Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий использование

    В задачу электрометаллургии входят получение и очистка металлов с использованием электрического тока. Электрометаллургия включает в себя три большие ветви электроэкстракцию, электрорафинирование и электролиз расплавов. Электроэкстракция состоит в получении металлов из растворов путем электролиза. Часто таким способом удается получить не только металлы высокой степени чистоты, но одновременно осуществить это и с наименьшими экономическими затратами (например, в случае кадмия, хрома, кобальта, железа, цинка). При электрорафинировании загрязненный металл очищают, подвергая его анодному растворению и последующему осаждению на катоде при соответствующем выборе условий электролиза. Таким образом получают медь, золото, серебро, свинец, висмут, никель, олово высокой степени чистоты. Электролиз расплавов является промышленным способом получения алюминия, щелочных и щелочноземельных металлов. Эти металлы выделяются в жидком виде, так как электролиз проводится при высоких температурах, а указанные металлы являются [c.7]


    Лучшие результаты колориметрического определения получаются при использовании ряда органических реактивов, из которых наибольшее применение имеет дитизон. Этот реактив образует окрашенные соединения не только с ионами свинца, но реагирует также с ионами многих других металлов, например ртути, серебра, меди, цинка, кадмия и т. д. Однако с различными ионами дитизон реагирует при разных условиях, в частности, большое значение имеет величина pH среды. При подборе соответствующей кислотности раствора можно определить свинец в присутствии некоторых из перечисленных ионов другие необходимо предварительно отделить. [c.260]

    Образование осадков [5.24, 5.55, 5.64]. Очистка сточных вод данным методом заключается в связывании катиона или аниона, подлежащего удалению, в труднорастворимые или слабодиссоции-рованные соединения. Выбор реагента для извлечения аниона, условия проведения процесса зависят от вида соединений, их концентрации и свойств. Очистка сточных вод от ионов цинка, хрома, меди, кадмия, свинца в соответствии с санитарными нормами возможна при получении гидроксидов этих металлов. Более глубокая очистка воды от иона цинка достигается при получении сульфида цинка. Очистка от ионов ртути, мышьяка,- железа также возможна в виде сульфидов ртути, мышьяка и железа. Использование в качестве реагента солей кальция позволяет провести очистку сточных вод от цинк- и фосфорсодержащих соединений. В результате очистки получается суспензия, содержащая труднорастворимые соли, отделение которых возможно методами отстаивания, фильтрации и центрифугирования. [c.492]

    Работа 5. Разделение катионов меди и кадмия на катионите, основанное на использовании комплексообразования [76, 90] [c.219]

    Изучение гидролиза солей цинка, кадмия и ртути проводят с использованием лабораторного рН-метра по методике, описанной в Работе 6. [c.238]

    ДИОНОВ и ионов кадмия. Использование смесей АОТ и Сс1-( А0Т)2 способствует монодисперсности. Увеличение содержания воды приводит к росту размера частиц. [c.190]

    Логический ход анализа выглядит следующим образом при добавлении цинковой пыли вытесняются металлы, менее активные, чем цинк при этом по отсутствию реакции определяется раствор, содержащий 2п(П). Подкисление не изменяет наблюдаемой картины даже при наличии кадмия. Использование гранулированного цинка позволяет проводить более точные наблюдения за протекающими реакциями. Пробирку, содержащую Си(И), легко отличить как по цвету раствора, так и по окраске выделяющегося металла. [c.516]


    Восстановление окиси кадмия использование графиков в приведенных координатах [c.250]

    Из сульфидов металлов используют, в основном, серный и медный колчеданы (халькопирит). Помимо основного компонента колчеданы содержат примеси соединений меди, цинка, свинца, мышьяка, никеля, кобальта, селена, висмута, теллура, кадмия, карбонаты и сульфаты кальция и магния, небольшие количества золота и серебра и т. п. Содержание серы в серном колчедане, пригодном для непосредственного использования, колеблется от 32 до 52%, в чистом ГеЗа оно равно 53,5% (табл. 13). [c.35]

    В книге даны некоторые (разделы электрохимии металлов, не получившие достаточного освещения в учебниках теоретической электрохимии. Изложены теория и практика электролитического получения меди, драгоценных металлов, свинца, сурьмы, олова, никеля, кобальта, железа, цинка, кадмия, марганца, хрома, некоторых редких и рассеянных металлов. Кратко описаны методы электролитического получения особо чистых метал-. лов и проектирования аппаратуры электролиза. Обращено внимание на вопросы снижения расхода электроэнергии, комплексное использование сырья и экономики производства. Приведены соображения о путях развития электролиза в гидрометаллургии Советского Союза. [c.2]

    В реакторах риформинга используется в основном платиновый катализатор АП-64, представляющий собой оксид алюминия, на который нанесено 0,6—0,65% платины. Для повышения изомери-зационной активности оксида алюминия используется хлор (периодически в реактор вводится дихлорэтан). Наряду с биметаллическим (Ра, А1) катализатором АП-64 в нашей стране разработаны и применяются полиметаллические катализаторы серии КР, содержащие рений, кадмий, иридий, германий и др., использование которых позволяет снизить давление с 3,0—4,0 до 1,4—2,0 МПа и, повысить селективность процесса. [c.27]

    Очистка раствора служит не только для подготовки электролита к электролизу, но и для выведения и последующего использования таких компонентов раствора, как соли меди, кадмия, кобальта и др. [c.272]

    В данной работе примеси меди и кадмия в металлическом цинке определяют методом добавок. При использовании этого метода предполагают, что высота пика переменнотоковой полярограммы прямо пропорциональна концентрации деполяризатора в растворе. [c.172]

    Для аккумуляторов малой емкости, в частности, дисковой конструкции некоторое время в значительном количестве применяли отрицательные электроды из смеси кадмиевой активной массы с медным порошком. Для их изготовления окись кадмия смешивали с медным порошком игольчатой структуры и прессовали под давлением 800 ат. К массе прибавляли 5% гидрата закиси никеля для улучшения работы кадмиевого электрода. Медь обеспечивала хороший подвод тока к кадмиевой массе и, главное, придавала массе способность хорошо брикетироваться. Медно-кадмиевые пластины сохраняют прочность при работе в аккумуляторах. Технология получения таких пластин проще, чем металло-керамических, но степень использования кадмия в них низкая. Расход кадмия на 1 а-ч в несколько раз больше, чем в ламельных аккумуляторах, поэтому широкого распространения такой способ не получил. [c.538]

    Большая наглядность достигается при использовании таких пар веществ, как нитрат серебра и медь, сульфат меди и кадмий, так как ионы металлов этих пар значительно различаются как по эквиваленту, так и по цвету. В первом варианте возникает цветной поток нитрата меди, направленный вверх, а во втором — бесцветный поток сульфата кадмия, направленный вниз. Через несколько минут растворы в пробирках разделяются по плотности и цвету с хорошо видимой границей, если вместо проволочек применять гранулы или кусочки металлов, подвешенные на нитке. Опыты иллюстрируют реакционную способность металлов и атомно-молекулярную теорию. [c.159]

    Пример 10. Проводили полярографическое определение кадмия обычным п тен параллельно — с регистрацией первой производной. Как и предполагали, использование дифференциальной кривой дало лучшее отделение аналитического сигнала от соседних при большей случайной ошибке. [c.40]

    Лазеры, в которых в качестве активной среды используются ионы атомов наиболее популярен лазер, в котором генерация возникает на атомных переходах в ионе аргона (Аг+). Это так называемый аргоновый лазер. Наибольшая интенсивность генерации соответствует линиям с Я = 488 нм и Х = 514,5 нм. Типичным примером является лазер, в котором в качестве активной среды используются пары кадмия (Сс1). Генерация обусловлена атомными переходами в ионе атома кадмия (Сс1+). Наибольшая интенсивность достигается при Я. = 441 нм и 1 = 325 нм. Типичные значения мощности излучения достигают нескольких ватт. Имеется много веществ (Зп, Р Ь, Сс1, 8е), при использовании которых наблюдается генерация на переходах в ионах атомов соответствующих элементов. [c.193]

    Использование цинка, кадмия и ртути в технике [c.167]


    Примером использования избирательной адсорбции может служить концентрирование микроколичеств катионов металлов, содержащихся в воде (водопроводная вода, вода природных водоемов и т. д.), на активированном угле с последующим определением их содержания. Для этого к достаточно большому объему анализируемой воды (-1 л) прибавляют аммиачный буфер до pH 8—9 и 8-оксихинолин (раствор в ацетоне), который образует относительно прочные оксихинолинатные комплексы с катионами металлов, присутствующих в микроколичествах в анализируемой воде (ионы меди, цинка, кадмия, ртути, алюминия, свинца, хрома, марганца, железа, кобальта, никеля и др.). Затем воду пропускают через активированный уголь, находящийся на фильтре. При фильтровании оксихинолинатные комплексы металлов практически количественно адсорбируются на активированном угле (коэффициент концентрирования равен -Ю ), из которого они могут быть десорбированы обработкой небольшим объемом раствора азотной кислоты НМОз (около 10 мл). В полученном азотнокислом концентрате можно определить содержание указанных металлов различными методами (например, оптическими). [c.236]

    Степень использования никеля, кадмия и железа в щелочных аккумуляторах меньше зависит от условий разряда, чем использование свинца в кислотных аккумуляторах. В активные массы щелочных аккумуляторов никеля (считая на металл) закладывается от 3,85 до 5,1 г на 1 а-ч номинальной емкости. Это дает коэффициент использования никеля порядка 42—57%. Кадмия на 1 а-ч расходуется от 2,8 до 3,5 г коэффициент использования кадмия колеблется от 60 до 75%. Железо, как материал более дешевый, обычно закладывается в аккумулятор с большим избытком. [c.522]

    Определите а) навеску активной массы на электрод, если при таком составе массы коэффициент использования К сп кадмия равен 60 %, а железа 31 % б) долю каждого металла в токообразовании [c.19]

    Превышение фактической емкости аккумуляторов, ограничителем которой является оксидно-никелевый электрод, над номинальной — 5 % (Ki — 1,05). Избыток фактической емкости отрицательного электрода над емкостью оксидно-никелевого электрода в начальном периоде циклирования — 10 % Кг = 1,10). Коэффициенты использования активных веществ при полном заряде и разряде электродов / p никеля 60 % К псп кадмия 65 % К сп железа 18 %. Потери активных масс при изготовлении электродов — 2,0 % = = 1,02). [c.32]

    Отрицательный электрод щелочного аккумулятора содержит 18,2 г чисто кадмиевой массы с 80,1 % общего кадмия коэффициент использования кадмия при разряде равен 63 % [c.60]

    Отрицательный электрод щелочного аккумулятора изготовлен из кадмиево-железной активной массы, содержащей 57,8 % общего кадмия и 21,3 % общего железа. При таком составе массы коэффициент использования кадмия 65 %, железа — 18 %. [c.60]

    Фосфаты кадмия. Фосфат кадмия был также использован как катализатор при заводской полимеризации олефинов [13]. Фосфат кадмия, соответствующий формуле d (POgjg или d (Н2 0 )2, активнее нормального ортофосфата dg (РО )а. Первый из них готовился смешением ортофосфата и ортофосфорной кислоты в количествах, соответствующих формуле d (Р0 )2 + ИдРО . Этот катализатор применялся в гранулированном виде (от 10 до 20 меш), как таковой, или же в смеси с одинаковым объемом гранул пемзы тех же размеров при 200° и давлепии 12 ят для полимеризации фракции G3,—С нефтеперерабатывающих заводов. Катализатор готовился также в виде таблеток размером 3X5 мм при помощи специальной таблетирующей машины с применением 5 % графита как смазочного материала. Истинная кривая разгонки полимера, полученного при 200° и давлении 12 ат из фракции С3—С , не показала никаких площадок, соответствующих чистым углеводородам. Наоборот, полимеры, полученные подобным путем из фракции С при 150°, состояли главным образом из дибутиленов и трибутиленов. [c.200]

    Использование цинка, кадмия и ртути в технике. Около 40% добываемого цинка используется на цинкование, т. е. покрытие поверхности черных металлов для защиты нх от коррозии. Сам цинк, как у.же указывалось, будучи электрохимически более активным, чем железо, к коррозии вполне. устойчив благодаря образованию на его поверхностп прочной оксидной пленки. Покрытие черных металлов цинком производится различными способами горячим цинкованием, т. е. погружением металла в расплавленный цинк распылением расплавленного циика но поверхности черного металла действием нарами цинка на поверхность черного металла электролитически. Цинковое покрытие даже в случае нарушения его целостности продолжает оказывать на железо защитное действие уже ио электрохимическому ирипиину (см. гл. XX, 12). [c.333]

    Высокая стойкость к тепловому старению может быть достигнута при использовании в качестве ускорителя диэтилдитиокарба-мата и активаторов окиси кадмия и окиси магния. Эта система обеспечивает, кроме того, очень низкое остаточное сжатие и отличную стойкость в маслах при 150 °С [27]. [c.364]

    Кадмий - очень токсичный элемент. Отмечались случаи кадмиевого отравления в результате использования покрытой кадмм1 м кухонной утвари. При низких дозах признаками отравления являются головная боль, кашель и рвота. При продолжительном контакте ионы кадмия могут накапливаться в печени и почках, необратимо их разрушая. Может также происходить замещение кальция на кадмий в костях, что вызывает очс иь болезненные нарушения. Именно такое кадмиевое отравление случилось на севере Японии в бО-х годах в результате попадания кадмийсодержащих отходов цинкового рудника в воду местной реки. [c.74]

    Следует иметь в виду, что при применении песчаных бань трудно регулировать температуру, а при использовании бань из расплава солей или металлов стеклянный куб необходимо вынимать из бани до начала затвердевания расплава. В противном случае куб можно разбить. Наиболее пригодными металлическими сплавами для бань являются сплав Вуда с температурой плавления 71 С, состоящий из 1—2 ч. кадмия, 2 ч. цинка и 7—8 ч. висмута, и сплав Розе с температурой плавления 95 ° С, состоящий из 2 ч. висмута, 1 ч. свинца и 1 ч. цинка. Применять ртуть и сплавы с более высоким содержанием свинца не рекомендуется вследствие токсичности их паров. [c.398]

    Одним из важнейших достижений в области каталитического риформинга за последние 20 лет считается переход к использованию би- и полим ° таллических катализаторов. Используемые для промоти-рования металлы можно разделить на две группы. К первой из них принадлежат металлы VHI ряда иридий и рений, известные как катализаторы гидро-дегидрогенизации и гидрогенолиза. Другая, более обширная группа модификаторов включает металлы, которые практически неактив в указанных реакциях. Такими металлами являются металлы IV группы германий, олово, свинец П1 группы галлий, индий и редкоземельные элементы И группы - кадмий. [c.153]

    Кадмиевые покрытия получают почти исключительно электро-осаждением. Разница в потенциалах между кадмием и железом не столь велика, как между цинком и железом, следовательно степень катодной защиты стали покровным слоем кадмия с ростом размера дeфeкtoв в покрытии падает быстрее. Меньшая разность потенциалов обеспечивает важное преимущество кадмиевых покрытий применительно к защите высокопрочных сталей (твердость Яр > 40, см. разд. 7.4.1). Если поддерживать потенциал ниже значения критического потенциала коррозионного растрескивания под напряжением (КРН), но не опускаясь в область еще более отрицательных значений, отвечающую водородному растрескиванию, то кадмиевые покрытия надежнее защищают сталь от растрескивания во влажной атмосфере, чем цинковые. Кадмий дороже цинка, но он дольше сохраняет сильный металлический блеск, обеспечивает лучший электрический контакт,, легче поддается пайке и поэтому нашел использование в электронной промышленности. Кроме того, он устойчивее к воздействию водяного конденсата и солевых брызг. Однако, с другой стороны, кадмиевые покрытия не столь устойчивы в атмосферных условиях, как цинковые покрытия такой же толщины. [c.238]

    Каждая из этих стадий завершается определением содержания металла как в лабильной, так и в инертной форме (после оценки общего содержания) с помощью ИВА (всего восемь определений). Данный подход был использован для анализа природных вод на содержание ряда неорганических токсикантов, в том числе свинца и кадмия Установлено, что в незафязненных природных водах свинец существует преимущественно в ионной форме. Высокие содержания свинца зарегисфированы в неорганических коллоидных частицах, взвешенных в воде. В отличие от свинца кадмий в природных водах существует в основном в лабильной форме, надежно определяемой с помощью ИВА [c.283]

    Разработан также метод определения инертных форм металлов в воде (711. Их разделяют на три фракции, каждая из которых характеризуется скоростью диссоциации ионов металла, удерживаемых ионообменной колонкой умеренно лабильные, с низкой скоростью диссоциации и инертные Заметим, что анодную ИВА непосредственно можно использовать только для определения очень лабильных форм металлов. К ним, в частности, относится кадмий Свинец попадает в фуппу металлов, характеризующихся низкой скоростью диссотщации ионных образований, или инертных. На рис. 7.5 приведена схема для определения форм сущесгво-вания ионов металлов в природных водах с использованием нонообмен-ников [c.283]

    Коэффициент использования активной массы в щелочных аккумуляторах определяется главным образом ее физико-химическими свойствами, зависящими в большой степени от способа приготовления. Коэффициент использования никеля в реакции токообразования при переходе Ы100Н в Ы1(0Н)2 составляет 60—7070-Коэффициент использования кадмия примерно таков же. [c.90]

    Иногда применяют другой прием использования реакций маскирования. Так, в смеси цинка и кадмия сначала титруют сумму обоих металлов. Затем вносят диэтилдитиокарбамат натрия. Он не разрушает комплекса цинка с ЭДТА, но полностью разрушает комплекс кадмия с ЭДТА, переводя Сс1 в осадок — диэтилдитиокарбаминат кадмия. В результате ос- [c.432]

    Использование модели желе позволяет рассчитать поверхностный потенциал металла х" двумя способами. В первом способе величина х рассчитывается непосредственно по распределению выходящего из металла в вакуум электронного газа. Во втором способе на основе модели желе рассчитывают Уобм, затем по формуле (VII.38)—ер, а после этого, используя опытные значения по уравнению (VI 1.39) определяют х - Совпадение рассчитанных двумя способами величин х" указывает на применимость к данному методу модели желе . Ниже приведены рассчитанные двумя способами поверхностные потенциалы цинка, кадмия и индия, а также найденные по уравнению (VII.ЗЗ) соответствующие значения гальвани-потенциалов на границе вода — металл в точке нулевого заряда  [c.191]

    Впервые такой прием оценки отклонения от аддитивности был предложен Урбаном и Вурионом и использован в работах Буриона и Ройера по исследованию комнлексообра-зования в водных растворах электролитов преимущественно эбулиоскопическим методом. Таким способом они изучили взаимодействие между галогенидами щелочных металлов и галогенидами кадмия и ртути, а также другие взаимодействия в растворах. [c.227]

    Предложены методы определения цинка, таллия, кадмия, свинца, мышьяка, висмута, галлия, германия, нндия, сурьмы, олова, теллура в различных труднолетучих веществах. Метод имеет большие потенциальные возможности при использовании селективной отгонки, если сначала вводится реакционный газ, а затем газ-носитель. [c.199]

    При обратном соотношении ско ростей, когда линейная скорость роста кристаллов начинает преобладать, отложение имеет грубую к ристаллич0скую структуру. Такие металлы, как медь, олово, свинец, серебро, при использовании растворов их простых солей, не содержащих поверхностно активных добавок, выделяются В виде крупных кристаллов, размеры которых превышают 10 см.. Несколько меньш-е кристаллы образуются при электро-осаждении цинка и кадмия (10 см). Таким, образом, один и тот же металл может быть получен на катоде в различной форме специальным подбором условий и режима электролиза можно существенно влиять на структуру электролитических осадков. [c.368]

    Эффект передачи энергии должен зависеть от природы носителя. Так, при использовании металлического кадмия в качестве носителя активность ансамбля платины при разложении перекиси водорода примерно в 10 раз превышает его активность на других носителях. Это позволяет считать, что возможен подбор носителей с повышенной рекуперацией и энергопроводимостью по экситонному или другому механизму. Следует считаться по меньшей мере с дву- [c.122]

    Кадмиевая активная масса (без добягзки железа), идущая для приготовления отрицательных элек родов щелочных аккумуляторов, содержит 78,5 % общего кадмия коэффициент использования кадмия при разряде равен 65 %. [c.60]


Смотреть страницы где упоминается термин Кадмий использование: [c.111]    [c.698]    [c.543]    [c.233]    [c.135]    [c.109]    [c.127]    [c.517]   
Учебник общей химии 1963 (0) -- [ c.371 ]




ПОИСК







© 2025 chem21.info Реклама на сайте