэластическое), а как постепенное превращение жидкости в каучук в какой-то момент возвращающая энтропийная сила (см. гл. П1 и IV) становится равна внешней деформирующей и течение останавливается или становится существенно нестационарным. [c.222]

    Деформация границы раздела фаз связана с целым рядом эффектов, из которых к наиболее существенным можио отнести следующие дробление капель или пузырей и связанное с этим изменение площади межфазной поверхности развитие межфазной турбулентности, спонтанного эмульгирования и явления поверхностной эластичности измепение термодинамических характеристик в объеме включения. [c.107]


    При формовании битумно-угольная смесь претерпевает очень сложные упругие и пластичные деформации, причем их развитие ограничено стенками формы. Эти деформации представляют собой сложные сочетания растяжений, сжатий и сдвигов. При прессовании горячих смесей основное значение имеет сдвиг и менее существенное — сжатие. При выдавливании через мундштук направление сдвига совпадает с направлением потока, который в частных случаях может быть турбулентным. При холодном прессовании битумно-угольных порошков основное значение имеет уплотнение при сжатии.- [c.108]

    Если капля жидкости помещена в турбулентный поток несме-шивающейся с ней жидкости, то возникает ее дробление под воздействием турбулентных пульсаций. При этом крупномасштабные пульсации, сравнительно мало изменяющиеся на расстояниях порядка размеров капли, не оказывают на нее воздействие деформация и дробление производятся мелкомасштабными пульсациями. Эффект дробления в значительной степени зависит от того, что в турбулентном потоке скорость жидкости внешней фазы у поверхности глобул в двух ее точках будет различна. Следовательно, на поверхности глобул будут действовать различные гидродинамические напоры, что при известных условиях приведет к деформации глобул и к их дроблению. [c.43]

    Наибольшую деформацию потока ветра в приземном слое создают сплошные здания и строения. Срывы потока с острых кромок зданий генерируют в потоке ветра турбулентность, значительно превышающую имеющуюся в нем естественную турбулентность. Критерий Кармана в этой зоне потока велик и может быть даже больше единицы, так что скорость в отдельных точках меняется не только по величине, но и по направлению. [c.28]

    По расположению источники выбросов следует подразделять на высокие и низкие. К высоким относят точечные источники — трубы, высотой более 3,5 Язд (Язд — высота зданий около трубы). Согласно опытам при такой высоте источников можно пренебречь влиянием на распространение примесей деформации потока ветра, вызванной строениями. На распространении вредных веществ так же мало сказывается турбулентность потока, образующаяся при срывах у острых кромок здания, и определяющей является турбулентность самой атмосферы. [c.64]

    В процессе эмульгирования дисперсной фазы в дисперсионной среде одновременно протекают два диаметрально противоположных процесса диспергирование и коалесценция (слияние капель между собой). Согласно воззрениям П.А. Ребиндера процесс диспергирования внутренней фазы при получении эмульсий заключается в деформации больших сферических капель при значительных скоростях турбулентного режима течения в цилиндрики. При критических размерах цилиндрика он самопроизвольно распадается на большую и малую капли, что термодинамически выгодно, так как свободная энергия его больше, чем сумма свободных энергий большой и малой капли (поверхность цилиндра больше суммы поверхности капель). Этот процесс повторяется до тех пор, пока большая капля станет равной малой. В определенный момент времени наступает равновесный процесс слияния и дробления капель. Именно такому условию и соответствует состояние эмульсии. [c.15]

    Полученное уравнение из-за второго предположения не удовлетворяет условию сохранения тепла в слое, что вызвано деформациями потока турбулентностью. Тепло сохраняется только по всему потоку. Поэтому исходным для дальнейшего анализа будет приближенное уравнение [c.11]

    Эксперименты показали, что в турбулентном диффузионном факеле связь между функциями деформации продольной координаты для динамической, тепловой и диффузионной задач может быть приближенно выражена постоянным числом, аналогичным по смыслу турбулентному числу Прандтля, т. е. [c.58]

    Понятие вихря, заимствованное из гидродинамики идеальной жидкости, является слишком условным применительно к турбулентным движениям. Скорее можно представить себе вихревые комки как элементы, передающие деформацию сдвига [39, 85]. В силу этого условной величиной является и кинетическая энергия вихревого движения. Обычно вклад турбулентности в движение оценивается по величине отклонения параметров потока от среднего значения (по времени). Опыт показывает, что в турбу-летном потоке любой параметр а (скорость, температура, плотность, концентрация примеси и т. д.) может быть разложен на две составляющие среднюю по времени а и пульсационную добавку Аа а = а + Аа. Пульсационная добавка Аа обладает тем свойством, что ее среднее значение за сколь угодно узкий промежуток времени равно нулю  [c.23]

    Величины типа Хц = —pu uj, входящие в уравнение Рейнольдса, называются турбулентными напряжениями. Связь между ними и скоростями деформаций устанавливается на основе гипотез, составляющих основу полуэмпирических теорий турбулентности (см. п. 1.9.1). [c.21]

    При перемещении вихревых колец вниз по течению соседние кольца часто сливаются. Этим объясняется увеличение размера колец и промежутка между ними с удалением от сопла. Процесс спаривания вихрей исследовался в работах [20, 52, 65, 69]. В области перехода имеется несколько сечений, где происходит слияние вихревых колец. Слияние вызывает деформацию ядра вихревого кольца, каждый раз более сильную, чем в предыдущем сечении. Такой процесс продолжается до тех пор, пока деформация ядра вихревого кольца не превысит критическую величину. После этого возникает турбулентность. В работе [34] сделан подробный обзор литературы, посвященной развитию струи на начальном участке. [c.135]

    Н. М. Зингером были проведены опыты по конденсации пара на струе воды, движущейся со скоростью Ю- -25 м/сек. Автор установил значительную деформацию температурного поля, связанную с нарушением сплошности струи. В быстродвижущейся струе жидкости коэффициент турбулентной теплопроводности меняется по сечению струи и интенсивность теплоотдачи возрастает по сравнению со струей, движущейся с малой скоростью. Для оценки интенсивности теплоотдачи рассмотрим пример. Через сопло диаметром 5 мм выпускается вода со скоростью 25 м/сек. Начальная температура воды Тх = 278° К и конечная Га = 373° К. Давление пара в приемной камере [c.220]

    Основное влияние на повышение интенсивности массопередачи в разработанных контактных устройствах оказывает плёночное течение одной из фаз с двусторонней развитой свободной поверхностью, которое создаёт условия для интенсивного вихреобразования, ведущего к значительному увеличению активной поверхности и интенсивности взаимодействия фаз. Особая внутренняя структура контактного устройства с различными локальными источниками возмущения и деформации плёнки способствует развитию межфазной и спонтанной мелкомасштабной турбулентности, влияет на обновление межфазной поверхности плёнки. Основными преимуществами контактных устройств являются  [c.29]

    Гипотеза существования турбулентности деформаций основана на двух допущениях 1) волнистую пленку орошающей жидкости можно заменить пленкой постоянной толщины (без волн на поверхности) 2) влияние турбулентности деформаций мОжно учесть, введя соответствующую функцию в описание движения пленки, свободной от волнообразования. Применительно к движению пузырей или капель эти допущения имеют вид 1) пузыри (капли) динамической формы (эллиптической, куполообразной) можно.заменить шарообраз- [c.84]

    Для описания массопереноса в жидкой пленке и в пузырях (каплях) получены кpитepиaльныeJypaвнeния типа Nu = / (Re, РГд) учитывающие турбулентность деформаций в широких пределах изменения критериев Re и РГд [12]. В частности, для массопереноса через граничную поверхность пузырька переменной формы [c.85]

    Аналитическое решение задачи тепло- и массообмена в факеле топлива чрезвычайно сложно, поэтому эти- прон ессы обычно изучают экспериментально, применительно к данному виду топлива и типу двигателя. Однако следует сказать, что в первом приближении закономерности испарения единичных капель могут быть использованы и для анализа испарения совокупности капель, аэрозолей и струй топлива, но при этом необхо димо учитывать специфические особенности процесса взаимодействия капель, распределение их по размерам, деформацию и др. При испарении массы капель в турбулентной газовой струе могут быть два предельных режима испарения кинетический и диффузионный. В первом случае скорость испарения системы- капель определяется как сумма скоростей испарения отдельных капель в этой системе. Во втором случае испарение струи (факела капель) определяется скоростью поступления наружного воздуха в объем струи (факела). В работах [126, 132, 136— 138] приведены различные варианты приближенного расчета испарения топливных струй и факелов. [c.111]

    Трубчатый реактор для проведения процесса в гомогенной системе. Для реализации условия равенства скорости превращения в модели и образце нужно отказаться от геометрического подобия, сохранив геометрическое родство (допускается возможность деформации в осевом направлении). Исключив также гидродинамическое подобие, примем, однако, одинаковый режим течения в обоих аппаратах (ламинарный или турбулентный). Кроме того, не будем учитывать в этом случае явлений массопереноса, поскольку, как указывалось в разделе VIII, они не играют существенной роли в реакторах с большим отношением длины к диаметру. [c.464]

    Относительно большая скорость массопередачи в период образования капли объясняется явлениями, приводящими к усилению турбулентности при движении внутрь капли. При наблюдении капел ь,. подвешенных в жидкости в присутствии растворенного вещее а, замечено [35, 65], что на поверхности капли образуются склаД,ки, появляются деформации и колебания, начинается завихрение жидкости внутрь. Эти явления особенно интересны в начальной ф>азе образования капли и связаны с неравномерным распределен амем концентраций растворенного вещества и вместе с ним межфазного натяжения. Самая высокая концентрация наблюдается всегда, у отверстия капилляра. Колебания и деформации происходят в мо ент массопередачи. Интенсивность явлений увеличивается при повышении концентрации кроме того, развитие этих явлений зависи Е - от скорости образования капли и природы веществ. Введение дев 1>х-, ностно-активных веществ подавляет эти явления. , [c.85]

    Деформация границы раздела фаз связана с целым рядом эффектов, из которых к наиболее существенным можно отнести следующие а) дробление капель или пузырей (ДР2) и связанное с этим изменение площади межфазной поверхности (ИПГРФ) (дуги 41, 42, 48) б) развитие межфазной турбулентности (МТУР), спонтанного эмульгирования (СПЭМ) и явления поверхностной эластичности (ПЭЛ) (дуги 43, 44, 45, 49, 50) в) изменение термодинамических характеристик в объеме включения (ИТХа) давления насыщения, температуры, состава степени отклонения от химического равновесия (Ай2) и т. п. (дуги 46, 47). Перечисленные эффекты, связанные с деформацией границы раздела фаз, интенсифицируют процессы межфазного переноса массы (ПМ1 2), энергии (ПЭ1 2) и импульса (ПИ1 2). Это влияние условно отображается обратной связью 51. При выделении эффектов третьего уровня иерархии ФХС предполагается, что межфазный перенос субстанций всех видов осуществляется в полубесконечную среду (т. е. отсутствуют эффекты стесненности). [c.29]

    Элементы ФХС по своим функциональным свойствам делятся на три группы 1) элементарные преобразователи субстанции — элементы с сосредоточенными параметрами диссипаторы, накопители, преобразователи, передатчики 2) инфинитезимальные операторные элементы, отражающие эффекты распределенности субстанции в пространстве элементы конвективного, турбулентного и диффузионного переноса, субстанционального и локального накопления, чистой деформации и вращения, преобразования потока в его дивергенцию и т. п 3) элементы типа структур слияния — специальные функционально-логические узлы, отражающие характер совмещения потоков и движущих сил в локальной точке пространствами позволяющие объединять отдельные составляющие ФХС в связную топологическую структуру — так называемую диаграмму связи ФХС. [c.8]

    Учитывая силы внутреннего трения, Вебер получил выражение для условия максимальной нестабильности 2л/к = 2ла ]/ 2 (Зи -f- 1), где у = n/V 2рао. Отсюда 2п/к = 4,4-2а. Для жидкостей с большой вязкостью эта величина является неопределенной. Приведенные условия согласуются с предельными случаями, которые рассматривал Рэлей. Подобным же образом к нестабильности ведет и анализ синусоидальных деформаций. Большей частью она возникает при больших скоростях струи и проявляется в турбулентности. [c.36]

    Эти положения можно применить для вычисления диаметра макс наибольшей капли, которая остается неразрушенной в турбулентном течении. Было найдено, что в обычных аппаратах без специальных устройств для гомогенизации > б. Согласно Тейлору, вязкие деформации капель происходят при условии, что je4eHne остается однородным по крайней мере на расстоянии размера капли. Следовательно, это условие невыполнимо при /) акс — б- Поэтому можно ожидать, что возникаюш ие в турбулентном режиме давления способны разрушить капли в таких аппаратах. Капля разрывается под действием динамических сил, возникающих вследствие градиента скоростей, который образуется на расстоянии, равном диаметру капли. Поэтому число Вебера как критерий разрушения капли можно представить в виде [c.43]

    Упомянутые идеализированные варианты были использованы прнменлтельно к полимерам, которые в покое были скорее в стеклообразном, нежели структурно-жидком деформационном состоянии. В принципе, определенные удобства для разделения вязких и высокоэластических составляющих деформаций и соответственно зондирования релаксационного спектра представляет невулкани-зованные или недовулканизованные каучуки. (Конечно, при этом приближение к вязкому течению осуществляется со стороны высокоэластического состояния). В этом случае при достаточно широком диапазоне изменения Р (или растягивающего напряжения) удается довольно существенно менять и у. не попадая в экстремальные условия, когда начинают работать термокинетические эффекты структура сетки меняется при этом не слишком сильно, а механизмы прекращения течения не связаны с фазовыми превращениями. Особенно удобны опыты такого рода (течение каучуков через патрубки) для наблюдения высокоэластической турбулентности. Однако указанные системы не находятся в типичном вязкотекучем состоянии и потому здесь не рассматриваются. [c.183]

    Если частица находится в газе, испытывающем сдвиговую деформацию, то она приходит во вращение. Хотя скорость сдвига в турбулентных вихрях может быть большая, этот эффект часто самокомпенсируется и незначительно влияет на вращение частиц. Это является следствием случайной природы турбулентности. Поток вблизи стенки является исключением из этого правила. [c.37]

    Для количественного описания турбулентного движения одного масштаба турбулентности недостаточно, так как этот параметр сам по себе ничего не говорит об интенсивности движения. Поэтому силу или интенсивность турбулентных пульсаций следует оце м-вать среднеквадратичной величиной пулсационной скорости Кй ". Именно эта величина характеризует силу соударения сталкивающихся глобул, приводящую к деформации поверхности, слиянию и дроблению. [c.44]

    Из-за резких деформаций занятого примесью объема в турбулентном потоке образуются очень искривленные и запутанные слои с резко различающилшся значениями концентрации. Это приводит к ускорению молекулярной диффузии, т. е. к более быстрому выравниванию концентрации в молекулярных дшсштабах. Однако смешение до молекулярных масштабов отстает от смешения в среднем однородность средних ио времени концентраций далеко ие означает однородности мгновенных концентраций. Прп расчете диффузионного горения необходимо знать не только закономерности турбулентного перемешивания, но и степень смешения до молекулярной однородности. [c.18]

    В настоящее время разработаны методы расчета турбулентных струйных течений, позволяющие получить картину непрерывной деформации всего поля течения. Наиболее перспективный из них — метод эквивалентной задачи теории теплопроводности [9], основное нреимущество которого состоит в возможности проведения расчета струйного течения с произвольными начальными профилями скорости, температуры и концентрации. [c.53]

    До того как были получены изложенные выше экспериментальные данные и результаты расчетов, существовало несколько точек зрения на роль, которую играют трехмерные возмущения в процессе перехода естественноконвективного течения высказывались различные предположения о форме трехмерных возмущений и возникающих нелинейных механизмах. В работе [26] с помощью хорошо отражающих свет частиц алюминия проводилась визуализация течения воды в области перехода. При этом удалось обнаружить два продольных вихря, аналогичные тем, что описаны выше. Однако Шевчик [149], вводя краску в воду, наблюдал вихри, оси которых расположены перпендикулярно направлению течения. Было сделано предположение, что увеличение завихренности вызывается петлеобразной деформацией оси вихря. Однако осталось не выясненным, не связан ли рост завихренности со способом ввода краски в жидкость. Такое же расхождение возможных механизмов процесса перехода было отмечено и при исследовании вынужденных течений. Клебанов [85] установил по результатам тщательных измерений, что при введении в поток контролируемых трехмерных возмущений возникает вторичное осредненное течение в виде продольных вихрей в результате взаимодействия нелинейных и трехмерных механизмов. Были указаны также другие возможные механизмы, связанные, например, с генерацией гармоник высокого порядка или вогнутостью линий тока волнового движения. Однако, по-видимому, разумно предположить, что для естественной конвекции такие механизмы не играют определяющей роли и переход к турбулентному режиму течения вызван образованием областей с высоким сдвигом потока и других особенностей течения под действием системы продольных вихрей. Это подтверждается приведенными ниже данными. [c.36]

    ВИСКОЗИМЕТРИЯ (от лат. vis osus-клейкий, вязкий и греч. metreo-измеряю), совокупность методов измерения вязкости жидкостей и газов. При абс. измерениях проводят независимые параллельные определения касательного напряжения т и скорости сдвига у при течении исследуемой среды вязкость г] вычисляют по ф-ле г] = т/у. При относит, измерениях результаты определения параметра, зависящего от вязкости, сравнивают с результатом, полученным при аналогичной процедуре определения того же параметра для жидкости (или газа) известной вязкости. В случае неньютоновских жидкостей определяемая величина Т1 наз. эффективной или кажущейся вязкостью (т.к. она зависит от X и 7). При этом измерения необходимо выполнять при разл. скоростях деформации. Ниж. предела изменения скорости не существует верх, предел связан с возникновением неустойчивости потока, напр, для маловязких сред-с появлением инерц, турбулентности, для полимерных си-стем-с упругими деформациями. [c.376]

    Из последнего выражения следует, что чем больше сумма сопротивлений по длине фигурного канала, тем выше значение коэффициента теплоотдачи. Вторым важным стимулом улучшения теплоотдачи является срыв пограничного слоя при внезапном расширении канала. В таких каналах турбулентный режим наступает значительно раньше чем в прямых. По существу в волцрстых каналах режим течения турбулентный. Волнистые пластины устойчивы к деформации прогиба и имеют повышенную приведенную длину канала. [c.90]


Смотреть страницы где упоминается термин Турбулентность деформаций: [c.85]    [c.86]    [c.39]    [c.129]    [c.144]    [c.10]    [c.247]   
Экстрагирование из твердых материалов (1983) -- [ c.84 , c.85 ]




ПОИСК







© 2025 chem21.info Реклама на сайте