Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аллильная полимеризация

    При полимеризации диенового мономера, например бутадиена, свободный радикал инициатора присоединяется к первому атому углерода с образованием относительно стабильного аллильного радикала, в котором неспаренный электрон сопряжен с двойной связью  [c.141]

    С повышением температуры количество звеньев 1,2 и 3,4 возрастает. Звенья 1,2 оказывают большое влияние на свойства полихлоропрена вследствие легкой изомеризации третичного атома хлора в легко гидролизующийся аллильный хлор. В результате гидролиза происходит поперечное сшивание полимерных цепей при хранении и переработке полихлоропрена и его тенденция к подвулканизации при приготовлении резиновых смесей. Структурирование может происходить под влиянием оснований при полимеризации в эмульсии с образованием эфирных связей между цепями [10]. [c.370]


    В последние годы в СССР проведены поисковые и теоретические исследования, позволившие создать новые высокоэффективные оригинальные каталитические системы стереоспецифической полимеризации бутадиена на основе л-аллильных комплексов переходных металлов. [c.12]

    При полимеризации бутадиена под влиянием катализаторов на основе я-аллильных комплексов никеля, получаются полимеры со сложным молекулярным составом, содержащие линейные и разветвленные макромолекулы, а также полимерные частицы (микрогель), образование которых связано с некоторой гетерогенностью применяемого комплексного катализатора. [c.60]

    Такой деградирующий или аллильный перенос цени наблюдается при полимеризации хлористого аллила [12] и изопропенилацетата [68] [c.131]

    Значительный каталитический эффект в реакциях полимеризации диеновых углеводородов достигается при использовании катализаторов, состоящих из я-аллильных комплексов никеля и кислот Льюиса (табл. 5). [c.102]

    Влияние природы металла и лигандов в я-аллильных комплексах на стереоселективность и активность катализатора при полимеризации изопрена [c.104]

    В последние годы был открыт новый класс органических производных переходных металлов — п-аллильные комплексы, в которых связь металл — углерод является многоцентровой и строение которых моделирует структуру концевого звена при полимеризации диенов. л-Аллильные комплексы обладают каталитической активностью в ряде процессов органического синтеза, в том числе при стереоспецифической полимеризации диеновых углеводородов [46, 47]. В зависимости от природы применяемого переходного металла, атомов и групп, связанных с ним, п-аллильные комплексы могут инициировать полимеризацию бутадиена в сторону образования 1,2-, транс-1,4- или цыс-1,4-звеньев [47]. [c.183]

    Любой акт присоединения сопряженного диолефина к переходному металлу (внедрение по связи металл — углерод или металл—лиганд, окислительное присоединение диена) должен приводить к возникновению аллильных комплексов а- или я-типа. о-Ал-лильные комплексы переходных металлов способны переходить в термодинамически более выгодные я-аллильные комплексы. В связи с этим изучение механизма стереорегулирования в процессах полимеризации диенов под влиянием аллильных комплексов особенно интересно, так как эти системы могут рассматриваться как модели активных центров. [c.107]


    Внедрение мономера по направлению 2 в процессе полимеризации бутадиена под влиянием я-аллильных комплексов никеля практически не реализуется, так как образующиеся полимеры содержат не более 4% 1.2-звеньев. [c.112]

    В молекулах различных аллилгалогенидов (аллилхлорид, аллилбромид), имеющих общую формулу СН2=СН—СНзХ, атом галоида не оказывает такого заметного поляризующего влияния на тс-связь, как в молекулах винилгалогенидов, и двойная связь в аллильных соединениях не сопряжена непосредственно с атомом галоида. Кроме того, заместитель имеет значительный объем, что является причиной возникновения некоторых стерических препятствий при полимеризации таких мономеров. Этим объясняется меньшая активность аллилгалогенидов в реакциях полимеризации по сравнению с винилхлоридом или винилбромп-дом. [c.277]

    Обрыв цепи в реакции полимеризации на л-аллильных комплексах осуществляется в основном путем передачи атома водорода от мономера на растущую цепь с восстановлением комплекса катализатора с этой молекулой мономера. [c.55]

    Полимеризация. Если условия реакции не благоприятны для быстрого взаимодействия олефина с изопарафиновым углеводородом, то олефин может претерпевать полимеризацию вместо алкилирования. Полимеризация протекает через присоединение карбоний-иона, образовавшегося из олефина, ко второй молекуле олефина, что ведет к более высокомолекулярному катиону, который может терять протон, превращаясь в истинный полимер — уравнение (5), или насыщается, отнимая гидридный идя от олефина или изопарафина превращаясь в сопряженный полимер — уравнение (6). Если ион гидрида отнимается от изопарафинового углеводорода, то алкилирование по меньшей мере частично протекает по механизму первичного алкилирования. Если же ион гидрида отнимается от молекулы олефина, то образуются высоконенасыщенные соединения, фактически обнаруженные в комплексах катализатора с углеводородами. Ион гидрида отнимается от аллильного углерода молекулы олефина весьма легко вследствие резонансной стабилизации образующегося карбоний-иона аллильного типа [5]  [c.188]

    Кроме того, радиационный метод обеспечивает большую легкость и надежность в регулировании процесса полимеризации за счет варьирования мощности поглощенной дозы. Таким путем удается вводить в сополимеризацию мономеры, трудно сополи-меризующиеся традиционными методами, иапример МА и а-мeтил тиp(JЛ, аллильные мономерьс и 50г, олефины и СО. Радиационно-инициированный процесс может быть проведен при более низких температурах, когда удается избелоть (при радикальном механизме) побочных реакций, ведущих к разветвлению цепи или даже к образованию сшитых продуктов. Радиационная полимеризация достаточно хорошо осуществима как в газообразной, жидкой, так и в твердой фазе, и именно в последнем случае наиболее часто используется. Прн промышленной реализации требуются меньшие производственные площади для [c.16]

    А. к.-промежут. соединения во мн. р-циях непредельных соединений, к-рые идут в присут. комплексов переходных металлов, напр, карбонилировании, изомеризации, гидрировании, окислении, олиго- и полимеризации. Важная роль А.к. в этих процессах обусловлена их способностью легко вступать в р-ции с СО, олефинами, ацетиленами и др. ненасыщенными соединениями. Такие р-ции внедрения по связи металл - лиганд через промежут. а-аллильные производные часто являются ключевыми в каталитич. процессах. [c.104]

    Методами ИК-спектроскопии подтверждено, что в ряде р-ций с участием олефинов (селективное окисление, полимеризация, диспропорционирование) на пов-сти оксидов переходных металлов с электронной конфигурацией катиона d (Мо , V , Ti ) образуются я-комплексы и jt-аллильные комплексы типа I, где М-атом металла. [c.540]

    Методом оврагов нами изучалась кинетика радиационного изотопного обмена дейтерия с гидроксильными группами силикагеля (см. [611, а также стр. 138), кинетика аллильной полимеризации в присутствии хлористого цинка, кинетика разложения метана в условиях адиабатического сжатия и других процессов. [c.105]

    На примере изучения взаимодействия аллилового спирта г радикалом С2Н5—вычислены кинетические параметры реакции замещения и присоединения при аллильной полимеризации, оказалось, что при 60° С [/ 2 = 1,8 9. При полимеризации алли- [c.576]

    Первые сообщения о полимеризации бутадиена с помощью я-аллильных комплексов были опубликованы в 1964 г. [37, 38]. В настоящее время наиболее подробно изучены катализаторы на основе димерных л-аллилникельгалогенидов  [c.101]

    Помимо rt-аллилникельгалогенидов в качестве катализаторов полимеризации 1,3-диеновых углеводородов могут быть использованы я-аллильные комплексы и других переходных металлов. Чистые я-аллильные комплексы родия образуют гране-1,4-полибутадиен, а комплексы ниобия, титана и хрома — полибутадиен с высоким содержанием 1,2-звеньев [32, 49, 50]. Бис(я-аллил)ко-бальтгалогениды и трис(я-аллил)урангалогениды дают цис-, 4-полибутадиены [49, 51]. Бис(я-аллил)никель в присутствии бис(я-аллилникельхлорида) превращает бутадиен в циклические олигомеры с молекулярной массой 500—600 [52]. [c.104]


    Экспериментальные результаты, полученные при изучении этой реакции, являются прямым доказательством того, что растущая полимерная цепь образует с переходным металлом л-аллильный комплекс. Постоянство константы спин-спинового взаимодействия /а г = 13Гц свидетельствует о сохранении на протяжении всего процесса полимеризации сын-конфигурации концевого звена растущей полимерной цепи, что хорошо соответствует транс-1,4-структуре звеньев образующихся полибутадиенов. [c.117]

    Исследование полимеризации конъюгированных диенов гомогенными катализаторами, полученными из н-бутилтитаната и три-этилалюминия с помощью ЭПР позволило установить, что активными центрами этого процесса являются я-аллильные комплексы титана [84. Структура аллильного лиганда в них совпадает сс структурой никелевых комплексов, приведенных выше. Так, аддукты бутадиена и изопрена с продуктом реакции Т1(ОС4Нэ)4 и А1(С2Н5)з состояли из смеси син- и анг -изомеров 1-замещенных и 1,2-дизамещенных я-аллильных комплексов. Пиперилен приводит к образованию 1,3-дизамещенного я-аллильного аддукта титана аналогичного комплексу XIII. [c.126]

    Координационная ненасыщенность атома никеля в этом соединении, по-видимому, обусловливает высокую активность таких каталитических систем. Отсутствие ацидолигандов во внутренней координационной сфере центрального атома может способствовать стабилизации анти-я-аллильных аддуктов, возникающих после внедрения координированных молекул бутадиена. Исследование процесса полимеризации бутадиена под влиянием гомогенных каталитических систем на основе бис(я-кротилникельхлорида) и ОаС1з в хлорбензоле показало, что структура образующихся макромолекул не зависит от характера координации мономера с атомом никеля [39]. Комплекс [я-С4Н7Ы1]Ч( аС14]-, так же как и его аддукт 1 1с трифенилфосфином, трибутилфосфином и трифенил-фосфитом вызывали цис-1,4-полимеризацию бутадиена, хотя в двух последних случаях число вакантных мест для координации с мономером уменьшалось до одного. [c.126]

    Растущий аллильный карбанион гораздо более устойчив, чем соответствующие соединения для пропена (см. выше) или простых олефинов, и это является причиной образования соединений с очень высокой степенью полимеризации. Было показано, что Na может быть заменен многими алкильными или арильными производными щелочных металлов, либо непосредственно вводимых извне [220], либо образующихся in situ [221 ]  [c.107]

    При замене винильной или аллильной группы акриловой или метакриловой группой двойная связь еще более отдаляется от атома кремния, что повышает активность этой связи в реакции полимеризации. Например, силанметакрилаты легко полимеризуются в присутствии перекисей при атмосферном давлении и 65 . Образующиеся полимеры представляют собой твердые, бесцветные, прозрачные, стекловидные материалы. По термической устойчивости эти полимеры мало отличаются от нолиметилметакрилата.  [c.490]

    При давлении 6000 ат и 120 наблюдается полимеризация аллильных соединений германия. В присутствии 1 % мол. перекиси трет-бутила полимеризация длится 6 час. Диметил- и диэтилаллилгерма-ний образуют бесцветные масла с молекулярным весом соответственно 560 и 783. Выход этих низкомолекулярных полимеров достигает 64%. Полимеры растворимы и бензоле и хлороформе и нерастворимы в спиртах. [c.506]

    Полимеризация диеновых мономеров на катализаторах Циглера — Натта протекает несколько иначе и включает в качестве начальной стадии образование п-аллильного комплекса мономера с атомом переходного металла. Последний является активным центром каталитической системы, где и протекает рост цепи полимера. Он проходит по тому же принципу — вытеснение каждого предыдущего мономерного звена последуюпшм при подходе следующей мономерной молекулы к каталитическому комплексу. [c.51]

    Механизм полимеризации на л-аллильных комплексах и оксиднохромовых катализаторах [c.54]

    Методами прецизионной адиабатической вакуумной и высокоточной динамической калориметрии, а также изотермической калориметрии сжигания изучены термодинамические свойства и термодинамические характеристики реакций синтеза ряда классов новейших полимеров карбо-силановых дендримеров нескольких генераций с концевыми аллильными группами, фуллеренсодержащих полимеров и линейных алифатических полиуретанов, образующихся при полимеризации соответствующих цик-лоуретанов с раскрытием цикла, и а, со-миграционной полимеризацией изоцианатоспиртов для области 5-350 К. Получены температурные зависимости теплоемкости, температуры и энтальпии физических превращений, термодинамические функции для некоторых из них - энтальпии, энтропии и функции Гиббса реакций синтеза, константы полимеризацион-но-деполимеризационного равновесия и равновесные концентрации мономеров. [c.134]

    Клей на основе хлоропрена и фенольных смол. Известно, что при полимеризации 2-хлорбутадиена может происходить как 1,4-, так и 1,2-присоединение. Атом хлора в аллильном положении в случае 1,2-присоединения обладает большей реакционной способностью, и связь С—С] легко разрывается. Хлоропреновый каучук известен под названиями неопрен (фирма Du Pont ) и байенреи [c.252]

    Присосд, электрофилов к алкенам в случае карбкатион-ного механизма проходит иестереоспецифично, причем образующийся промежут. карбкатион >южет реаг. с любым атю-ном, присутствующим в реакц. среде. Карбкатион может стабилизироваться также путем выброса протона из 3-иоло-жения с образованием аллильных или винильных производных, а также путем присоед. к следующей молекуле алкена, вызывая катионную полимеризацию. [c.703]

    Относит содержание ионных частиц разл типа зависит от строения К, размера катиона, природы среды и т-ры Все эти частицы имеют, как правило, разл спектральные характеристики и отличаются по реакц способности Напр, нуклеоф замещение и присоединение с участием своб К происходит в 10-10 раз быстрее, чем с участием ионных пар К, особенно образующиеся из СН-кислот с рЛ" > 10, химически очень активны Они подвергаются внутримол превращ, приводящим к более устойчивым структурам В К аллильного и пропаргильного типов обычно происходит миграция кратных связей К в перегруппировках Стивенса и бензильной, р-циях Соммле, Виттига претерпевают 1,2-миграцию, перегруппировка Фаворского протекает со стадией 1,3-элиминирования Наиб важны в орг синтезе р-ции К, приводящие к образованию связей С—С нуклеоф замещение (напр, р-ция Вюрца) и присоединение по карбонильной группе (напр, конденсации Клайзена, альдольная, р-ции Манниха, Кневенагеля, Перкина) и по активир двойной связи (напр, присоединение по Михаэлю и анионная полимеризация) Широкое распространение получили синтезы на основе К, проводимые в устовиях межфазного катализа [c.315]

    Металлоорг, К.п.-орг. производные металлов IV-VIII гр. Используют для полимеризации диенов, ацетиленов, циклоолефинов. Активные центры полимеризации диеиов-я-аллильные комплексы металлов, строение к-рых определяет микроструктуру образующегося полимера. Полимеризация циклоолефинов протекает с участием активных центров, включающих карбеновые комплексы типа - HjiMX. [c.341]


Библиография для Аллильная полимеризация: [c.131]    [c.141]    [c.198]   
Смотреть страницы где упоминается термин Аллильная полимеризация: [c.77]    [c.131]    [c.114]    [c.125]    [c.379]    [c.93]    [c.235]    [c.58]    [c.26]    [c.326]    [c.113]    [c.465]   
Основы химии полимеров (1974) -- [ c.212 , c.213 ]




ПОИСК







© 2024 chem21.info Реклама на сайте