Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Набухание и гибкость

    Важная проблема растворимости в основе решается для полимеров так же, как и для обычных растворов. Как правило, линейные аморфные полимеры растворимы лучше кристаллических. Большая величина молекул высокомолекулярных веществ и гибкость их цепей, а также малая скорость диффузии приводят к тому, что процесс растворения протекает своеобразно. Первой стадией растворения аморфного полимера является набухание молекулы растворителя проникают в объем полимера и раздвигают полимерные цепи. Одновременно лишь небольшое число полимерных молекул переходит в жидкий растворитель, образуя раствор малой концентрации. Процесс набухания протекает до полного использования растворителя с образованием гомогенного раствора. Это имеет место, однако, лишь при наличии неограниченной взаимной растворимости жидкого растворителя и аморфного полимера. [c.257]


    Растворимость и степень набухания в значительной степени зависят от гибкости цепи полимера. Наибольшей гибкостью обладают углеводородные цени без полярных груии и в неполярных жидкостях они растворяются практически неограниченно. Гибкость цепей уменьшается при введении в нее полярных групп. Полимеры с большим числом полярных групп могут хорошо набухать в полярных растворителях, но, как правило, слабо растворяются в них. Здесь значительно возрастает роль взаимодействия между полимером и растворителем, так как увеличение жесткости цепей снижает энтропийный фактор при смешении. [c.319]

    Процесс растворения высокомолекулярных соединений связан со стадией набухания и увеличением их массы и объема за счет диффузии молекул растворителя в пространственный каркас высокомолекулярного соединения и его растяжения благодаря гибкости и эластичности звеньев. При этом происходит непрерывное взаимодействие макромолекул высокомолекулярного вещества и молекул растворителя. Если силы этих взаимодействий оказываются больше сил сцепления макромолекул, происходит разделение макромолекул и образование раствора высокомолекулярного соединения. [c.29]

    Процесс набухания может вызывать необратимые изменения механических свойств эластомеров за счет ослабления межмолекулярных связей. При малой степени набухания преобладает положительное влияние гибкости цепей, способствующее ориентации, и прочность повышается. Если же эффект повышения гибкости цепей незначителен, то превалирует понижение прочности. Долговечность ненапряженных резин уменьшается тем значительнее, чем больше они набухают. При набухании резин в водных средах в напряженном состоянии (НК, ХП) оказалось, что, наоборот, долговечность их при набухании возрастает. Это явление объясняется облегчением накопления остаточной деформации при увеличении степени набухания, что приводит к уменьшению действующего напряжения [c.117]

    Набухание может вызывать необратимые изменения механических свойств эластомеров за счет ослабления межмолекулярных связей. При малой степени набухания преобладает положительное влияние гибкости цепей, способствующее ориентации, и прочность в начальный период экспозиции в среде несколько повышается. Если же эффект повышения гибкости цепей незначителен, то превалирует понижение прочности. [c.164]


    Эластичные гели или студни образуются высокомолекулярными соединениями и в отличие от хрупких гелей являются однофазными системами. Из-за гибкости цепей в пространственной сетке эластичные гели сравнительно легко изменяют свой объем при поглощении и отдаче дисперсионной среды. Эластичные гели способны к набуханию с увеличением объема в десятки раз по сравнению с собственным объемом полимера. [c.91]

    Возможно и третье объяснение ограниченного набухания высокомолекулярных веществ, предложенное В. А. Каргиным. Представим себе, что в результате сольватации при набухании и растворении гибкость- макромолекул уменьшается, [c.446]

    При большом числе мостичных связей, например у эбонита, пространственная сетка полимера делается жесткой, цепи утрачивают свою гибкость, и полимер теряет способность к набуханию. [c.297]

    Эластичные гели построены нз цепочкообразных молекул различных полимеров желатина, агар-агара, гуммиарабика, каучука и т. п. Благодаря гибкости цепочек каркасы, образованные из них, сохраняют эластичность, легко и обратимо меняют свою форму под воздействием внешней силы, поэтому такие гели и называются эластичными. Внутренняя структура эластичных гелей представляет собой сетку с крупными ячейками, вследствие чего при высыхании, а также при набухании происходит изменение общего объема геля. [c.232]

    При введении в молекулу полибутадиена стирола синтетический каучук по свойствам несколько приближается к натуральному, но степень набухания его в минеральных маслах и водопоглощение значительно ниже, чем у натурального каучука. Он обладает очень высокой стойкостью к старению и сохраняет эластичность при низких температурах. Недостатком этого полимера является малая гибкость и полное отсутствие клейкости. [c.324]

    Гибкость цепей облегчает проникновение малых молекул в сетку полимера. Таким образом, процесс набухания представляет собой одностороннее смешение, обусловленное большим различием в размерах молекул. [c.311]

    Гибкость цепи полимера. Растворение полимера связано с гибкостью его цепи. Механизм растворения заключается в отделении цепей друг от Друга и диффузии их в растворитель. Гибкая же цепь может перемещаться по частям, поэтому отпадает необходимость разделения двух цепей по всей длине, для которого требуется затратить энергию. Если цепь гибкая, некоторые участки ее могут раздвинуться без большой затраты энергии. Последняя компенсируется нри этом энергией взаимодействия звеньев цепей с молекулами растворителя. Набуханию полимеров с Гибкими цепями способствует тепловое движение звеньев. Гибкая цепь, будучи отделена от соседней цепи, легче диффундирует в растворитель, поскольку ее диффузия осуществляется последовательным перемеш,ением группы звеньев. Поэтому полимеры с гибкими цепями, как правило, неограниченно набухают, т. е, растворяются. [c.322]

    При очень большом числе прочных связей между молекулами, например, в эбоните, короткие отрезки цепей между узлами пространственной сетки утрачивают гибкость, гель перестает быть эластичным и теряет способность к набуханию. Бахман показал, что студень желатины можно превратить в хрупкий гель, подобный гелю кремнекислоты, если при помощи ряда растворов с возрастающим содержанием спирта полностью удалить воду из студня и этим путем придать гелю жесткость. [c.202]

    Причина набухания состоит в различии свойств ВМС и растворителя. Молекулы ВМС отличаются от молекул НМС на несколько порядков по размерам и по подвижности. Поэтому переход макромолекул в фазу растворителя происходит очень медленно, в то время как молекулы растворителя быстро проникают в сетку полимера, раздвигая цепи и увеличивая его объем. Гибкость цепей облегчает проникновение малых молекул НМС в сетку полимера. Итак, процесс набухания представляет собой [c.181]

    В силу гибкости длинных полимерных молекул они свернуты в рыхлые клубки, размер и форма которых непрерывно изменяется под действием более или менее независимого теплового движения отдельных звеньев молекулярной цепи. В связи с этим состояние макромолекул характеризуется некоторой среднестатистической величиной их размера, чаще всего — расстояния К между концами полимерной цепи. В растворе этот размер зависит от качества растворителя (0,5 - %), который может быть оценен экспериментально по коэффициенту набухания — относительному увеличению объема образца полимера при его помещении в растворитель. [c.623]

    Кроме того, среда в процессе набухания полимера может способствовать увеличению гибкости его цепей, оказывать пластифицирующее действие, снижать температуры стеклования и хрупкости. В этом случае при растяжении полимера ориентация его макромолекул облегчается, что может, в свою очередь, привести к повышению прочности в момент разрыва образца. При этом прочность оказывается выше, чем до набухания [3. с. 17]. [c.12]


    Способность к сорбции низкомолекулярных веществ, в частности растворителей, является важной характеристикой структуры полимера. Процессы сорбции могут быть рассмотрены по аналогии с явлениями растворения или набухания. Однако отличительной особенностью этих процессов является зависимость их от гибкости макромолекул, а также от плотности их упаковки. Неплотная упаковка приводит к появлению более развитой внутренней поверхности полимера, и в этом случае при малых давлениях паров сорбируемых веществ уже не гибкость цепи, а именно неплотность упаковки макромолекул определяет адсорбцию. Изменения структуры полимера при тех или иных воздействиях на него (механических, термических — при отжиге, закалке и т. п.) неизбежно отражаются на плотности упаковки макромолекул и величине сорбции. Образование неплотной упаковки одновременно приводит к изменению межмолекулярного взаимодействия в полимере, так как в зависимости от расположения молекул полимера друг относительно друга число и интенсивность их контактов друг с другом могут изменяться. [c.24]

    Для получения дубильных экстрактов сырье измельчают и экстрагируют горячей водой в батарее диффузоров (экстрак торов) по принципу противотока Полученный разбавленный сок очищают и упаривают под разрежением Дубильные экст ракты могут выпускаться трех видов — жидкие, тестообразные и твердые Их используют в кожевенном производстве для пре вращения необработанной шкуры животного в кожу, т е для придания ей гибкости, мягкости, стойкости против загнивания и против набухания в воде [c.46]

    Вычисление энтропии смешения но уравнению (1) показало, что при растворении полиизобутилена в изооктане величина энтропии смешения значительно превосходит значение идеальной энтропии смешения. Это свидетельствует о том, что д.пинные цепи, даже сохраняя свою степень гибкости, могут в фазе раствора располагаться значительно большим числом способов, чем в фазе чистого полимера. Но принять болыпое число конфигураций могут только гибкие цепи, поэтому резкое увеличение энтропии при растворении свидетельствует о гибкости цепей полимера. Н есткая jj,enb не может принять большого числа конфигураций, следовательно, и изменение энтропии, сопровождающее процесс растворения жесткого полимера, не может быть очепь велико. В ряде работ было показано, что при набухании таких жестких полимеров, как целлюлоза, агар-агар и другие, энтропия не только не увеличивается, по уменьшается [3]. Следовательно, величина и знак энтропии смешения в процессе растворения полимеров могут служить мерой оценки степени гибкости цепей полимера. [c.262]

    Результаты моделирования стадии набухания сополимеров позволили вскрыть взаимосвязь диффузионных и релаксационных явлений в сополимере при его ограниченном набухании и получить континуальную модель процесса набухания. Причиной изменения во времени проницаемости исследуемой системы являетсй не только подвижность молекул растворителя, но и увеличение гибкости макроценей. Влияние свойств растворителя и реологических -свойств сополимера на проницаемость среды в модели существенно разделены. Продвигающемуся в глубь гранулы фронту диффузии предшествует область резкого нарастания напряжения в материале полимера. [c.329]

    При длительном хранении гелей и студней дисперсные частицы могут уплотняться за счет самопроизвольного выделения из полостей пространственного каркаса дисперсионной среды, что в конечном итоге приводит к уменьшению объема дисперсной фазы, при неизменном общем объеме системы, и к расслоению системы. Такие превращения дисперсных коллоидных систем называются синерезисом. Синерезис объясняется увеличением со временем числа контактов частиц дисперсной фазы и их переориентацией, приводящей к наиболее плотной упаковке, упорядочению и упрочнению структуры. Если в системе на наблюдается химических превращений, то синерезис является обратимым процессом, находящимся в прямой зависимости от концентрации, температуры и pH раствора, присутствия в растворе десольватирую-щих добавок. Гибкость и подвижность элементов структурного каркаса также способствуют синерезису. Процессом, обратным синерезису, является набухание. [c.31]

    Определяющей характеристикой сетчатой структуры полимера является молекулярная масса, или размер участка цепи между двумя сшитыми звеньями (узлам1и). От размера этих участков зависит проявление свойств индивидуальных макромолекул в сетчатой структуре полимера. Если эти участки значительно больше размеров сегмента макромолекулы, то сетчатый полимер сохранит, в принципе, основные свойства, присущие исходному полимеру (например, высокоэластичность. химическая реакционноспособность). Такой сетчатый полимер будет ограниченно набухать в характерных для исходного полимера растворителях. Если же размер участка цепи между сшитыми звеньями (узлами) близок к размеру сегмента или меньше его, то свойства исходного полимера существенно изменяются резко падает гибкость цепи, а, следовательно, уменьшаются высокоэластические свойства, снижается или теряется совсем способность к набуханию в растворителях данного полимера. [c.296]

    Способность полиионов к изменению конформаций определяется причинами двоякого рода гибкостью полимерной цепи, обусловлеп-ной свободой вращения атомных групп или отдельных участков цепи вокруг одинарных связей, и наличием ионизированных групп, расположенных вдоль цепи главных валентностей. Отсюда степень набухания отдельного полииона, находящегося в растворе в виде клубка, зависит не только от обычного осмотического проникновения растворителя внутрь этого клубка, но и от взаимного отталки вания или притяжения фиксированных зарядов, образующихся вследствие диссоциации большого числа ионогенных групп. [c.144]

    Расчет гибкости конкретных полимерных цепей должен основываться на их химическом строении. Так, конформации мономерных звеньев в полимерах типа (—СН2—СНН—) (например, полистирол, см. рис. 3.1) и (—СН2—СНг—) определяются преимущественно взаимодействиями массивных боковых привесков Н. Сведения об этих конформациях удается получить путем исследования кристаллических полимеров методом рентгеноструктурного анализа. Вследствие конфигурационной гетерогенности и дисперсии длин цепей обычные полимеры не кристаллизуются или кристаллизуются лищь частично. Однако стереоре-гулярные полимеры кристаллизуются хорощо, их можно получить даже в виде монокристаллов. Но в блоке и стереорегулярные полимеры кристаллизуются не полностью. Наряду с гетерогенностью, кристаллизации препятствуют кинетические факторы. Для того чтобы образовать кристалл, макромолекулы должны переориентироваться. Стастические флуктуирующие клубки закристаллизоваться не могут — цепи должны вытянуться. Даже если термодинамические условия благоприятствуют развертыванию клубков и ориентации цепей, эти процессы могут потребовать слищком длительного времени по сравнению с временем опыта. Необходимо преодолеть барьеры внутреннего вращения. Равновесные термодинамические свойства поворотно-изомерной макромолекулы определяются разностями энергий поворотных изомеров напротив, кинетические свойства определяются высотами энергетических барьеров. Для кристаллизации существенна не только термодинамическая, но и кинетическая гибкость цепей. Прогрев полимера или его набухание в низкомолекулярном растворителе облегчают кристаллизацию. [c.132]

    Согласно формуле (3.16.46), при г I значение параметра набухания а I, т. е. стремится практически к нулю и выходит за пределы изначально предполагавшегося (со > I) диапазона. При со < 1 следовало бы, согласно уравнению (3.16.41), раскрыть значение второго вириального коэффициента по формуле В = аРт вместо формулы (3.16.45), Это ттросто добавит во все последующие выражения дополнительный множитель, который частично учтет влияние температуры на коэффициент набухания. В остальном приведенные зависимости размера разбухшего клубка от гибкости. макромолекул сохранятся. Необходимо подчеркнуть, что введение в формулы относительной температуры Т не может полностью раскрыть ее влияние на размеры клубка, так как она более сложно, чем это предписано формулой (3.16.41), влияет на состояние клубка. С повышением температуры, прежде всего, меняется длина куновского сегмента г, а за ней и величины V = га и [c.741]

    Применяя ту же методику, авторы работы [690] проводили ферментативную обработку беленой целлюлозы из древесины березы и ели, после чего подвергали ее размолу и оценивали бумагообразующие свойства целлюлозы. Авторы пришли к выводу, что ослабление внутренней когезии клеточной стенки волокна в результате ферментативного гидролиза ксилана снижает его устойчивость к набуханию, что, в свою очередь, ведет к сниженик> расхода энергии ири размоле целлюлозы ц улучшению бумагообразующей способности волокон благодаря повышению их гибкости. Однако, прочность целлюлозы иосле ферментации оказалась более низкой, чем у обычной целлюлозы, что, ио мнению авторов, указывает на важную роль ксилана в обеспеченпи механической прочности волокна. Авторы считают, что метод ферментации может найти практическое применение для снижения расхода энергии в производстве бумаги. Для обозначения указанного процесса они даже применяют термин энзиматический размол . [c.381]

    При введении пластификаторов в резину проявляется одновре-меипо две стороны их действия 1) уменьшение прочности и долговечности вследствие уменьшения межмолекулярных взаимодейст вий и 2) благоприятное влияние на прочностные свойства из-за более равномерного распределения напряжений, увеличения гибкости цепных молекул и облегчения их ориентации при растяжении. Взаимное наложение этих влияний приводит к тому, что, как показано Догадкиным, Федюкиным и Гулем , зависимость между прочностью и степенью набухания имеет сложный характер. Если при малых степенях набухания преобладает положи- [c.246]

    Процесс набухания может вызывать необратимые изменения механических свойств эластомеров за счет ослабления межмолекулярных связей [45]. По мнению Ю. С. Зуева -между степенью набухания и прочностью резин существует следующая за висимость. При малой степени набухания преобладает положительное влияние гибкости цепей, способствующее ориентации, и прочность по1вышается. Если же эффект повышения гибкости цепей — незначителен, то превалирует понижение прочности [1, с. 91]. [c.157]

    При растворении аморфного полимера малые молекулы растворителя должны легче проникать в менее упорядоченные области между П., что может приводить к распаду полимерного тела при нерсходе в р-р на агрегаты П. и даже отдельные П. Вследствие гибкости макромолекул П. могут принимать различные внешние формы и изменять их со временем. В зависимости от природы растворителя может также происходить ограниченное или неограниченное (вплоть до разделения на макромолекулы) набухание П. Если скорость распада тела на П. намного больше скорости их распада на макромолекулы, то образуется коллоидная полимерная система, в к-рой длительно существуюв пе П. в период их жизни по всем свойствам должны быть аналогичны мицеллам. При других соотношениях скоростей упомянутых процессов образуется молекулярный р-р полимера, обладающий тем не менее, даже при сравнительно низких концентрациях, пачечным строением вследствие флюктуационных изменений упорядоченности. [c.274]

    Студни, образующиеся при набухании сшитых нолимеров (первый тии С.). При набухании сшитого иолимера в растворителе устанавливается равновесное количественное соотногае-ние между комионентами. Оно зависит от питенсивно-сти взаимодействия компонентов, гибкости макромолекул и средней длины участков цени между местами сшивки. При очень большой частоте сшивок полиме]) набухает незначительно и в набухшем состоянии мало отличается но физич. свойствам от исходного нолиме])-ного тела (т. е. характеризуется большими значениями модуля высокоэластичности и малыми обратимыми деформациями). При малой частоте сшивок стеиень набухания оказывается очень высокой — в равновесном [c.278]


Смотреть страницы где упоминается термин Набухание и гибкость: [c.740]    [c.63]    [c.447]    [c.327]    [c.447]    [c.171]    [c.322]    [c.248]    [c.213]    [c.145]    [c.236]    [c.131]   
Физико-химия полимеров 1978 (1978) -- [ c.276 ]




ПОИСК





Смотрите так же термины и статьи:

Набухание



© 2025 chem21.info Реклама на сайте