Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфаты титриметрическое

    Титриметрические методы определения сульфат-ионов многообразны, несмотря на то, что в основе большинства их лежат две реакции нейтрализация серной кислоты основаниями и осаждение сульфат- ионов солями бария иди свинца. [c.83]

    Подробное описание титриметрических методов определения сульфат-ионов с использованием органических реагентов в качестве металлохромных индикаторов дано в монографии Саввина, Акимовой и Дедковой [402]. Там же приведены многочисленные методики определения сульфатов в различных объектах. В настоящем разделе упомянуты лишь главные из применяемых методов. [c.87]


    Хлорфосфоназо 1П как металлоиндикатор при титриметрическом определении сульфат-ионов дает четкий переход окраски только при введении 70% ацетона и при pH 1—3. Необхо -димо пропускание пробы через катионит. Определению не мешают. [c.93]

    Большинство титриметрических методов определения пероксо-дисульфатов основано на их взаимодействии с сульфатом желе-за(П) [670]. [c.108]

    Для титриметрического определения сульфат-ионов предложен ряд металлоиндикаторов [89—93], образующих с титрантом (ион бария) растворимые окрашенные комплексы. [c.46]

    Окислительно-восстановительная реакция, лежащая в основе титриметрического метода анализа ХеОз с помощью сульфата [c.102]

    Приготовление и устойчивость растворов. Для титриметрических определений сначала был применен [7] раствор сульфата марганца (III). Позже были предложены способы приготовления более устойчивых растворов соединений марганца (III) [8—16]. [c.19]

    V Соединения галогенов. Сульфат ванадия (II) применяют для прямого и непрямого титриметрического определения различных соединений галогенидов (гипохлорит- [7], гипобромит-ионы [7], хлорамин Т [7], монохлорид иода [7], иодат-[7], бромат-ионы [7, 26]). [c.225]

    Опубликован обзор титриметрических методов, основанных на применении сульфата или ацетата ванадила [7]. [c.230]

    В косвенном титриметрическом методе [9], имеющем ограниченное применение, ацетилен переводят в карбид меди (см. гл. 6), который выделяют фильтрованием и растворяют в разбавленной серной кислоте. Затем добавляют сульфат железа (III) и образующийся сульфат железа (II) титруют стандартным раствором перманганата. [c.60]

    Метод основан на титриметрическом (с сульфатом железа (И)) или колори-5.1.12.1. Определение больших количеств [c.430]

    АНАЛИЗ ВОД РАЗЛИЧНОГО СОСТАВА НА СОДЕРЖАНИЕ СУЛЬФАТ-ИОНОВ ТИТРИМЕТРИЧЕСКИМИ И ФОТОМЕТРИЧЕСКИМИ МЕТОДАМИ [c.25]

    Для анализа вод в зависимости от уровня содержаний сульфатов может быть использован фотометрический или титриметрический вариант. При анализе воды с содержанием сульфат-ионов от нескольких миллиграммов до 50 мкг/мл используют титриметрический вариант, достаточно экспрессный, не требующий специальной аппаратуры и простой в работе. В фотометрическом методе интервал градуировочной кривой охватывает концентрации от 0,03 до 1,5 мкг/мл сульфат-ионов. [c.25]

    Анализируемый раствор азотной кислоты (I М ио НЫОз) пропускает через колонку с сорбентом, который поглощает сульфат-ионы. Десорбцию поглощенных ионов проводят вытеснительным методом, пропуская через колонку раствор, содержащий фосфат-ионы, сорбирующиеся на гидратированном диоксиде олова более селективно, чем сульфат-ионы. В растворе после десорбции сульфат-ионы определяют титриметрически — титрованием раствором хлорида бария в присутствии индикатора нитхромазо. [c.331]


    Определение железа и алюминия. При анализе силикатов, известняков, некоторых руд и других горных пород эти элементы часто определяют гравимеФрическим методом в смеси с титаном, марганцем и фосфатом как сумму так называемых полуторных оксидов. Обычно после отделения кремниевой кислоты в кислом растворе приводят осаждение сульфидов (меди и других элементов) и в. фильтрате после удаления сероводорода осаждают сумму полуторных оксидов аммиаком в аммиачном буферном растворе. Осадок гидроксидов промывают декантацией и переосаждают, после чего фильтруют, промывают и прокаливают. Прокаленный осадок содержит оксиды ЕегОз, АЬОз, ТЮг, МпОг. Иногда анализ на этом заканчивается, так как бывает достаточным определить только сумму оксидов и не требуется устанавливать содержание каждого компонента. При необходимости более детального анализа прокаленный осадок сплавляют с пиросульфатом калия для перевода оксидов в растворимые сульфаты и после растворения плава определяют в растворе отдельные компоненты — железо титриметрическим или гравиметрическим методом, титан и марганец — фотометрическим и фосфор — гравиметрическим (марганец и фосфор анализируются обычно из отдельной навески). Содержание алюминия рассчитывают по разности. Прямое гравиметрическое определение же- [c.165]

    Много для развития титримефии сделал немецкий химик и фармацевт Ф. Мор, который ввел в объемный анализ различные технические новинки (весы Мора, зажим Мора, бюретка Мора, пипетка Мора и др.), предложил или усовершенствовал целый ряд титриметрических методик (например, известный метод Мора в аргентометрии) и дал им теоретическое обоснование, синтезировал н ввел в практику анализа двойной сульфат аммония и железа(П) — соль Мора (NH4)2Fe(S04)2 6H20, на1шсал первое систематизированное руководство по титриметрии — Учебник химико-аналитических методов титрования . [c.40]

    Многие реакции в качественном анализе и титриметрическом методе осаждения (аргентометрия, меркурометрия) основаны на образовании мало растворимых соединений ( 19, 21). Повышенная растворимость галогенидов щелочных металлов объясняется ослаблением сил взаимодействия между ионами в кристаллической решетке. С этим связано отсутствие группового реагента на щелочные металлы. Вещества со слоистыми или молекулярными решетками растворяются лучше, чем вещества с решеткой координационной структуры. Это используют в химическом анализе для разделения катионов подгруппы соляной кислоты от катионов подгруппы сероводорода. Катионы серебра и свинца (II) образуют хлориды, имеющие решетки координационной структуры и поэтому менее растворимы. Хлориды СиС и СсЮЦ имеют слоистые решетки и поэтому хорошо растворимы, как и близкий к ним по строению решетки 2пС 2. Растворимость солеи связана также с радиусами их ионов. Соли с большими катионами и малыми анионами хорошо растворимы, а соли с малыми катионами и большими анионами — плохо (Яцимирский). Растворимость вещества зависит от соотношения полярностей растворенного вещества и растворителя. Установлено также, что растворимость солей зависит от их химической природы, например, для гидроокисей, сульфатов, хлоридов, фторидов элементов 1-й и 2-й групп периодической системы  [c.69]

    Ошибки титриметрического метода онределения бария (сульфата) превышают ошибки гравиметрического метода за счет соосаждепия ионов Ка , КН4 и, особенно, К , а также анионов (особенно КОз ). Мешаюш,ие ионы можно иредвари-тельно отделить с номош,ью ионообменных смол. [c.47]

    Для титриметрического определения натрия и калпя в присутствии сульфатов пли фосфатов навеску растворяют в небольшом количестве воды и подкисляют соляной кислотой по метиловому красному [1138]. Полученный раствор по Каплям добавляют в кипящий раствор (0,5 г Ba la- HgO и 1 мл 1 М НС1 в 50 мл раствора) со скоростью 1—2 капли в с. По охлаждении тонкой струей добавляют 10 мл 5%-ного раствора (NH4)2 0j, содержащего 1% NH3. Осадок фильтруют на бумажный фильтр и промывают аммиаком, фильтрат выпаривают досуха, высушивают остаток при 150° С, долго нагревают, далее переводят в бораты и поступают, как указано выше. [c.67]

    Для определения рения используются алкалиметрическое титрование рениевой кислоты, окислительно-восстановительное и комплексоиетрическое титрования, а также титриметрические методы, основанные на образовании труднорастворимых соединений. При окислительно-восстаповительном титровании в качестве восстановителей используют иодиды, сульфат железа(П), хлорид олова(П), в качестве окислителей — перманганат и бихромат калия, сульфат церия(1У). Использование метода спектрофотометрического титрования перренат-иона раствором Зп(П) в присутствии комплексообразующих лигандов позволяет повысить чувствительность и избирательность определения рения. Методы потенциометрического и амперометрического титрования рассмотрены на стр. 146 и 148. [c.81]


    Разработан титриметрический метод определения шестивалентного молибдена,, основанный на его количественном восстановлении небольшим избытком сульфата гидразина в среде 1—2 М НС1 при нагревании в течение 10 мин. на водяной бане [1239]. После охлаждения к раствору прибавляют соляную кислоту до концентрации 4 М, затем 5 мл сиропообразной Н3РО4 (на 50 мл раствора) и 0,5 мл 0,1%-ного раствора дифенилбензидина все титруют 0,05 N раствором сульфата четырехвалентного церия до появления фиолетового окрашивания. Пятивалентный молибден можно титровать также в среде 3 N НС1 после добавления 5 мл сиропообразной Н3РО4 в присутствии ферроина. Избыток гидразина не мешает титрованию пятивалентного молибдена. [c.202]

    Определение сульфатов осаждением их с органическими реагентами заканчивают не взвешиванием осадка, а титриметрически или фотометрически. [c.63]

    Для титриметрических методов определения серы наиболее характерно применение неорганических реактивов. Среди окислительно-восстановительных методов определения ионов серы наиболее разнообразны иодометрические. Из органических титрантов для прямого титрования серусодержащих ионов используют хлорамин Б и хлорамин Т, о-оксимеркуробензойную кислоту и другие реагенты. Наиболее многочисленную группу органических реагентов составляют металлохромные индикаторы, используемые для косвенного определения сульфат-ионов [402, 1215]. [c.65]

    Титриметрические методы основаны на окислении до сульфата различными окислителями иодом [269, 526], монохлориодом [177], гипогалогенитами [287, 683, 1006], ванадатом натрия [836], перманганатом калия [952], солями Fe(III) и e(IV) [807], хлорамином Т [1123] и хлорамином Б [1301]. Наибольшее практическое значение имеют различные варианты иодометрического определения. [c.99]

    Сульфаты тяжелых и щелочноземельных металлов выше 1000° С диссоциируют с образованием SOg, распадающегося на SO2 и кислород. Для определения общего содержания серы смесь обоих окислов пропускают через окислительную среду, в которой SOj окисляется до SOg, и полученный SOg определяют гравиметрически или титриметрически. [c.160]

    Анализируемое вещество, содержащее 50—500 мкг серы, в сухом состоянии или в виде раствора помещают в стакан емкостью 100 мл, прибавляют 3 капли 4%-ного раствора NaOH, 10 ли 30%-ной HjO и нагревают под часовым стеклом 20 мпн. Затем прибавляют еще 10 ли HjOj и продолжают нагревание до полного разложения вещества (обесцвечивание, полное растворение). Стекло и стенки стакана смывают водой и раствор упаривают до 5 мл еще раз смывают водой и снова упаривают. Определение сульфат-ионов заканчивают титриметрически. [c.169]

    Сульфаты в зависимости от содержания определяют гравиметрически или титриметрически. [c.184]

    Хронофотометрическое определение сульфатов в фосфористой кислоте возможно с ошибкой 9% [290]. Экспрессный титриметрический метод определения с использованием нитхромазо дан в работе [49]. [c.206]

    Определение содержания НрЗОд (в пересчете навОд). Серную кислоту переводят в сульфат бария соль определяют нефелометрическим либо титриметрическим методом. [c.116]

    Во многих работах ионообменные процессы были предложены в качестве способа решения химико-аналнтических задач. В самом общем виде в ге-терофаэной системе ионообменный сорбент — раствор можно осуществить абсолютное и относительное концентрирование определяемого компонента. Конечно, эти процессы в ходе аналитического определения являются вспомогательными, но во многих случаях они необходимы, иначе их применение было бы неоправданным иа фоне интенсивно развиваемых разнообразных прямых химических, физико-химических и физических методов современной аналитической химии. При недостаточном пределе обнаружения существующих или доступных в конкретной ситуации методов анализа прибегают к абсолютному концентрированию, например, путем упаривания, экстракции, осаждения. В ионообменном методе абсолютное концентрирование проводят поглошением определяемого элемента ионообменным сорбентом и регенерацией последнего малым объемом специально подобранного реагента (элюента). При недостаточной селективности существующих или доступных методов анализа прибегают к относительному концентрированию — отделению определяемого элемента от мешающих примесей. При ионообменном отделении мешающих элементов, далеких по ионообменным свойствам от определяемого компонента, относительное концентрирование выполняют простым пропусканием анализируемого раствора через слой (колонку) ионита в так называемых динамических проточных условиях (напрнмер, поглощение щелочноземельных металлов катионитом при титриметрическом определении сульфатов). Наконец, при отделении мешающих элементов, близких по свойствам к определяемому элементу (например, смесн щелочных, щелочноземельных, редкоземельных элементов, галогенов и пр.), относительное концентрирование осуществляют методом ионообменной хроматографии, т. е. методом разделения сме- [c.5]

    Уэллс [802] рекомендуют для определения окиси в бериллии смесь USO4 и Hg2 l2, в которой избирательно растворяется металл. Обработку сначала проводят при комнатной температуре, а затем при нагревании раствором сульфата меди (pH 4). Не-растворившуюся окись бериллия переводят в раствор при помощи фторида аммония, удаляют фтор и определяют бериллий титриметрическим или весовым методами. Таким путем можно определить 0,1—5% ВеО с ошибкой до 15%. [c.198]

    Кинетические методы с титриметрическим окончанием сравнительно мало применяют в анализе бромидов. В одном из методов, основанном на каталитическом действии иодид-ионов на реакцию окисления As(III) сульфатом церия(1У), в анализируемый бромидсодержаш,ий раствор добавляют определенный объем AgNO ,, избыток которого титруют 0,1 N раствором KJ [926]. По достижении КТТ лишняя капля титранта вызывает значительное ускорение реакции, и желтый раствор моментально обесцвечивается. [c.116]

    Момент полного окисления щавелевой кислоты до углекислого газа и воды фиксируется появлением розовой окраски от одной иябыточной капли титранта. При перманганатометрическом определении кальций осаждают оксалатом из кислой среды, а затем нейтрализуют аммиаком [272]. Осаждение из нейтральной или аммиачной сред приводит к заниженным результатам за счет загрязнения осадка основным оксалатом кальция или гидроокисью кальция. Осадок оксалата кальция растворяют обычно в разбавленной серной кислоте [31, 239, 323, 330, 341, 418, 610, 829 хорошие результаты получаются при растворении оксалата кальция в горячей воде в присутствии серной кислоты и сульфата марганца [1588J. Для растворения также могут быть рекомендованы разбавленные соляная [И, 692] и хлорная [757] кислоты. Иногда используют азотную кислоту и смесь серной и соляной кислот. Титруют горячий раствор (80 °С) [165, 1145, 1263, 1557, 1558]. Точность титриметрического варианта оксалатного метода не ниже точности гравиметрического. [c.70]

    Для определения малых количеств фтора предложен метод флуоресцентного титрования дистиллята, позволяющий анализировать также и обесфторенные фосфаты [52]. При дистилляции малых количеств фтора молярные отношения НР 8]р4 увеличиваются, и в дистиллят попадает кроме Н25 Рв еще и НР, причем НР в дистилляте тем больше, чем меньше фтора в определяемом образце. Поэтому титриметрические методы (макрометоды) спирто-выи или метод титрования в две стадии, основанные на определении фтора в виде кремнефторида, не дают точных результатов. Ториевый микрометод анализа непри.мени.м вследствие загрязнения дистиллята сульфат-ионом. Отгонка при низкой температуре весьма кропотлива и иногда не дает полного извлечения фтора из обесфторенных фосфатов. [c.86]

    Было изучено применение в качестве титриметрических реагентов [147] растворов сульфата и хлорида гидроксиламмония. [c.292]

    Титриметрическое определение возможно и тогда, когда титрант и определяемое вещество бесцветны. В этих случаях пользуются специальными цветными индикаторами. В качестве примера рассмотрим двухфазное титрование растворами бромида цетилпиридиния. Препарат очищают двукратной перекристаллизацией из ме-тилэтилкетона и однократной — из ацетона. Навеску около 2 г растворяют в 1 л воды, получают приблизительно 5-10 3 М раствор титранта. Точную концентрацию находят следующим способом [81]. Готовят стандартный водный раствор чистого тетрадекан-2-сульфата натрия СНз(СН2)цСН(080зНа)СНз (мол. масса 316,43) 5-10 М раствор содержит 1,582 г этой соли в 1 л. Отмеренную порцию раствора титруют устанавливаемым раствором бромида цетилпиридиния в указанных ниже условиях 1 мл стандартного раствора соответствует 1,992 мг бромида цетилпиридиния (т. е. [c.68]

    На основе реакции гидролиза карбида кальция разработано несколько методик определения воды. В большинстве из них измеряется количество ацетилена манометрическим [106, 133, 163] или волюмоыетрическим методами [43, 71, 133, 209]. Другие методы, нашедшие ограниченное применение, основаны на сжигании ацетилена, в ходе которого из.меряют интенсивность пламени [36] или расход кислорода [132]. Ацетилен можно измерять и другими способами хроматографически гравиметрически в виде оксида меди(П) после сжигания ацетиленида меди титриметрически с перманганатом после восстановления сульфата железа(1Н) до сульфата железа(П) колориметрически. Эти способы описаны в других главах книги. Удобный, быстрый метод, основанный на измерении потери массы смеси карбида с образцом, описан в гл. 3. [c.565]


Смотреть страницы где упоминается термин Сульфаты титриметрическое: [c.10]    [c.10]    [c.138]    [c.39]    [c.279]    [c.413]    [c.587]    [c.79]    [c.203]    [c.20]    [c.250]    [c.290]    [c.364]   
Определение анионов (1982) -- [ c.525 , c.538 ]




ПОИСК





Смотрите так же термины и статьи:

Титриметрическое определение плутония сульфатом церия



© 2025 chem21.info Реклама на сайте