Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры рост цепи

    Реакции полимеризации, применяемые в промышленности, бывают двух типов — ступенчатые и цепные 1) ступенчатая полимеризация, когда соединение молекул сопровождается перемещением атомов водорода и образующиеся промежуточные продукты характеризуются значительной продолжительностью жизни 2) цепная полимеризация, когда сначала происходит активирование какой-либо одной молекулы, вызывающей полимеризацию большого числа других молекул, с которыми она сталкивается. В этом случае промежуточные продукты нестабильны. При ступенчатой полимеризации главными продуктами являются полимеры с низкой молекулярной массой. В отличие от ступенчатой полимеризации цепная полимеризация не задерживается на какой-либо промежуточной стадии и конечный продукт представляет собой высокомолекулярное соединение. Цепная полимеризация — один из важнейших методов производства синтетических смол — состоит из стадий возбуждение процесса, рост цепи и обрыв цепи (см. ч. I, гл, V). Общую реакцию можно представить следующим образом  [c.191]


    Зависимость константы скорости от температуры процесса поликонденсации подчиняется уравнению Аррениуса (рнс. 86), Процессы поликонденсации носят ступенчатый характер. Рост цепи происходит постепенно в результате взаимодействия молекул мономеров с образовавшимся полимером. На определенных стадиях производства молекулы имеют линейную или разветвленную структуру и лишь в конечной стадии получения готовых изделий могут протекать реакции, в результате которых образуется трехмерная структура. Основные факторы, влияющие на скорость и направление реакции поликонденсации строение мономеров, в частности количество функциональных групп, их свойства и соотношение в реакционной смеси, тип катализатора и его активность, наличие примесей в мономере, а также строгое соблюдение технологического [режима реакции (температура, давление, степень перемешивания, продолжительность и т, п.). Примеси в процессе поликонденсации снижают молекулярную массу, образуют неактивные концевые группы и вызывают разветвление макромолекул. [c.199]

    Радикальная полимеризация протекает по цепному механизму. Процесс образования молекулы полимера состоит из следующих стадий инициирование — образование первичного свободного радикала из валентнонасыщенной молекулы мономера рост цепи — последовательное присоединение к радикалу молек л мономера с сохранением свободной валентности на конце растущей молекулы обрыв цепи — прекращение роста молекулы. [c.49]

    Таким образом, для возникновения геля в системе линейных макромолекул достаточно ввести в среднем одно разветвленное звено на молекулу — одну сшивку на 2 молекулы. Если исходный линейный полимер полидисперсен, величина ркр будет еще меньше. Это соотношение имеет место и при одновременном -протекании реакции сшивания по двойным связям и роста цепей, только величина Р имеет в этом случае несколько искусственный смысл средней степени полимеризации макромолекул, полученных после разрыва всех сшивок. [c.26]

    Образование ассоциатов обеспечивает интенсивный перенос активного центра реакции роста цепи, что приводит к регулированию молекулярной массы и образованию полимеров с узким [c.415]

    Гетерофазная полимеризация - способ синтеза полимеров в многофазной системе, в которой мономер находится в коллоидно-диспергированном состоянии. Рост цепи полимера может происходить одновременно в различных фазах, а также на границах раздела между ними (см. суспензионная, эмульсионная Полимеризация). [c.398]


    Микроструктура полимеров. Рост цепи на активных центрах, представляющих собой поляризованные молекулы или ионные пары, существенно отличается от аналогичных процессов, типичных для свободных радикалов или свободных ионов. Это отличие состоит в дополнительном влиянии, к-рое компонент В растущей цепи (ур-ние 10) оказывает на геометрию каждого элементарного акта роста и, следовательно, на пространственное строение формирующейся макромолекулы. Характер и степень такого влияния зависят от длины активной связи растущей цепи (т. е., главным образом, от ионного радиуса компонента В и от свойств реакционной среды), а также от способности активного центра к образованию промежуточных координационных комплексов с мономером (ур-ние 10а). В анионных системах это отчетливо проявляется в зависимости микроструктуры полимерной цепи от природы металла, используемого для инициирования полимеризации (в свободном состоянии или в виде какого-либо производного), и растворителя. [c.76]

    Рост цепи в твердой фазе протекает путем наращивания блоков мономера (или димера), находящегося в составе комплекса, на активные концевые группы макромолекул твердых полимеров. Рост цепи, очевидно, прекращается по мере исчерпывания мономера. [c.334]

    Важно подчеркнуть, что наряду с образованием молекулярных комплексов в какой-то мере исходные молекулы мономеров или полимеров могут обратимо диссоциировать на ионы однако образование полимера (рост цепи) происходит только по молекулярному механизму, энергетически являющемуся более оправданным в данных условиях, нежели механизм, включающий [c.189]

    Далее мы пересмотрели вопрос о вторичных реакциях в связи с некоторыми несоответствиями, которые имелись, в частности, и в наших старых работах. Было показано, что вторичные реакции возникают на поздней стадии полимеризации не в результате загустевания системы, а вследствие своего рода инверсии диффузионного контроля . При этой инверсии, которая обусловлена накоплением мертвого полимера, рост цепей становится диффузионно контролируемым, а передача цепи на полимер практически перестает быть диффузионно контролируемой реакцией. [c.144]

    Полимеризация, вероятно, протекает по ступенчатому механизму молекулярную массу полимера (рост цепи) регулируют добавкой уксусной кислоты. На рис. 156 показана схема производства капрона. [c.319]

    В результате роста цепи образуется линейный полимер, в котором мономерные звенья связаны друг с другом по типу голова к хвосту . Полимерные структуры, связанные голова к голове тати хвост к хвосту , не образуются, несмотря на меньшие стерические препятствия. Образование таких структур при росте цепи повлекло бы за собой переход положительного заряда с третичного атома углерода к первичному, что энергетически невыгодно. [c.329]

    При реакциях передачи цепи плотность разветвления, естественно, определяется соотношением скоростей реакций разветвления и роста, в поликонденсационных процессах — долей полифункциональных звеньев. В связи с тем, что энергия активации реакций разветвления и, соответственно, температурный коэффициент их скорости, выше энергии активации роста цепи, разветвленность большого числа полимеров увеличивается с ростом температуры разветвленность также увеличивается с глубиной полимеризации, так как при этом возрастает вероятность взаимодействия активных центров с полимерными цепями. [c.25]

    Рост полимерной цепи происходит с весьма высокой скоростью. Огромная молекула полимера, состоящая иа тысяч молекул мономера, образуется за несколько секунд. Энергия активации роста цепи значительно ниже энергии активации инициирования и составляет примерно 16,4—41,9 кДж/моль. Рост полимерной цепи — экзотермическая реакция. [c.142]

    По мере роста цепи первичный радикал К все более удаляется от реакционного центра и не оказывает влияния на структуру образующейся молекулы полимера. [c.176]

    Нарушение функциональности живых цепей в процессе полимеризации может быть вызвано следующими причинами а) разрушением активного конца живого полимера за счет реакции с примесями в реакционной среде (влага, кислород и др.) б) взаимодействием живого полимера с растворителем в) термическим распадом полимерных металлорганических соединений г) переносом активного центра реакции роста цепи на мономер или растворитель. [c.416]

    В процессе получения полимеров происходит, по-видимому, реакция переноса активного центра от радикала ОН на полимерную цепь с отрывом атома водорода образовавшиеся полимерные радикалы могут либо инициировать дальнейший рост цепи с образованием разветвленных молекул, либо рекомбинировать с имеющимися в системе в избытке первичными радикалами ОН. Последняя реакция приводит к повышению функциональности полимера без изменения его молекулярной массы [36]. [c.424]


    Как показали химический анализ (М%) и определения молекулярного веса, каждая молекула полимера содержит концевую группу ЫНа-Рост цепи оканчивается переносом протона от растворителя [c.108]

    При получении полимера с большой степенью полимеризации реакция роста цепи протекает несравненно быстрее, чем реакция инициирования, и р приближается к скорости полимеризации п-В самом начале реакции [М ] увеличивается, но, так как скорость исчезновения радикалов на стадии обрыва цепи пропорциональна квадрату концентрации радикалов, скорость исчезновения радикалов вскоре становится равной скорости их образования, т. е. концентрация радикалов становится стационарной  [c.192]

    В промышленности для проведения цепной полимеризации используют совместное воздействие теплоты и химических агентов инициаторов или катализаторов. Инициаторы (в основном соединения перекисного характера органические перекиси, гидроперекиси и азосоединения) в течение реакции распадаются на реакционноспособные радикалы, которые входят в состав молекул полимера в виде конечных групп. Радикалы инициаторов возбуждают молекулы мономера в результате возникают радикалы мономеров, присоединяющиеся к радикальной цепи. Следовательно, радикальная полимеризация обязательно включает стадию образования свободных радикалов и последующий рост цепи полимера. [c.193]

    Трудность получения истинного сополимера этилена и пропилена объясняется значительно большей склонностью этилена к полимеризации по сравнению с пропиленом и другими высшими алкенами. Для синтеза сополимеров с хорошими свойствами приходится прибегать к различного рода специальным приемам. Один из них предусматривает использование исходной смеси с очень низкой величиной соотношения количеств этилена и пропилена. В других случаях в результате введения разнообразных мономеров создаются такие условия роста цепи, при которых блоки одних полимеров чередуются с блоками других. Такого рода полимеры обладают целым рядом достоинств, отсутствующих у гомополимеров. [c.122]

    Качество продукции, высокая техническая культура производства требуют материалов необходимой степени чистоты, и это является обязательным условием их получения. Например, после многолетних изысканий удалось получить полиформальдегид лишь когда выявилась необходимость тщательной очистки мономера от следов метилового спирта и воды, присутствие которых замедляло, а затем прекращало рост цепи полимера. Содержание этих примесей в очищенном газе не должно превышать 10 %. [c.101]

    Полирекомбинация - процесс синтеза полимеров, в котором рост цепей происходит в результате взаимодействия разнородных растущих макрорадикалов. [c.403]

    Полимеризация приводит к образованию соединений, более устойчивых к действию реагентов поэтому высшие олефины, представляющие собой димеры и тримеры низших олефинов, значительно более устойчивы к действию полимеризующих агентов, в первую очередь к серной кислоте. Следует отметить, что с ростом цепей возрастает тенденция к крекингу, поэтому высшие олефины при полимеризации образуют, кроме полимеров, насыщенные и ненасыщенные углеводороды меньшего молекулярного веса, а также нафтены. [c.592]

    Теория ступенчатой полимеризации обладает рядом недостатков, из которых основным является следующий. Кинетически такая полимеризация должна быть процессом затухающим и должна останавливаться на образовании низких полимеров, так как с ростом цепи скорость присоединения новых молекул мономера снижается. Однако фактически полимеризация проходит с большими скоростями вплоть до образования полимеров, состоящих из тысяч молекул мо- [c.626]

    Явление сополимеризации несравненно сложнее, чем простая полимеризация. При смешении двух способных к полимеризации компонентов в присутствии какого-либо инициатора (катализатора), как уже было указано, в результате цепной реакции образуются и полимеры и сополимеры. Выяснение кинетики и механизма этих процессов является, в большинстве случаев, очень сложной задачей. При бинарной сополимеризации вместо одной реакции роста цепи имеются, по меньшей мере, четыре вместо двух возможных реакций обрыва цепи (диспропорционирование) обнаруживаются, по меньшей мере, семь различных обрывов и т. д.  [c.631]

    Одно из первых применений такого подхода описано Алленом, Ги и Стретчем [1], которые определили абсолютное значение константы скорости реакции роста стирола в диоксане. Полимеризацию иницииро-ва,яи определенным количеством Na-нафталина, за реакцией роста следили с помощью дилатометра. Поскольку превращение Ыа-нафта-лина в натриевую соль живущего полимера происходит мгновенно и количественно, концентрация живущих макромолекул определяется по известной концентрации инициатора. Каждая кинетическая кривая строго подчиняется закону первого порядка, и константа псевдопервого порядка пропорциональна концентрации живущих полимеров. Рост цепи в такой системе происходит, очевидно, только с помощью одного вида активных центров — вероятно, ионной пары S , Na+. Бимолекулярная константа скорости роста kp равна приблизительно 4 л-моль -сек при 25 , и из ее температурной зависимости, исследованной в довольно узком интервале температур (15—50°), рассчитана энергия активации, равная 9 3 ккал моль, откуда значение предэкспоненциального множителя — около 10 л-моль -сек . [c.402]

    Дело в том, что, например, монофункциональные вещества (фенол) действуют как прерыватели роста цепей и препятствуют образованию полимеров с высоким молекулярным весом. Особенно нежелательны три- и многофункциональные вещества (трис-фенолы и другие многоядерные фенолы) вследствие того, что они могут давать разветвленные цепи полимеров. Соединение Дианина, 2,4,4-триме-тил-2 -оксифлаван, 2,4,4-триметил-4 -оксифлаван и многие другие вещества, в том числе фенол, способствуют образованию окрашенных и плохо поддающихся обработке полимеров. [c.160]

    Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полиЪгра молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в плохом растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.). [c.159]

    Высказано предположение, что в процессе роста цепи полибутадиена (и полиизопрена) образуются ( с-1,4-звенья, а появление в полимере транс-структур связано с реакцией цис-транс-тои и-зации концевых звеньев в спящих ассоциатах [20]. [c.180]

    Реакция роста цепи протекает по обычному механизму, как это было показано ранее. Ион-карбониевый механизм довольно легко объясняет о<сно1Вные закономерности реакции высокую скорость полимеризации при низких температурах, низкую энергию активации, получение полимеров с высокой молекулярной массой. Однако имеются экспериментальные данные, которые, по-видимому, трудно объяснить, исходя из этого механизма полимеризации изобутилена. [c.333]

    Таким образом, свободные радикалы, возникающие при распаде инициаторов, входят в состав молекулы полимера в виде конечных групп. Как видно из приведенной схемы, такие цепи имеют вещественный характер, так как каждое звено цепной реакции увеличивает длину цепи полимера. Длина цепи (число циклов) в этом случае равна числу молекул мономера в молекуле полимера. Обрыв вещественных цепей приводит к завершению процесса образования макромолекул. Обрыв цепей может происходить в результате столкновения реагирующей цепи с радикалом, вследствие чего насыщаются свободные валентности. Столкновение радикалов может привести к обрыву цепи вследствие перехода атома водорода от одной реагирующей цепи к другой, в результате чего прекращается рост обеих молекул, так как у одной молекулы возникает двойная связь, а другая становится насыщенной. Обрыв цепи может произойти н после столкновения растущего"радикаЛа с молекулами растворителя, мономера или полимера, в результате чего насыщается свободная валентность данного радикала и образуется новый свободный радикал, начинающий новую цепь реакций. Этот процесс называется переносом цепи. Процесс переноса ц ти может приводить к разветвлению неЩёсЧЪённых цепей и [c.202]

    По блочному методу мономер в жидкой или газовой фазе вместе с катализатором или инициатЬром (в отсутствие растворителей) подается в форму (сосуд) и при строго регулируемой температуре основная масса мономера преврашается в полимер в виде блока, трубок, листов, стержней и гранул. Масса полимера затем подвергается механической обработке. Блочную полимеризацию можно проводить периодически и непрерывным методом. Если в первой стадии процесса при образовании активных центров необходимо мономер подогревать, то затем, когда идет рост цепи, протекающий с выделением теплоты, реакционную массу при надобности охлаждают. Так как полимер обладает малой теплопроводностью, в ходе процесса наблюдается неодинаковый отвод теплоты из различных точек аппарата, особенно из центра, что приводит к неравномерной полимеризации, т. е. к получению продуктов различной степени полимеризации. По этому методу получают полистирол, полимеры метакриловой кислоты, бутадиеновый каучук и другие полимеры из мономеров, почти не содержащих примесей. [c.195]

    После окончания периода формирования молекулярный вес и стереорегулярность образованного полимера в течение многих часов остаются постоянными. Молекулярный вес уменьшается с возрастанием концентрации А1 и Ti и увеличивается при увеличении давления gHg, что указывает на довольно сложную совокупность процессов обмена или переноса, останавливающих рост цепи. [c.113]

    Граничные условия (3.65)—(3.68) определяют концентрацию радикалов с в- в водной фазе, концентрацию радикалов в центре частицы с в-, концентрации мономера в центре частицы и на границе раздела фаз капля мономера—водная фаза. Условия сопряжения (3.67) на границе раздела фаз водная фаза—частица дают связь концентраций радикалов в водной фазе и в частице через коэффициент распределения и для концентрации мономера через коэффициент распределения р. Уравнения (3.68) являются условиями равенства диффузионных потоков на границе раздела фаз водная фаза—полимер-мономерная частица. Приведем обозначения задачи (3.47)—(3.68), которые не указывались выше С/ — концентрация инициатора тпр- — число растущих макрорадикалов в 1 см эмульсии Шр — число нерастущих макрорадикалов в 1 см эмульсии — вес капли с — концентрация мицелл М — молекулярный вес мономера р — плотность мономера р — плотность полимера Рз — площадь поверхности, занимаемая одним киломолем эмульгатора на поверхности адсорбированных слоев — степень агрегации мицелл — константа скорости распада инициатора k — константа скорости инициирования /Ср — константа скорости роста цепи k — константа скорости обрыва цепи / — эффективность инициирования — среднее значение концентрации мономера внутри частиц. [c.156]

    Гейлрод Н., Марк Г. Линейные и стереорегулярные полимеры. Полимери-зашгя с контролируемым ростом цепи, пер, с англ. 1962. [c.765]

    П эомышленность основного органического и нефтехимического синтеза производит также другие вспомогательные вещества, ис-поль уемые в технологии полимеров инициаторы и катализаторы, / скоряющие полимеризацию, регуляторы и ингибиторы, ог-ранитивающие рост цепи или вообще препятствующие полимеризации, стабилизаторы, позволяющие избежать разложения поли лериых материалов при службе изделий, и т. д. [c.11]

    Если число молекул ннпциатора мало по сравнению с числом молекул мономера (что необходимо для получе.мня полимеров с достаточно высоким молекулярным весом), то практически все цепи зарождаются в начальный период реакции и далее число полимерных цепей остается постояи1И.1м иа протяжении всего процесса. Происходит лишь рост цепей, т. е. увеличение молекулярного веса, юлимера. Если в реакционной смеси отсутствуют какие-либо примеси, способные блокировать реакциоиноспособн )1е группы на конце растущей цепи, рост цепей может продолжаться вплоть до полного израсходования мономера. В этом состоит одно из основных [c.367]

    Тригалогениды являются сшивающими реагентами для такого рода реакций. Добавляя мопохлориды (хлористый бутил, этиленхлоргидрин, хлоруксусную кислоту), можно регулировать молекулярный вес полимера, поскольку эти вещества, реагируя с группой —СНг—84—Ка и образовывая, нанример, группу —СН2—84—СН2СН2ОН, приостанавливают тем самым дальнейший рост цепи. В этом случае молекулярный вес полимеров будет зависеть от отношения монохлорида к дихлориду. Изменяя состав полисульфидов и используя смеси различных дихлоридов, получают продукты с разнообразнейшими свойствами [73]. [c.384]


Смотреть страницы где упоминается термин Полимеры рост цепи: [c.87]    [c.110]    [c.79]    [c.53]    [c.87]    [c.110]    [c.113]    [c.73]    [c.368]    [c.373]    [c.260]    [c.279]   
Общая химическая технология органических веществ (1966) -- [ c.397 ]




ПОИСК





Смотрите так же термины и статьи:

Рост цепи



© 2025 chem21.info Реклама на сайте