Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Правило восьми

    Термин ступень , примененный выше, относится к одной законченной операции смешения и разделения, при которой масло и растворитель достигают фазового равновесия. При противоточной экстракции эффективность экстрактора измеряется эквивалентным числом ступеней. Как правило, чем больше число ступеней в экстракционной системе, тем более избирателен процесс экстракции. Однако существенной разницы между пятью и восемью ступенями при очистке смазочных масел не наблюдается. Промышленные экстракционные колонны обычно эквивалентны трем или большему числу ступеней экстракции. [c.194]


    Суммарный заряд ионов, находящихся в левой части этой схемы, равен восьми элементарным положительным зарядам, а в правой ее части имеются лишь незаряженные частицы. Поскольку суммарный заряд в ходе процесса не изменяется, то, следовательно, в процессе восстановления принимают участие также восемь электронов  [c.267]

    Суммарный заряд правой части схемы равен девяти отрицательным зарядам, а левой — одному. Следовательно, в процессе принимают участие восемь электронов  [c.268]

    На примере Н2 и р2 можно понять, что происходит во многих молекулах, где электронные пары образуют связи, в результате чего каждый атом, приобретает замкнутую электронную оболочку. Для построения замкнутой электронной оболочки атому водорода требуются два электрона, которые заполнят его валентную Ь-орбиталь. Каждому атому элемента второго периода требуется для создания замкнутой электронной оболочки восемь- электронов (восьмерка октет), потому что на 2х- и 2р-орбиталях размещается до восьми электронов (2 "2р ). Это требование получило название правила октета. В примере с молекулой 2 каждый атом Р после образования связи оказывается окруженным восемью электронами. [c.467]

    Эти три молекулы являются изоэлектронными в них содержится одинаковое число электронов. Наличие в каждой из них восьми валентных электронов вокруг центрального атома иллюстрирует правило октета. В СН все восемь электронов попарно вовлекаются в образование связей, однако в двух остальных молекулах имеются неподеленные электронные пары. В аммиаке три связывающие электронные пары и одна неподеленная пара, а в молекуле воды две связывающие пары электронов и две неподеленные пары. [c.471]

    Благородные газы заканчивают собой каждый период системы элементов. Кроме гелия, все они имеют на внешней электронной оболочке атома восемь электронов, образующих очень устойчивую систему. Также устойчива и электронная оболочка гелия, состоящая из двух электронов. Поэтому атомы благородных газов характеризуются высокими значениями энергии ионизации и, как правило, отрицательными значениями энергии сродства к электрону. [c.492]

    Правило 18 электронов имеет немало исключений и его следует рассматривать только как один из факторов, способствующих образованию стабильной структуры координационного соединения. Отклонения от правила связаны часто с пространственными ограничениями, не допускающими координации центральным атомом необходимого для заполнения 18-электронной оболочкой числа лигандов. Например, ясно, что ион ( ) должен координировать восемь двухэлектронных лигандов, чтобы заполнить валентную оболочку полностью. Однако пространственные возможности допускают только октаэдрическую координацию. [c.193]


    В периодической системе по вертикали расположены восемь групп (обозначены римскими цифрами). Номер группы связан со степенью окисления элементов, проявляемой ими в соединениях. Как правило, высшая положительная степень окисления элементов равна номеру группы. Исключением являются фтор — его степень окисления равна —1 медь, серебро, золото проявляют степень окисления Ч-1, +2 [c.38]

    Кислород (2=8) 0(ls)2(2s)2(2p) имеет валентность, равную двум, фтор (2=9) F(ls)2(2s)2(2p)s имеет валентность, равную единице, и неон (2=10) Ne(ls)2 (2s)2(2p) имеет нулевую валентность. Таким образом, неон завершает второй период периодической таблицы, в котором оказывается восемь элементов, что соответствует упомянутому выше правилу Nn — 2n , где Л/ — число элементов в периоде при первом квантовом числе, равном п. Выведем это правило в общем виде. При данном п величина квантового числа I меняется от О до п—1, а каждому значению I отвечает 2/+1 чисел т. От- [c.315]

    Для того чтобы применить это правило к циклогексанону, пространство вокруг карбонильной группы делят на восемь неравных объемов, называемых [c.81]

    Имеется способ уменьшения коррозии металлов, который строго нельзя отнести к защите, — это легирование металлов, т. е. получение сплавов. Например, в настоящее время создано большое число нержавеющих сталей путем присадок к железу никеля, хрома, кобальта и др. Такие стали, действительно, не покрываются ржавчиной, но их поверхностная коррозия хотя и с малой скоростью, но имеет место. Оказалось, что при добавлении легирующих добавок коррозионная стойкость меняется скачкообразно. Установлено правило (правило Таммана), согласно которому резкое повышение устойчивости к коррозии железа наблюдается при введении легирующей добавки в количестве /в атомной доли, т. е. один атом легирующей добавки приходится на восемь атомов железа. Считается, что при таком соотношении атомов происходит их упорядоченное расположение в кристаллической решетке твердого раствора, что и затрудняет коррозию. [c.140]

    Б). Вы правы. Как 2,2,4-триметилпентан, так и октан являются алканами с восемью атомами углерода. Их молекулярные формулы С Н . Следовательно, это изомеры. [c.58]

    I, 2, 3 — традиционное, нестехиометрическое и комбинированное сжигание АА — левая сторона — правая сторона 1 — двухступенчатое сжигание (четыре горелки) П — комбинированный режим (шесть горелок) П1 — нестехиометрическое сжигание (восемь горелок) [c.115]

    Как мы видим, оба атома окружены восемью электронами, т. е. действует правило октета. [c.124]

    Увеличение числа констант в уравнении часто, но далеко не всегда приводит к расширению области его применения. В некоторых случаях двухпараметрические уравнения превосходят уравнения, содержащие восемь и более параметров. Однако это является исключением из общего правила, и в настоящее время уравнения с большим числом параметров получили широкое распространение, в частности, благодаря интенсивному внедрению ЭВМ. [c.69]

    Восемь процессов переноса когерентности в выражениях (8.4.1) и (8.4.2) приводят к восьми сигналам, показанным в правой половине рис. 8.4.3. Интенсивности, связанные с двумя путями р = О - - 2 -> ->-1ир = 0-> +2-> -1, относятся друг к другу как tg (/3/2). Как и в одноквантовых спектрах, если производится вещественное (коси- [c.535]

    Левая часть схемы содержит только незаряженные частицы, а суммарный зарял ионов в правой части схемы равен -f8. Следовательно, в результате окисления высвобождаются восемь влектронов  [c.168]

    Льюисовыми структурами (валентаыми структурами, валентными схемами) называются графические электронные формулы молекул и комплексных ионов, где для обозначения обобществленных между атомами связьшающих электронных пар (связей) используются прямые линии (валентные штрихи), а для обозначения неподеленных пар электронов используются две точки. Для молекул и комплексных ионов, содержащих только элементы первого и второго периодов, наилучшие льюисовы структуры характеризуются тем, что в них каждый атом окружен таким же числом электронов, как атом благородного газа, ближайшего к данному элементу по периодической системе. Это означает, что атом Н должен быть окружен двумя электронами (одна электронная пара, как у Не), а атомы неметаллических элементов второго периода (В, С, К, О, Г) должны быть окружены восемью электронами (четыре электронные пары, как у 1 е). Поскольку восемь электронов образуют замкнутую конфигуращ1Ю 2х 2р , правило записи льюисовых структур требует окружать каждый атом элемента второго периода октетом (восьмеркой) электронов, и поэтому называется правилом октета. [c.501]

    Атомы металлических элементов, как правило, имеют меньше валентных электронов, чем доступных для заселения орбиталей, другими словами, эти атомы являются электронно-дефицитными. Поэтому такие атомы имеют тенденцию обобшествлять электронную плотность с несколькими другими атомами, осушествляя этим способом свои максимальные валентные возможности. В большинстве металлов каждый атом окружен по крайней мере восемью ближайшими соседями , образующими одну из трех распространенных структур, которые показаны на рис. 14-7. В гексагональной плотноупакованной и кубической плотноупакованной структурах каждая сфера (атом) соприкасается с 12 другими сферами, 6 из которых находятся в общей плоскости с данным атомом и еще [c.605]


    Прямой метод описан в гл. 13 работы [3], и с ним необходимо познакомиться. Здесь же мы только укажем, что программа расчета прямых методов включает математическое соотношение, которое позволяет производить отнесение к сильным отражениям, основываясь на приближенных соотношениях между фазами групп отражений. Можно также оценить точность отнесения. Фазы можно приписать некоторым отражениям, а другие отражения получат фазы исходя из первоначального их набора. Если эту процедуру осуществить до того уровня, при котором фазы получают восемь или десять отражений одного независимого атома, то можно получить карту электронной плотности, показывающую содержимое ячейки. Как правило, процесс фазирования может требовать отнесения к некоторым точкам гипотетических значений, так что иногда находят до восьми возможных фазовых схем. Программа MULTAN 74 способна выбрать среди них наиболее вероятную. Она также включает алгоритм обработки данных, который учитывает предположительное число, тип и даже группировку атомов в элементарной ячейке (не их положения или ориентации, которые, естественно, неизвестны). Кроме того, MULTAN 74 облегчает поиск -карты для атомов в положении связывания, что приводит к согласованию предпола- [c.403]

    Обратим внимание на то, что в молекуле игюкозы четъфе неравноценных асимметрических атома углерода, отсюда (но правила, < оптической изомерии) такая молекула образует восемь пар оптаческих антиподов (диастереоизомеров). Например, два диастереоизомера глюкозы  [c.260]

    Приняв за ширину таблицьЕ длину коротких периодов (восемь клеток), он сделал систему жесткой, неподатливой к развитию вправо. Чтобы вместить последующие, более ем кие периоды в прокрустово ложе короткой формы таблицы, их пришлось расчленять по живому телу , лишая естественности. На едином ряду химических элементов убедительно видна натуральная длина каждого периода, а также хорошо обозначены места естественной стыковки периодов. Таким образом, и вторую систему Менделеева только с большой натяжкой можно назвать естественной. Как ни парадоксально, но он упорно избегал нумерации химических элементов. И уж совсем кажется капризом истории, что этот ряд впоследствии назван Менделеевским рядом химических элементов . Хотя его родоначальником по праву является Гладсон. [c.57]

    Правило 18 электронов имеет немало исключений, и его следует рассматривать только как один из факторов, способствующих образованию стабильной структуры координационного соединения. Отклонения от правила связаны часто с пространственными ограничениями, не допускающими координации центральным атомом необходимого для заполнения 18-электронной оболочкой числа лигандов. Например, ясно, что ион (// ) должен координировать восемь двухэлектронных лигандов, чтобы заполнить валентную оболочку полностью. Однако пространственные возможности допускают только октаэдрическую координацию. Другие примеры отклонения от правила 18 электронов можно найти в табл. 11.8, где встречаются и 15-электронный ванадоцен, и 20-электронный никеле-цен. Эти соединения в отличие от 18-электронного ферроцена отличаются малой устойчивостью и высокой реакционной способностью. Тем не менее они способны к существованию и отвечают минимумам на соответствующих поверхностях потенциальной энергии. [c.451]

    Другой интересный пример — структура бис-(я-гексаметилбен-зол)рутения (XXI). В отличие от бис-(п-бензол)хрома (IX), в котором сохраняются ось симметрии шестого порядка и плоская конфигурация бензольных ядер, в структуре XXI одно из бензольных колец искажено. Молекула XXI в отличие от неполярного соединения IX имеет в растворе дипольный момент 2,031). Природа искажения понятна из правила 18 электронов атом рутения дает восемь электронов, шесть электронов дает одно бензольное кольцо, а второе кольцо координируется лишь за счет двух я-связей, вносящих четыре электрона. При симметричной структуре бис-(п-гек-саметилбензол) рутения типа IX с равноценными ареновыми кольцами в валентной оболочке было бы 20 электронов. [c.193]

    Соли АХ, ВХ и СХ откладываются на левой боковой грани призмы, а соли АУ, ВУ и СУ — на правой боковой грани. Нижняя грань отвечает тройной взаимной системе с составляющими солями ВХ, СХ, ВУ, СУ и т. д. На девяти ребрах призмы видно девять двойных эвтектик. Восемь тройных эвтектик обозначены 1—бв, а три четверные эвтектики буквами Ех—Е . Объем призмы разделяется на шесть объемов, каждый из которых соответствует кристаллизации одной соли. На поверхностях раздела объемов раствор существует в равновесии с двумя, а на линиях, идущих внутрь призмы, с тремя твердыми солями. Так, на линии е Ех раствор находится в равновесии с кристаллами солей СХ, ВХ и СУ, а на линии вхЕу — в равновесии с кристаллами АХ, ВХ, СХ. В точке пересечения этих линий, т. е. в четверной эвтектике, совместно с раствором сосуществуют все эти соли. В этой точке, следовательно, система пятифазна кристаллы АХ, ВХ, СХ, СУ и раствор. [c.163]

    В периодической системе но вертикали расположены восемь групп (обозначены римскими цифрами). Номер группы связан со степенью окисления элементов, проявляемой ими в соединениях. Как правило, высшая положительная степень окисления элементов равна номеру группы. Исключением являются фтор - его степень окисления равна -1 медь, серебро, золото проявляют степень окисления +1, +2 и +3 из элементов VHI группы степ1 нь окисления +8 известна только для осмия, рутения и ксенона. [c.44]

    Многие металлоиды (С, 51, Се, Аз, 5Ь, Р, Се, Те и т. д.) кристаллизуются таким образом, чтобы каждый атом имел 8—N соседей, где Л/— номер группы периодггчгской системы, в которую входит атом. Так, 5е и Те, принадлежащие к шсстой группе, образуют в кристаллической структуре спиральные цeпo ки, в которых каждый атом имеет по два соседа в структурах мышьяка, сурьмы и висмута каждый атом имеет по три соседа. Правило 8—(V может быть понятно как результат тенденции атома достроить свою внешнюю электронную оболочку до устойчивой, содержащей восемь электронов. [c.630]

    Из приведенных формул видно, что в этих молекулах атомы углерода, кислорода и хлора окружены восемью электронами, или, как говорят, октетами электронов, причем каждая связь осуществляется парой электронов. Так как для образования ковалентной связи необходи.ма пара электронов, то атом углерода может присоединять к себе не более четырех других атомов. В противном случае число электронов, связывающих этот атом с другими атомами, превзойдет восемь. Правило октетов хорошо применимо к углероду, азоту и кислороду. Для соединений других элементов встречаются исключения, ко многим элементам оно совсем неприменимо. [c.62]

    Принцип работы данного БЛОКА состоит в проверке четырех различных статистических гипотез о степени близости распределений значений исследуемой характеристики на классах биополимеров "I" и 11". Для этой цели в экспертную систему заложено восемь эмпирических и теоретических правил, реализованных в виде процедур на языке Р0НТКАМ-77 для ПЭВМ 1ВЫ РС. В частности, нормальность распределения значений исследуемой характеристики на на заданном классе биополимеров проверяется с помощью критерия Пирсона 161 для статистики (ПРАВИЛО 24). [c.206]

    Доминируюихая концепция ранних теорий валентности, развитых Льюисом и другими, заключается в том, что при образовании химической связи атомы обмениваются электронами или перераспределяют их с образованием электронных конфигураций, обладающих наибольшей стабильностью или инертностью по отношению к дальнейшим химическим превращениям. Поскольку внешние оболочки атомов всех благородных газов содержат по восемь электронов, наиболее важным критерием стабильности стало правило октетов, предложенное независимо Косселем и Льюисом в 1916 г. Впоследствии Льюис ввел свою концепцию двухэлектронной связи и перенес акцент с правила октетов на правило двух электронов. [c.125]

    Определив формальное состояние окисления, перейдем к вопросу о применимости правила восемнадцати электронов для описания комплексов переходных металлов. Наилучшие результаты это правило дает при рассмотрении карбонильных и нитро-зильных комплексов. Известны следующие моноядерные карбонильные комплексы элементов первого ряда переходных металлов Сг(С0)б, Ре(С0)5 и N1(00)4. Как уже было отмечено выше, все металлы здесь следует рассматривать как находящиеся в нулевом состоянии окисления. При этом они будут обладать (ср. с табл. 4.1) шестью, восемью и десятью 45 и 3( -элек-тронами соответственно для атомов Сг, Ре и Ni. [c.129]

    В кристаллических веществах другого типа действуют большие силы кулоновского (электрического) взаимодействия между образующими их частицами. Твердые вещества этого типа называются ионными кристаллами. В качестве примера можно привести многие известные соли, скажем Na l или КС1. Поскольку электрическое поле, создаваемое каждым ионом, обладает ненаправленным характером, в ионных кристаллах положительные ионы со всех сторон окружены отрицательными ионами и, наоборот, отрицательные ионы окружены положительными ионами. В большинстве простых солей вокруг каждого иона располагается по шесть или восемь ионов с зарядом противоположного знака, причем это число зависит от относительных размеров катиона и аниона. Как правило, если отношение этих радиусов, Гк ,тион/ тион, находится в пределах от 0,73 до 0,41, ионный кристалл имеет такую же структуру, как Na l, с числом ближайших соседей каждого иона, равным шести (рис. 10.14). При больших значениях отношения ионных радиусов у каждого иона оказывается восемь ближайших соседей с зарядами противоположного знака, как это показано для кристаллической структуры s l на рис. 10.15. [c.177]

    Уравнение Толмэна [10], имеющее н сокращенном виде форму уравнения (9), долгое время служило для расчета зависимости поверхностного натяжения от кривизны при условии известности величины характеристического параметра межфазной толщины 6. Однако не было никаких методов измерения б в однокомпонентных межфазных системах жидкость — пар. Приводим метод измерения б для однокомпонентных границ жидкость — пар. Основан он на экспериментах по впитыванию жидкости в жесткие мезопор истые среды, где скорость впитывания непосредственно связана с движущим капиллярным давлением и, следовательно, с поверхностным натяжением. Параметр межфазной граничной толщины может быть рассчитан из уравнения [10], если восемь экспериментально полученных переменных в правой части уравнения заранее определены для интересующей системы жидкость — пористая среда. Однако оценка некоторых из этих переменных в мезопорах является непростой задачей и заслуживает более детального исследования. Поэтому наше обсуждение будет сначала касаться оценки переменных в уравнении (10), а затем уже эффекта кривизны. [c.256]

    Поэтому для упрощения задачи Фишер отбросил восемь из возможных конфигурации, произвольно сохранив лишь те (I —VIII), в которых группа ОН при С-5 находится с правой стороны (принимая, что Н и ОН направлены к читателю). Он отдавал себе отчет, что любые аргументы, которые могли привести к выбору какой-либо из этих формул, в равной степени применимы к зеркальному отображению этой формулы. (Как выяснилось позднее, его произвольный выбор расположения ОН при С-5 в (-Ь)-глюкозе оказался верным.  [c.942]

    В работе [46] исследо-довалась двуспиральная Поли-дезоксиИЦ (И — инозин). Рентгенограммы Ыа-соли при 75% о. в. и спектры КД указывают на необычную конформацию спирали — возможно левую, в отличие от всех известных двойных спиралей, с восемью мономерами на каждый оборот. Не исключено, однако, что здесь фигурирует все же правая спираль, но в иной конформации. Недавно было показано, что вывод о левой спирали ошибочен [193]. [c.500]

    Таракад и др. [677]. В статье рассмотрено восемь уравнений состояния, а именно вириальное уравнение, исходное уравнение Редлиха — Квонга и его два варианта, уравнение Соава, а также два других уравнения. Уравнение Бенедикта — Уэбба — Рубина не было подвергнуто анализу, так как оно, как правило, считается достаточно надежным, если известны значения соответствующих констант и параметров взаимодействия. Авторы описывают методику применения данных уравнений для расчета характеристик чистых компонентов, смесей и неполярных систем, включая смеси вода — газ. Как было установлено, при расчете сжимаемости газа исходное уравнение Редлиха — Квонга дает не менее точные результаты, чем его модифицированные варианты исключение составляет лишь система диоксид углерода — пропан. В интервале давлений от низких до средних неполярные системы можно довольно точно представить при помощи вириального уравнения. При высоком давлении ни одно из вышеупомянутых уравнений не отличается надежностью. В табл. 1.26 приводятся рекомендации по использованию уравнений для расчетов свойств нескольких типов систем при различных условиях. [c.110]


Смотреть страницы где упоминается термин Правило восьми: [c.229]    [c.96]    [c.43]    [c.236]    [c.260]    [c.165]    [c.334]    [c.107]    [c.234]    [c.178]    [c.50]    [c.142]    [c.213]    [c.193]   
Электронные представления в органической химии (1950) -- [ c.32 ]




ПОИСК







© 2025 chem21.info Реклама на сайте